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Abstract— This paper investigates the practical application 

and evaluation of four adaptive algorithms: Least Mean Square 

(LMS), Normalized Least Mean Square (NLMS), Recursive 

Least Square (RLS) and Affine Projection (AP) for the 

identification of a DC motor. The work focuses on dynamic 

system identification, where the adaptability and efficiency of 

numerical filters play an important role. To identify the 

parameters of a DC motor, these adaptive algorithms are used 

on measured data. With the aim of having a shorter processing 

time, the data was downsampled. Satisfactory results were 

obtained with all algorithms. Finally, the difficulty of 

implementing the algorithms, the errors obtained and the 

processing time were analyzed. 

Keywords— adaptive filters, motor identification, testing 

I. INTRODUCTION 

In the rapidly evolving landscape of technology and 
automation, the demand for efficient and adaptable systems 
has become significant. One area where this need is 
particularly pronounced is signal processing [1], where the 
ability to extract meaningful information from data is crucial. 
In this context, the application of numerical filters [2], 
especially adaptive filters [3], [4] has gained importance. 

Numerical filters [5], [6] are used in various applications 
ranging from audio processing [7], and telecommunications 
[8] to biomedical signal analysis [9]. These filters  enhance 
signal quality [10], reduce noise [11], and extract relevant 
features from complex datasets [12]. One specific application 
is the representation of the impulse response of a process [13, 
14, 15, 16] by FIR filter coefficients. This can be considered 
as an identification method [17]. 

Adaptive filters [18] self-adjust and optimize their 
parameters based on the characteristics of the input data. This 

makes them well-suited for dynamic and changing 
environments [19], where traditional fixed filters may fail. 
The application of adaptive filters extends across fields [20], 
[21] such as communication systems [8], control systems [10], 
and, notably, identification of dynamic systems.  

Understanding and modeling the behavior of complex 
systems [22], [23] is essential for optimizing their 
performance. Adaptive algorithms such as [17] Least Mean 
Squares (LMS), Normalized LMS (NLMS), Affine Projection 
(AP), and Recursive Least Squares (RLS), offer powerful 
tools for  identifying dynamic systems. 

The main idea in adaptive filters is to adjust the filter 
coefficients iteratively to minimize the error between the 
estimated output and the actual output. This ensures [4] that 
the filters respond to the evolving characteristics of the system 
under observation. 

This article applies the above-mentioned adaptive 
algorithms to identify the model of a motor. Besides the 
identification of the FIR filter model, the paper highlights the 
choice of the appropriate adaptive algorithm, its impact on 
processing time and the accuracy of the result. It also discusses 
the impact of downsampling of the input signal in order to 
reduce processing time. The identification process starts with 
the collection by a dedicated development board of real-time 
input-output data from a direct current motor. The acquired 
data undergoes preprocessing, where downsampling is 
applied. Downsampling [5], [24], or the selective reduction of 
data is a critical step to realize the computational efficiency 
required for adaptive filtering processes. 

We test how well each algorithm captures DC motor 
behavior and the effect of downsampling. By comparing 
predicted and actual outputs, we evaluate the algorithm’s 
adaptability and robustness. This serves as a practical 
benchmark for assessing performance. We also evaluate the 
processing time and identification error for both original and 
downsampled data for practical implementation.  

The central focus is on determining the algorithm that 
provides the most accurate and reliable results. We consider 
both theoretical robustness and real-world feasibility. Thus, 
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we contribute to the field of adaptive filtering, providing 
guidelines in selecting algorithms that show high performance 
and easy implementation.  

 The paper is structured as follows: in Section II we 
describe aspects related of the DC motor, the development 
board and the acquisition of input-output data. In Section III, 
four adaptive algorithms (LMS, NLMS, AP, RLS) are 
described. The results are presented in Section IV. Section V 
presents some conclusions and starting points for future 
developments. 

II. SETUP 

Our case study involves identifying the direct current 

motor in Fig.1. We use the Nucleo64-P development board 

for data acquisition. 

