
Networked control of a Parrot Mambo drone
Alexandru Codrean

Department of Automation
Technical University of Cluj-Napoca

Cluj-Napoca, Romania
alexandru.codrean@aut.utcluj.ro

Attila Kovács
Department of Automation

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

attila.kovacs@aut.utcluj.ro

Octavian Stefan
Department of Automation and Applied Informatics

Politehnica University Timisoara
Timisoara, Romania

octavian.stefan@aut.upt.ro

Zsófia Lendek
Department of Automation

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

zsofia.lendek@aut.utcluj.ro

Abstract—The current study proposes a network control struc-
ture for small low-cost drones like the Parrot Mambo mini-drone.
The structure is composed of an inner loop running on the drone,
and an outer loop running on a remote computer. The inner
loop controls the attitude and altitude of the drone based on
Kalman filter estimations from the onboard sensors. The outer
loop ensures position tracking based on measurements from Op-
tiTrack cameras. A time delay compensator is added to address
the constraints imposed by wireless network communications
between the drone and the remote computer. Experimental results
using Parrot Mambo drones show good stability and tracking
performances, despite model uncertainty and time delay.

Index Terms—Networked control, Parrot Mambo drone, Con-
trol applications

I. INTRODUCTION

Small unmanned aerial vehicles (sUAVs) have become
increasingly popular in multiple areas of applications, rang-
ing from education to industry, from research and military
to commercial [1]. The quadcopter (quadrotor) is the most
common type of UAV used by inexperienced users, teachers,
engineers and scientists, because it is inexpensive, lightweight,
has easy-to-understand flight principles/high maneuverability,
and a simple mechanical design [2]. Nevertheless, a quad-
copter is an underactuated system (4 actuators and 6 degrees
of freedom), nonlinear and inherently unstable, so designing
a control law for stabilization and tracking is not a trivial
task [3]. Moreover, real life applications impose complex
challenges like state and input constraints, sensor noise and
bias, reduced autonomy, and are easily affected by external
disturbances. Furthermore, for small low cost drones there are
additional hardware limitations, such as low quality sensors,
reduced memory and computational capabilities, and network
communication delays and packet loss. Although numerous
control methods for drones have been investigated in the
literature in the last two decades ([1], [2], [3]), many have
been validated in simulations only. Other control approaches

This work was supported by project DECIDE, no. 57/14.11.2022 funded
under the PNRR I8 scheme by the Romanian Ministry of Research, Innova-
tion, and Digitisation.

envisioning high performance - like model predictive control
or nonlinear control [4] - use expensive and medium-to-large
drones, capable of intensive computation onboard.

In this context the current research focuses on networked
control for small low-cost drones with limited computational
and communication capabilities, along with limited and un-
reliable sensors. To address these limitations, our approach
splits the control structure in an inner loop and an outer
loop: the inner loop is faster and runs on the drone, while
the outer loop is slower and runs on a remote computer.
The inner control loop is responsible for attitude and altitude
stabilization based on estimates provided by a steady state
Kalman filter, because the altitude and attitude can usually be
reliably estimated based on measurements from a gyroscope
and ultrasound sensors. Since obtaining accurate Cartesian
position measurements is usually an issue with small drones
without GPS capabilities, the outer control loop is closed
over a wireless network by a remote computer, which is
connected to motion capture cameras. This also solves the
computation restrictions for the position tracking, and opens
the way to further extensions involving trajectory planning and
coordination of multiple drones. In order to cope with the
issues caused by network communications [5], we consider a
buffering technique that enforces a constant time delay, along
with a time delay compensation method.

Our contribution lies in this new network control structure
for small drones, with the outer loop closed through the net-
work, along with the integration of a compensation strategy for
network induced disturbances. The experiments done with the
Parrot Mambo mini-drone show that our proposed approach is
efficient in dealing with model uncertainty, unreliable sensing,
as well as computation and communication constraints.

The structure of the paper is as follows: Section II de-
scribes the drone used and its mathematical model. Section III
presents the networked control structure and states the control
problem. Section IV designs the state estimator. Section V
details the controller design, together with the time delay
compensation. Section VI illustrates the experimental results.

Finally, Section VII draws some conclusions and mentions
future research directions.

II. PRELIMINARIES

Although many small low-cost drones are available com-
mercially, in most cases the software onboard is not open-
access, so there is no direct access to sensors and actuators,
and the control and estimation algorithms can not be modified.
A notable exception is the Parrot Mambo drone - see Figure 1,
which has often been used in education and research [6].
For this reason we will use it as case study for the current
paper. The following subsections will present the hardware
and software features of the Parrot Mambo drone, along with
its mathematical model.

Fig. 1: Parrot Mambo Drone

A. Parrot Mambo drone

The Parrot Mambo drone is a lightweight small quad-
copter of 0.18 × 0.18 meters, and weights only 0.063 kg.
DC motors actuate the four propellers. The drone has the
following onboard sensors: an accelerometer (measures the
linear accelerations ẍ, ÿ and z̈), a gyroscope (Euler angle rates
ϕ̇, θ̇ and ψ̇), an ultrasound sensor (vertical distance from the
ground z), a vertical camera, a barometer, and a temperature
sensor. The vertical camera is used for estimating the velocities
ẋ and ẏ, using a combination of an optical flow and corner
detection algorithms [7], and some geometric transformations
and corrections [6]. The online communication with the drone
is done wireless via Bluetooth, using the UDP transport
protocol. The software interface with the sensors, actuators and
network communication is made possible due to a firmware
specifically developed for Matlab [8]. The drone has several
limitations which were observed from our own experiments
and reported also in the literature: i) the autonomy is very
reduced, with a time of flight of maximum 2 minutes; ii)
the limited memory and computational capabilities do not
permit handling of large time varying matrices; iii) there
are multiple issues with the optical flow measurements (see
also [6] and [9]); iv) the Bluetooth communication has
very limited bandwidth, and sending large packets at short
time intervals (e.g. 5 ms) can cause delays of hundreds of
milliseconds with packet loss exceeding 50%.

The control algorithm provided with the firmware [8] con-
sists of multiple PID control loops, where angles and positions
are estimated by linear steady state Kalman filters, all relying
on simplified linear models. Due to optical flow measurements
issues and yaw estimation issues, the drone can drift along the

x and y axis, and has a constant yaw angle drift along the z
axis.

B. Mathematical model of the drone

Let us consider the pose P = [ξ η]T =
[x y z ϕ θ ψ]T (see Figure 1), where the position in
the world frame is given by {x, y, z}, and the orientation by
the Euler angles ϕ (roll), θ (pitch), ψ (yaw). The dynamic
model of the drone, developed using the Euler-Lagrange
formalism, is given by 1

ẍ = [c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)]
Ucoll
m

ÿ = [c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)]
Ucoll
m

z̈ = −g + c(ϕ)c(θ)
Ucoll
mϕ̈θ̈

ψ̈

 = J−1(η)

UϕUθ
Uψ

− C(η, η̇)η̇

(1)

where J(η) denotes the Jacobian matrix and C(η, η̇) the
Coriolis matrix. Due to space constraints, the full expressions
are not given here, the interested reader is referred to [10].

The control inputs are the torques on the three rotational
axes Uϕ, Uθ, Uψ , and the collective force Ucoll. The nominal
parameter values are: mass m = 0.063 kg, gravitational
acceleration g = 9.81 m/s2, X-axis inertia moment Ix =
0.5829·10−4 kgm2, Y-axis inertia moment Iy = 0.7169·10−4

kgm2, Z-axis inertia moment Iz = 1.000 · 10−4 kgm2.
The nonlinear model (1) can be rewritten in state space

form as
ẋ = f(x,u), (2)

where the state vector is x = [x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇]T

and the input vector is u = [Ucoll, Uϕ, Uθ, Uψ]
T .

Let the equilibrium point in hovering mode be
xe = [xe, ye, ze, 0, 0, 0, 0, 0, 0, 0, 0, 0]T , with inputs
ue = [Uecoll, 0, 0, 0]

T . The linearized model is

ẍ = θg

ÿ = −ϕg

z̈ =
∆Ucoll
m

ϕ̈ =
Uϕ
Ix

θ̈ =
Uθ
Iy

ψ̈ =
Uψ
Iz

(3)

where ∆Ucoll = Ucoll−mg. The model can also be written as

ẋl = Axl +Bul (4)

where xl = x − xe and ul = u − ue, and the expressions for
the matrices A and B are omitted due to space restrictions.