A. The Motor 

The motor to be identified is a direct current motor (see 
Fig. 1). The schematic diagram is presented in Fig. 2. 

 
Fig. 1.  The motor used for identification 

 

Fig. 2.  The structure of the motor 

Based on [25], the state-space model of the motor in 
continuous time is: 
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(1) 

where the variables are: 𝑖𝑎(𝑡) is the rotor current, 𝜔𝑚(𝑡) is the 
angular velocity and 𝜃𝑚(𝑡)  is the angle;  𝑅𝑎  is armature 
resistance, 𝐿𝑎  is armature inductance,  𝐾𝑒  proportionality 
constant, 𝐾𝑡 is the motor torque constant,  𝐽𝑚 is the equivalent 

moment of inertia of the motor, 𝐷𝑚  is the damping of the 
engine (including both its own viscous damping and the 
viscous damping of the load). 

The motor parameters are not known and they have to be 
identified. 

B. The Development Board 

The STM32 Nucleo 64-P development board [26] was 
used to generate the SPAB input signal and to acquire data 
from the motor. The board (see Fig. 3) is a compact option 
microcontroller, offering a 64-pin form factor for easy 
prototyping and development of embedded systems. It has a 
maximum frequency of 80kHz and contains both an ADC 
(Analog to Digital Converter) and a DAC (Digital to Analog 
Converter). Also, it has a versatile set of peripherals, an 
Arduino Uno R3 connector for expansion, and supports a wide 
range of IDEs, making it a robust choice for developing 
embedded applications. 

 
Fig. 3.  The development board used for data acquisition 

C. Data Acquisition 

Ensuring that the signal has a wide frequency spectrum is 
a crucial point when choosing the input signal. This means that 
if a system contains several elements, some of them will 
operate at a certain frequency, while others will operate at a 
different one. We must select a signal that will activate all the 
elements in the system. Another important issue is to prevent 
saturation. Therefore, the input signal has been chosen with a 
period so that the motor can reach its response time in the 
largest period, but also respond in the smallest period of the 
input signal. 

We apply several inputs to our system and record the 
output using the STM32 Nucleo 64P microcontroller. The 
input signal is generated by the development board, which is 
connected with Matlab. Both input and output are saved in a 
file using Matlab. The setup is presented in Fig. 4. Both the 
SPAB type input and the motor output were acquired in real 
time and can be seen in Fig. 5. The sampling period is 𝑇𝑠 =
1𝑚𝑠. 

 
Fig. 4.  Hardware setup for data acquisition 



 

Fig. 5.  Acquired signals 

Downsampling is achieved by discarding certain samples. 

With the goal of implementation on an embedded system, 

downsampling  is used to reduce the computation time. Step 

7 was chosen for downsampling, obtained through several 

trials in order to obtain a satisfactory result (with an 

approximation of over 80%), and the comparison can be seen 

in Fig. 6. 

 

Fig. 6.  Original and dowsampled output signal 

III. ADAPTIVE FILTERS 

Our goal is to accurately identify the process in the form 
of an FIR (Finite Impulse Response) filter. In this section, four 
adaptive filtering methods are explored: LMS, NLMS, AP, 
and RLS, which return an imposed number of coefficients of 
the FIR filter. 

The identification structure is shown in Fig. 7, where the 
adaptive filter is placed in parallel with the unknown system 
to be identified.  

In our case, the motor output to an impulse input is 
represented by the Markov coefficients or weight vector 𝑤(𝑛) 
which are also the FIR filter coefficients. The FIR filter 
computes the output 𝑦(𝑛) as (2), where 𝑤(𝑘), 𝑘 = 0,… ,𝑀 
are the Markov coefficients, 𝑀 denotes the order of the filter 
and 𝑢(𝑘) represents the input at sample 𝑘. 

𝑦(𝑛) =∑𝑤(𝑘)𝑢(𝑛 − 𝑘)

𝑀

𝑘=0

 

 

(2) 

 
Fig. 7.  Block diagram of adaptive system identification 

An adaptive algorithm [17] is a set of recursive equations 
used to automatically adjust the weight vector 𝑊 =
[𝑤(0) 𝑤(1)…𝑤(𝑀)]𝑇 at time 𝑛 to minimize the error signal 
𝑒(𝑛)  so that the weight vector iteratively converges to the 
optimal solution. 