In what follows we propose a networked control structure
that can overcome some of the mentioned limitations of the
Parrot Mambo drone.

1s(·) and c(·) are shorthand notations for sin(·) and cos(·).

III. PROPOSED NETWORKED CONTROL STRUCTURE

The current paper proposes the networked control structure
in Figure 2. An inner loop controller onboard the drone
controls the attitude (Euler angles - pitch, roll, yaw) and
altitude based on onboard estimates from a Kalman filter. An
outer loop controller is implemented on a remote computer for
XY position control, using the measurements from motion
capture cameras, e.g. OptiTrack cameras. Because the com-
mand signals of the outer loop controller are sent through a
wireless network to the drone, a time delay compensator is
added to counteract the effect of network transmission delays.
Note that the network is only on the direct path, because
the position feedback is done thorough OptiTrack cameras,
directly connected to the remote computer.

Fig. 2: Proposed networked control structure for the Parrot
Mambo drone

The proposed structure has the following benefits:
• It bypasses the drone hardware limitations, by moving

part of the control algorithm on a remote computer, as
the outer control loop (which can run slower than the
inner loop control).

• Accurate position measurements can be used from Op-
tiTrack cameras, instead of onboard measurements and
estimations through optical flow.

• The transmission delays and packet loss due to Bluetooth
transmissions can be minimized by sending smaller data
packets one way.

Splitting the control structure into an inner loop and outer
loop relies on the assumption that the inner loop is much faster
than the outer loop [2]. This can be ensured by properly tuning
the inner/outer loop controllers and adopting the sampling
periods. If for the inner loop control the sampling period is
limited by the hardware to T is = 5ms, for the outer loop
the sampling period is limited by the Bluetooth transmissions
and drone hardware. Our experiments revealed that a sam-
pling period too small leads to a large amount of packet
loss and large time-varying transmission delays (of several
hundreds milliseconds, see also [11]). On the other hand,
a large sampling period makes the control miss important
transient behavior of the real drone, with control performance
deteriorating significantly. After multiple experiments with the
Parrot Mambo drone, we arrived empirically at a compromise
solution for the outer loop sampling period of T os = 30ms.

It is well known in the time delay systems literature
that a relatively small time varying delay has often a more

destabilizing effect on the control loop than a relatively large
constant delay [12]. Consequently, in order to avoid time delay
variations and packet loss due to Bluetooth transmissions,
we adopt a queuing/buffering technique similar to the one
in [13] in order to force a constant delay τ = nτT

o
s . The

parameter nτ depends on the amount of data the drone has to
receive/transmit in a specific application.

Considering the network control structure from Figure 2, the
Parrot Mambo drone described in Section II, and the network
transmission aspects mentioned above, we can formulate the
following two control problems (CPs):

CP1. Design a local state estimator and a feedback
controller for drone stabilization and attitude and
altitude tracking, simple enough to run onboard.
CP2. Design a remote XY position controller for
tracking using OptiTrack camera measurements, to-
gether with a time delay compensator to counteract
the effects of network transmissions effect on the
control loop.

These will be addressed in the next two sections.

IV. STATE ESTIMATION

For the purpose of state estimation, we consider the dis-
cretized version of (4) affected by noise{

xl(k) = Adxl(k − 1) +Bdu(k − 1) + w(k − 1)

y(k) = Cdxl(k) + v(k),
(5)

where k denotes the current sample. The process and mea-
surement noises, w and v, are assumed to be indepen-
dent white noises, with known covariances E{wwT } = Q
and E{vvT } = R.

The most commonly used state estimator for linear time
invariant systems affected by noise is the linear Kalman
filter [14], which we will employ in what follows. Our filter
is different from the one already implemented through the
firmware [8] because it uses the information provided by the
control inputs. The filter equations can be found in [15], and
are omitted here for reasons of brevity.

In order to exploit all available information, linear accel-
erations measured by the accelerometer are added as extra
states. In this configuration, there are still three unobservable
states - positions x, y and yaw (ψ) - which are calculated
using numerical integration. During flight, the dissipated heat
produces a bias in gyroscope measurements of pitch, roll
and yaw rates [16]. This results in large estimation errors,
especially for the roll and yaw angles. For the roll estimation,
our solution is to add an additional state variable b to be
estimated for the bias (a similar approach was adopted in [17]).
The yaw rate bias was compensated by adding to the measured
signal a correction term proportional with temperature. To
summarize, the onboard Kalman filter estimates the states
[z, ϕ, θ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇, ẍ, ÿ, z̈, b]T .

Due to the drone’s hardware restrictions, we implemented a
steady state version of the Kalman filter, with the steady state
gain K∞.

Since the ultrasound sensor can produce random false mea-
surements during flight and take-off, for take-off, a Kalman
filter that ignores measurements for the altitude z was used.
Furthermore, during flight, measurement spikes that are above
a given threshold are also eliminated, as they are likely false.

V. CONTROL DESIGN AND TIME DELAY COMPENSATION

In this section we describe the inner loop control, outer loop
control and time delay compensation.

A. Inner loop control design

We design the inner control loop for attitude (Euler angles)
and altitude (z position) control. Let the state vector for
the inner loop control be xi = [z, ϕ, θ, ψ, ż, ϕ̇, θ̇, ψ̇]T . Based
on (3), the subsystem involving attitude and altitude can be
written compactly as

ẋi = Aixi +Biul (6)

A linear state feedback control is designed:

ul = −Kiei = −Ki(xi −

zr
ϕr
θr
ψr
04×1

), (7)

where zr is the altitude reference. For simplification, the
desired altitude is considered constant. We also assume that the
drone keeps the same orientation during position tracking, i,e.
the yaw orientation reference ψr is taken as zero. ϕr and θr are
regarded as virtual control inputs provided by the outer control
loop through the network (see Figure 2): unoc = [ϕr θr]

T . The
feedback gain Ki is designed using an LQR approach [18],
with appropriate state and control inputs weights Qi and Ri,
see Section VI.

Remark 1: Although the altitude control is considered here
as part of the inner loop, this does not limit the overall
approach to tracking in the horizontal plane because the
altitude reference zr can still be sent remotely. Alternatively,
the states z and ż can easily be moved to the outer control
loop without altering the overall framework.

B. Outer loop control design

For the outer loop control we consider that ideally ϕ −→ ϕr,
θ −→ θr, ψ −→ ψr = 0 and z −→ zr = ze, and that the inner
control loop is much faster than the outer loop control. Thus
the outer loop can be modelled in a simplified manner, based
on the first two equations from (3), as:

ẋo = Aoxo +Bouoc (8)

with the state xo = [x y ẋ ẏ]T and input uoc = [ϕr θr]
T . At

this point, we consider that there are no delays or packet loss,
i.e. uoc = unoc. We add two extra states as the integrals of the
tracking errors on the x and y axes

eix =

∫ t

0

(xr − x) dt, eiy =

∫ t

0

(yr − y) dt,

where xr and yr represent the reference positions. The ex-
tended system now becomes:

ẋeo = Aeoxeo +Beouoc +Brr (9)

with the matrices and vectors given by

xeo =

x
y
ẋ
ẏ
eix
eiy

 , Aeo =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0

 ,

Beo =

0 0
0 0
0 g
−g 0
0 0
0 0

 , Br =

0 0
0 0
0 0
0 0
1 0
0 1

 , r =

[
xr
yr

]
.

For system (9), we consider the control law:

uoc = −Keo

xo − δ

[
r

02×1

]
eix
eiy

 . (10)

The feedback gain Keo is again obtained through an LQR
approach using an appropriate choice of the state and control
inputs weights Qeo and Reo for r = 02×1, see Section VI.
The scalar δ > 0 is introduced in order to account for the
discrepancy between this ideal model and reality.