The FIR filter is, in fact, a linear model that approximates 
the unknown system. The excitation signal u(n) at time-step 𝑛 
serves as input to both the unknown system and the adaptive 
filter, while η(n) represents the disturbance affecting the 
unknown system.  

The objective is to model the unknown system so that the 
filter’s output y(n) closely matches the unknown system 
output’s d(n). This can be achieved by, e.g., minimizing the 
square sum of the difference between the output of the model 
and of the filter. 

𝐽 = ∑(𝑑(𝑘)

∞

𝑘=0

− 𝑦(𝑘))2 
 

(3) 

The error 𝑒(𝑛) is defined as the difference between the 
physical response 𝑑(𝑛) and the model response 𝑦(𝑛).  

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) (4) 

The Least Mean Squares (LMS) algorithm [17] is a widely 
employed adaptive filtering method known for its simplicity 
and computational efficiency, as it operates on the principle of 
gradient descent. LMS is particularly suited for applications 
where real-time adaptation to changing conditions is crucial. 

The LMS algorithm adjust the vector of the weights 𝑊 =
[𝑤(0)  𝑤(1) …  𝑤(𝑀)]𝑇 at each time-step 𝑛 based on the last  
error 𝑒(𝑛) and the vector 𝑈(𝑛) = [𝑢(𝑛) 𝑢(𝑛 − 1)…𝑢(𝑛 −
𝑀 + 1)] containing the inputs that have been used to obtain 
the corresponding output of the plant and of the model, 
respectively. The weights are updated as:  

 𝑊(𝑛 + 1) = 𝑊(𝑛) + 𝜇𝑈(𝑛)𝑒(𝑛) (5) 

where μ ∈ [0,2] is the step size (or convergence factor) that 
determines the stability and the convergence rate of the 
algorithm. 

 The normalized Least Mean Squares (NLMS) [17] 
normalizes the update with the power of the input signal. The 
weight update equation for NLMS is expressed as (6): 

𝑊(𝑛 + 1) = 𝑊(𝑛) +
𝜇

𝑃𝑢(𝑛) + 𝛼
𝑈(𝑛)𝑒(𝑛)  (6) 

where μ is the convergence rate, 𝑃𝑢 is  the power of the input 
vector and  𝛼  is a small value between 0 and 1 to avoid 
division by zero. 



 The power 𝑃𝑢(𝑛) of the input sequence can be iteratively 
estimated [17] for each time-step 𝑛 as: 

𝑃𝑢(𝑛) = (1 − 𝛽)𝑃𝑢(𝑛 − 1) +  𝛽𝑢
2(𝑛) 

where 0 < 𝛽 < 1 is a forgetting factor. 

(7) 

 This normalization makes it able to handle signals with 
varying amplitudes.  

 Recursive Least Squares (RLS) [17] uses an estimate of 
the inverse covariance matrix of the input, to adapt to changes 
in the input signal statistics and is therefore well-suited for 
applications requiring high accuracy and efficiency. The 
weights are updated as (8) and the updating gain 𝑔(𝑛)  is 
calculated using (9-11). 

𝑊(𝑛 + 1) = 𝑊(𝑛) + 𝑔(𝑛)𝑒(𝑛) (8) 

𝑔(𝑛) =
𝑟(𝑛)

1 + 𝑢𝑇(𝑛)𝑟(𝑛)
 

(9) 

𝑟(𝑛) = 𝜆−1𝑃(𝑛 − 1)𝑢(𝑛) 
 

(10) 

𝑃(𝑛) = 𝜆−1𝑃(𝑛 − 1) − 𝑔(𝑛)𝑟𝑇(𝑛) (11) 

In (10-14) 𝑃(𝑛)is the cross-correlation matrix and λ is the 
forgetting factor. 