Remark 2: The control law (10) is equivalent with a
combination of feedback and feedforward of the from uoc =
−Keoxeo + δNr. The integrator component can bring the
tracking errors ex = xr − x and ey = yr − y to zero, but at
the price of a large overshoot due to nonlinearities and windup
effect (command saturation), or a very large settling time. The
role of the feedforward term in the control law is to improve
the settling time, while also reducing the overshoot.

C. Time delay compensation
The outer loop is implemented remotely - see Figure 1, and

as a result a network transmission delay appears in the loop. As
discussed in Section III, the time delay can be made constant
through a buffering strategy. One of the most effective time
delay compensation strategy for constant and known delays is
the Smith Predictor. Because our process (8) is unstable, we
adopt a filtered Smith Predictor approach as in [19].

First we discretize (8) in series with a constant delay τ ,
through the zero order hold method [18], and obtain the
following discrete transfer matrix:[

X(z)
Y (z)

]
=

[
Hx(z) 0

0 Hy(z)

] [
Θr(z)
Φr(z)

]
(11)

where
X(z)

Θr(z)
= Hx(z) =

Nx(z)

Dx(z)
z−d =

T 2
s g

2

z + 1

(z − 1)2
z−d,

Y (z)

Φr(z)
= Hy(z) = −T

2
s g

2

z + 1

(z − 1)2
z−d, d =

τ

Ts
.

Then, we rewrite the controller (10) as two discrete-time
PID controllers with feedforward terms, having transfer func-
tions Cx(z) = Θr(z)/Ex(z) + δNxXr(z) and Cy(z) =
Φr(z)/Ey(z) + δNyYr(z), where only the outputs X and Y
are available.

Because the MIMO process (11) is decoupled and with
the same delay, we design a filtered Smith predictor on each
individual input-output channel. Consequently, we only show
the design on the θr → x channel (the design for the other
channel can be done is similar manner).

Figure 3 presents the filtered Smith Predictor structure
from [19]: 3a) represents the analysis structure, and 3b)
represents the implementation structure. Hn

x is the nominal
plant model and qx is an input disturbance (due to external
disturbances, uncertainty or unmodeled dynamics). The struc-
ture differs from the classical Smith predictor through the
filter Frx, which allows the process to have unstable poles,
and increases the robustness of the overall structure to input
disturbances.

Based on Figure 3a, the predicted signal when the input
disturbance is zero can be determined as

Xp(z) = Hn
x (z)Θr(z) + Frx(z)[X(z)−Hn

x (z)z
−dΘr(z)]

= Frx(z)X(z) + [Hn
x (z)− Frx(z)H

n
x (z)z

−d]Θr(z)

= Frx(z)X(z) + Sx(z)Θr(z).

Since our process Hx has two unstable poles, and an
additional step input disturbance due to uncertainty, a third
order filter is adopted

Frx(z) =
Nrx(z)

Drx(z)
=
a3z

3 + a2z
2 + a1z + a0

(z − α)3
, (12)

with α ∈ (0, 1) a tuning parameter. Nrx(z) is designed such
that the unstable poles of the process are eliminated from
Sx(z), and thus the implementation structure gives a stable
prediction. In other words, we impose

1− Frx(z)z
−d =

Drx(z)z
d −Nrx(z)

Drx(z)zd

=
(z − z0)(z − z1)(z − z2)px(z)

Drx(z)zd
,

where z1 = z2 = 1 because of the double integrator process,
and we additionally take z0 = 1 so that Frx(1) = 1 in steady
state (step disturbance rejection). By dividing the polynomial
Drx(z)z

d −Nrx(z) to (z − 1)3, we will get a quotient px(z)
and a remainder rx(z). The coefficients {a3, a2, a1, a0} of Nrx
are calculated by imposing the remainder to be zero.

VI. EXPERIMENTAL RESULTS

This section presents the actual design and the experimental
results with the Parrot Mambo drone (along with OptiTrack
cameras connected to a remote PC), using the structure from
Figure 2, in the context of network transmission delays.
As discussed in Section III, due to limitations of Bluetooth
transmissions, depending on the amount data transmitted (e.g.
images from the onboard camera), a certain delay τ = nτT

o
s

(a) analysis structure

(b) implementation structure

Fig. 3: Filtered Smith predictor for time delay compensation
on the θr → x channel

has to be taken into account. We consider here three scenarios:
i) no delay case, i.e., nτ = 0, ii) a delay of 4 sampling periods,
nτ = 4, and iii) a delay of 8 sampling periods, nτ = 8.
The constant delay is enforced through the buffering technique
explained in Section III.

First, the linear Kalman filter is designed. The covariance
matrices Qk = diag(wQ) and Rk = diag(wR) have been ex-
perimentally determined based on measured data, with wQ =
[1e-4 1e-10 1e-10 1 0.1 5e-2 1e-5 1e-3 1 5e-4 5e-3 0.05 1e-11],
wR = [0.7 300 300 5.6e-9 6.6e-8 1.3e-6 0.0147 0.0148 1.7e-5].
Second, the inner loop LQR was designed, using the
weights Qi = diag([1 0.5 0.5 0.001 0.1 0.04 0.04 0.01])
and Ri = diag([0.66 10000 10000 1000]). Third,
the outer loop LQR was designed in the no delay
case, with Qeo = diag([20 20 40 40 1800 1800]) and
Reo = diag([5000 5000]), and using a feed-forward
weight δ = 0.5. Finally, the filtered Smith Predictor was
designed for the case nτ = 4 (resulting in: α = 0.7, a3 =
0, a2 = 2.142, a1 = −3.906, a0 = 1.791), and for nτ = 8
(α = 0.9, a3 = 0, a2 = 0.568, a1 = −1.098, a0 = 0.531).

For all the experiments we considered the flight at a constant
altitude, with a sequence of step reference signals on the x
and y axes. So after the initial take-of with references (xr =
0, yr = 0, zr = 1m), at time t = 25sec a step reference
of −0.8m is applied on the x axis , then at t = 30sec a
step reference of −0.5m on the y axis, and finally at t =
35sec step signals on both x and y axes simultaneously (xr =
−0.6m, yr = −0.2m).

Figures 4-6 present the experimental results from the mo-
ment of take-off. Reference signals are indicated by black
lines, the measured output with delay compensation (our

proposed approach) with blue and measured signals without
delay compensation (for Figures 5-6) by dashed red lines.

Figure 4 illustrates the tracking results for the no delay case
(nτ = 0). The initial oscillations are due to take-off, influence
of unmodelled aerodynamics, OptiTrack cameras missing a
marker, etc. The tracking results are satisfactory for a linear
control structure on a low-cost drone, with no steady state
error and small overshoot.

Figure 5 shows the tracking results for the 4 sampling
periods delay case (nτ = 4). The red-dashed trajectories are
the measured outputs without the Filtered Smith Predictor, i.e.
when there is no delay compensation. The sustained oscilla-
tions on long-term lead to crashes. The blue-solid trajectories
are achieved using the Filtered Smith Predictor. It can be
noticed that most of the original tracking performance (from
the no delay case) is recovered.

Finally, the results for the 8 sampling periods delay case
(nτ = 8) are shown in Figure 6. Due to the large delay,
the system becomes quickly unstable when there is no delay
compensation, and the drone crashes or escapes the range
of the OptiTrack cameras (red-dashed trajectories). Using the
Filtered Smith Predictor for time delay compensations again
recovers most of the original performances from the no delay
case (blue-solid trajectories), despite small oscillations that
emerge due to modelling and delay uncertainties. All in all,
the experimental results show that the proposed networked
control structure ensures good tracking performances despite
model uncertainties, disturbances and relatively large delays
(240 ms).

Fig. 4: Experimental results for the no delay case: tracking on
the x and y axis at constant altitude of 1m.

VII. CONCLUSIONS

The paper presented a networked control structure for low-
cost drones like the Parrot Mambo, using OptiTrack cameras
for accurate position measurements, and time delay compen-
sation for addressing network communication constraints. A
linear Kalman filter and an LQR controller is designed for
the inner control loop running onboard the drone. The outer
control loop is running on a remote computer, and consists of
an LQR controller with integrator component and feedforward
term, along with a Filtered Smith Predictor. The experimental
results show that the control structure can ensure good tracking
performances despite model uncertainties, disturbances, and

Fig. 5: Experimental results for a delay of 4 samples periods
(τ = 120ms): tracking on the x and y axis at constant altitude
of 1m.