 Affine Projection (AP) [17] employs a more intricate 
mechanism, taking advantage of past input signals to account 
for colored input noise. The AP algorithm uses a set of v 
constraints of the form 𝑑(𝑛 −  𝑘)  =  𝑊𝑇 (𝑛 +  1)𝑈(𝑛 −
 𝑘) for 𝑘 =  0, 1, . . . , 𝑣 −  1. 

The error vector 𝐸(𝑛) = [𝑒(𝑛), 𝑒(𝑛 − 1), … , 𝑒(𝑛 − 𝑀 +
1)] is calculated as: 

𝐸(𝑛) = 𝐷(𝑛) − 𝐴(𝑛)𝑊(𝑛) (12) 

where input signal matrix 𝐴𝑇(𝑛)  =  [𝑈(𝑛), 𝑈(𝑛 −
 1), . . . , 𝑈(𝑛 −  𝑣 +  1)]  consists of 𝑣 columns of input 
vectors of length 𝑀,  𝑈(𝑛) =  [𝑢(𝑛), 𝑢(𝑛 −  1), . . . , 𝑢(𝑛 −
 𝑀 +  1)]T and 𝐷(𝑛) =  [𝑑(𝑛), 𝑑(𝑛 −  1), . . . , 𝑑(𝑛 −  𝑣 +
 1)]T is the desired response vector.  

The weights are updated as: 

 𝑊(𝑛 + 1) = 𝑊(𝑛) +
𝜇𝐴𝑇(𝑛)[𝐴(𝑛)𝐴𝑇 (𝑛)]−1𝑒(𝑛) 

(13) 

    Next, we apply these filters to identify the motor. 

IV. RESULTS 

The algorithms from Section III have been implemented 
and tested in Matlab using data collected from the motor. 
Several tests were made to choose a number of coefficients 
that is reasonable in terms of computational cost and for which 
all four algorithms respond favorably. A number of 55 
coefficients was chosen, but depending on the algorithm and 
its characteristics, more satisfactory responses can be found. 
The acquired data were divided into two parts: one for 
obtaining the filter coefficients, and the second part of the data 
was used for testing. In what follows, the results obtained on 
the test data will be presented. 

To evaluate the filters, the average squared error (ASE) 
was used: 

𝐴𝑆𝐸 = 
∑ (𝑑(𝑘)𝐿
𝑘=0 − 𝑦(𝑘))2

𝐿
 

(14) 

where 𝑑(𝑘) is motor output (desired signal), 𝑦(𝑘) is the filter 
output and 𝐿 is the length of the data. 

For the LMS algorithm, with 𝑀 = 55 terms, 𝜇 = 10−6 , 
the result presented in Fig. 8 was obtained and an 𝐴𝑆𝐸 =
 5.4279.  The total processing time obtained with 
downsampling is 0.0017 𝑠𝑒𝑐,  5.5033 µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 . 
Without downsampling, a total time of 0.00397 𝑠𝑒𝑐, 
1.9419 µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 was obtained. 

 

Fig. 8.  Result obtained with LMS algorithm 

For the NLMS algorithm, with 𝑀 = 55 terms, 𝜇 = 1  and 

𝛼 = 10−5, the result presented in Fig. 9 was obtained and an 
𝐴𝑆𝐸 =  12.5618.  The total processing time obtained with 
downsampling is 0.002 𝑠𝑒𝑐,  6.7240 µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
respectively. Without downsampling, a total time of 
0.005 𝑠𝑒𝑐 and 2.4912 µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 was obtained. 

 

Fig. 9.  Result obtained with NLMS algorithm 

For the RLS algorithm, with 𝑀 = 55 terms, 𝜆−1 = 1.03, 
the result presented in Fig. 10 was obtained and an 𝐴𝑆𝐸 =
 1.6331. The total processing time obtained with 
downsampling is 0.0079 𝑠𝑒𝑐, 26.429 µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 
Without downsampling, a total time of  0.0466 𝑠𝑒𝑐, 
23.307  µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 was obtained. 



 

Fig. 10.  Result obtained with RLS algorithm 

For the AP algorithm, with 𝑀 = 55  terms, the result 
presented in Fig. 11 was obtained and a 𝐴𝑆𝐸 = 16.5701. The 
total processing time obtained with downsampling is 
0.0057 𝑠𝑒𝑐,  19.008 µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  and for the version. 
Without downsampling, a total time of 0.0309 𝑠𝑒𝑐, 
15.451 µ𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 was obtained. 

 

Fig. 11.  Result obtained with AP algorithm 

To summarize the processing times and the errors 

obtained, the results are compared in Table 1. 

TABLE I.  ALGORITHM COMPARISONS 

 ASE Time with 

downsampling 

Time without 

downsampling 

LMS 5.4279 0.0017 𝑠𝑒𝑐 0.00397 𝑠𝑒𝑐 

NLMS 12.5618 0.002 𝑠𝑒𝑐 0.005 𝑠𝑒𝑐 

AP 16.5701 0.0057 𝑠𝑒𝑐 0.0309 𝑠𝑒𝑐 

RLS 1.6331 0.0079 𝑠𝑒𝑐 0.0466 𝑠𝑒𝑐 

 

The fact that the evaluation time on original data is lower 

is also due to issues such as: computationally the first part of 

a code generally takes a long time, for downsampled data 

there are fewer iterations, which is reflected in the total 

processing time, in parallel other programs are run, etc. 

For testing, the algorithms were also implemented using 

the same parameters on the original data, without 

downsampling. The result was subsequently downsampled 

and compared with those obtained above. The results of the 

ASE errors between the original dowmsampled filter and 

downsampled filter are: 3.4599 for LMS, 4.3289 for NLMS, 

5.0927 for AP and 3.6549 for RLS. 

We have a small mismatch between the experimental data 

and the model. Nonlinearity in the system behavior is the first 

possible cause. The disturbance, which is a significant source 

of error in the system output or in the measurements, also 

impacts the model's accuracy.  

We can consider all the results satisfactory but depending 

on the requirements of the application and available resources 

different algorithms may be chosen. 

The algorithm with the best accuracy, which can be vital 

in certain circumstances, is RLS, but it is also the one with 

the longest processing time, due to its complexity. The fastest 

algorithm was LMS, which performed surprisingly well. The 

last ones in terms of error were the NLMS and AP algorithms. 

They had an average processing time. A compromise choice 

between processing time and accuracy is the LMS algorithm, 

and, if processing time is not a problem, then the RLS 

algorithm. Downsampling is useful when we have a 

processing time limitation, or we have a signal on which 

periodic noise is overlaid. In our case downsampling 

improved the processing time and led to satisfactory results 

with a small loss of the accuracy of the results. 

V. CONCLUSIONS 

Within this article, we tested several algorithms to 

identify a DC motor. After acquiring input and output data 

using the STM32 development board and downsampling the 

data for processing efficiency, four adaptive algorithms—

LMS, NLMS, AP, and RLS—were applied, each using 55 

Markov coefficients. The LMS algorithm, although simple to 

implement and process, produced reasonably good results. 

On the other hand, its normalized variant, NLMS, showed 

more modest performance. RLS, being the most complex, 

provided the best approximation, whereas AP exhibited 

weaker outcomes. In the end, the best algorithm is chosen 

depending on the project requirements, application specifics, 

and computational resources.  There is also a difference of at 

least 0.005 seconds between the algorithms run on 

downsampled and original data. This difference can be 

significant when these algorithms run in real time on the 

development board. It was also noted that the LMS algorithm 

is the fastest and the RLS the slowest, both having very good 

results in terms of error. The choice between them depends 

on the requirement with a higher priority: accuracy versus 

processing speed. 

A promising future research direction involves advanced 

methodologies to extract system models through the Markov 

coefficients inherent in Finite Impulse Response filters. 

Another direction for further development could involve 

exploring the identification of an adaptive model for control 

in rehabilitation medicine. This approach could open up new 

perspectives  for the development of healthcare systems, with 



the potential to optimize and tailor rehabilitation treatments 

to the specific needs of individual patients. 
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