Fig. 6: Experimental results for a delay of 8 samples periods
(τ = 240ms): tracking on the x and y axis at constant altitude
of 1m.

relatively large delays. Our future work will focus on increas-
ing the robustness of the control structure through unknown
input observers, and resilience to cyber-attacks through AI
inspired methods. Robustness is particularly important, since
due to its small weight, the drone is vulnerable to persistent
non-Gaussian disturbances, such as wind gusts, e.g., in outdoor
scenarios.

REFERENCES

[1] S. Mohsan, N. Othman, and Y. L. et al., “Unmanned aerial vehicles
(UAVs): practical aspects, applications, open challenges, security issues,
and future trends,” Intel Serv Robotics, vol. 16, no. 4, pp. 109–137, 2023.

[2] J. Marshall, W. Sun, and A. L’Afflitto, “A survey of guidance, navigation,
and control systems for autonomous multi-rotor small unmanned aerial
systems,” Annual Reviews in Control, vol. 52, pp. 390–427, 2021.

[3] B. Emran and H. Najjaran, “A review of quadrotor: An underactuated
mechanical system,” Annual Reviews in Control, vol. 46, pp. 165–180,
2018.

[4] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza,
“A comparative study of nonlinear mpc and differential-flatness-based
control for quadrotor agile flight,” IEEE Transactions on Robotics,
vol. 38, no. 6, pp. 3357–3373, 2022.

[5] O. Stefan, T. Dragomir, A. Codrean, and I. Silea, “Issues of identifying,
estimating and using delay times in telecontrol systems based on TCP/IP
networks,” IFAC Proceedings, vol. 43, no. 23, pp. 143–148, 2010.

[6] X. Zeng, Implementing Tracking Error Control for Quadrotor UAV.
Master Thesis, Eindhoven University of Technology, 2021.

[7] T. Derbanne, Method of evaluating the horizontal speed of a drone, in
particular a drone capable of performing hovering flight under autopilot.
US Patent 8.498.447, 2013.

[8] Matlab, Simulink Support Package for Parrot Minidrones. Matlab, 2022.

[9] G. Brekelmans, Extended Quadrotor Dynamics: from Simulations to
Experiments. Master Thesis, Eindhoven University of Technology,
2019.

[10] A.-K. Máthé, Nonlinear Control for Commercial Drones in Autonomous
Railway Maintenance. PhD Thesis, Technical University of Cluj-
Napoca, 2016.

[11] I. R. Scola, G. G. Reyes, L. G. Carrillo, J. P. Hespanha, and L. Burlion,
“A robust control strategy with perturbation estimation for the Parrot
Mambo platform,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 4, pp. 1389–1404, 2021.

[12] O. Stefan, Modelling, Analysis and Synthesis of Some Structures for
Networked Control. PhD Thesis, Politehnica University Timisoara,
2013.

[13] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked
control systems,” Control Engineering Practice, vol. 11, no. 10, pp.
1099–1111, 2003.

[14] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice
Using MATLAB. John Wiley & Sons, 2015.

[15] G. Welch and G. Bishop, An Introduction to the Kalman Filter. TR
95-041, Department of Computer Science University of North Carolina
at Chapel Hill, 2006.

[16] N. Metni, J.-M. Pflimlin, T. Hamel, and P. Soueres, “Attitude and gyro
bias estimation for a flying UAV,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Edmonton, AB, Canada,
2005, pp. 1114–1120.

[17] H.-J. Lee and S. Jung, “Gyro sensor drift compensation by Kalman
filter to control a mobile inverted pendulum robot system,” in 2009
IEEE International Conference on Industrial Technology, Churchill,
VIC, Australia, 2009, pp. 1–6.

[18] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems. Pearson, 2020.

[19] R. C. Flesch, B. C. Torrico, J. E. Normey-Rico, and M. U. Cavalcante,
“Unified approach for minimal output dead time compensation in MIMO
processes,” Journal of Process Control, vol. 21, no. 7, pp. 1080–1091,
2011.

