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Abstract— We consider two nonlinear state estimation prob-
lems in a setting where an extended Kalman filter receives
measurements from two sets of sensors via two channels (2C).
In the stochastic-2C problem, the channels drop measurements
stochastically, whereas in 2C scheduling, the estimator chooses
when to read each channel. In the first problem, we generalize
linear-case 2C analysis to obtain – for a given pair of channel
arrival rates – boundedness conditions for the trace of the
error covariance, as well as a worst-case upper bound. For
scheduling, an optimization problem is solved to find arrival
rates that balance low channel usage with low trace bounds, and
channels are read deterministically with the expected periods
corresponding to these arrival rates. We validate both solutions
in simulations for linear and nonlinear dynamics; as well as in
a real experiment with an underwater robot whose position is
being intermittently found in a UAV camera image.

I. INTRODUCTION

The notion of intermittent information, whether an in-
trinsic or human-imposed control system property, has been
extensively investigated for over two decades [1]–[3]. These
efforts naturally fall within the scope of networked control
systems [4], [5]. For example, lossy communication channels
with limited bandwidths, scheduling protocols, packet colli-
sions, sensor occlusions and limited communication/sensing
ranges give rise to intermittent information. On the other
hand, feedback is expected to supply estimators and con-
trollers with up-to-date data regarding the process of interest.
To resolve this tension, it is important to establish conditions
leading to a satisfactory estimation and/or control perfor-
mance in the presence of intermittent information. Herein,
we focus on estimation under intermittent measurements.

In particular, we consider a scenario in which a nonlinear
system is observed by two sets of sensors via two respective
channels. Either set of sensors may in general be local,
but we use the name “channel” even in that case, since it
is standard [6]. Our main objective is to propose solutions
for two related problems in this nonlinear two-channel (2C)
setting: stochastic-2C estimation, where the two channels
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2Antun –Duraš, Vicko Prkačin, and Ivana Palunko are with the
University of Dubrovnik, Dubrovnik, Croatia {antun.djuras,
vicko.prkacin, ivana.palunko}@unidu.hr

drop measurements stochastically with different probabilities
(an intrinsic property), and 2C scheduling, in which the
estimation algorithm may choose whether to use either of
these channels at each discrete time step (a human-imposed
property).

The scenario above is motivated by a practical problem
that occurs in the European Horizon 2020 SeaClear project
[7]. An Unmanned Underwater Vehicle (UUV) has access to
its internal sensors at every step, but these sensors cannot
compensate for drift in the position estimate. On the other
hand, underwater absolute position sensors are expensive
and sometimes unreliable, so instead, the UUV position is
determined using the camera image of an Unmanned Aerial
Vehicle (UAV), which is however possible only when the
UUV is close enough to the surface to be visible. Thus,
this second sensor is available intermittently, and the UUV
chooses when to resurface to make it available. Beyond this
specific case, the two-channel (2C) scenario appears e.g.
when shared communication networks with limited through-
put are encountered [3], [5].

In linear Kalman filtering with intermittent measurements
on a single channel, conditions on the boundedness of
estimation error covariance were developed in [8]. That ref-
erence showed that there exists a critical value for the arrival
rate of the single-channel measurements, beyond which the
covariance becomes unbounded. This critical probability has
been further analyzed in [9]. Reference [6] extended the
results in [8] to stochastic-2C Kalman filtering, with proba-
bilities λ1 and λ2 of successfully delivering measurements.
The authors of [6] proved the existence of a sharp transition
curve for the stability of the iteration on the covariance
matrices and show that, when one of the arrival probabilities
is fixed, the critical value of the other one can be found by
solving a series of linear matrix inequality (LMI) feasibility
problems. In the previous works, the arrival probabilities
were assumed to be i.i.d. from a Bernoulli distribution. The
case when the observations become available according to a
Markov process modelling a Gilbert-Elliot channel has been
considered in [10].

As a first contribution, we “turn around” the estimation
method from [6] so as to apply it to linear 2C scheduling. To
this end, we read each channel i ∈ {1, 2} with period Ti =
⌊ 1
λi
⌋,1 which ensures that the guarantees of [6] apply with

the corresponding values of λi. To find a pair of arrival rates
(λ1, λ2), we optimize over a predefined set of candidate pairs

1Operator ⌊·⌋ takes the floor of the argument.



from which we exclude infeasible values that lead to unstable
estimates. The objective function balances low values of λi,
so as to reduce channel usage, with a low trace of the error
covariance matrix, so as to improve estimation accuracy.

Our larger objective is to devise a solution for the nonlin-
ear case, which will be the key contribution of the paper
and the main difference from [6]. For that purpose, we
first analyze stochastic-2C Extended Kalman Filtering (EKF)
for a class of discrete-time nonlinear systems in which
the linearized transition dynamics vary in a polytope. For
a given pair of arrival rates, we develop LMI conditions
to establish boundedness of the covariance matrices and
compute a worst-case upper bound. To our best knowledge,
the present paper is the first to consider the nonlinear 2C
setting. Stochastic stability of the discrete-time EKF has been
investigated in [11], and the case with intermittent measure-
ments on a single channel has been analyzed in [12]–[14].
While the discrete-time model considered in [12] is quite
general, it has the shortcoming that the measurement matrix,
albeit time-varying, must be invertible. Specific variants of
EKF with intermittent measurements have been developed
for localization [15] and tracking [16]–[18]. Stability of the
unscented Kalman filter with intermittent observations has
been analyzed in [19].

Moreover, we consider 2C scheduling for the EKF, where
we solve a similar optimization problem to the one from
the linear case in order to get λi, and then read the channels
with the corresponding periods Ti. Differently from the linear
case, we apply the newly developed EKF conditions. Since
this solution may sometimes be conservative, we additionally
propose an empirical, iterative application of the KF condi-
tions, which assumes that the nonlinear dynamics are slowly
varying. This last approach linearizes the nonlinear system
around the current operating point and recomputes λi by
solving the linear-case optimization problem. The procedure
is repeated when the dynamics deviate significantly from the
previous linearization.

To illustrate the approaches developed, we start with
simulations in the linear KF case, since the approach in [6]
was not validated numerically. Then, we apply 2C scheduling
to estimate the pose of a nonlinear rigid-body system using
an EKF. Finally, we present a real-life underwater robotics
experiment where the onboard-channel is always on, and the
UAV-camera-based positioning channel is read with our 2C-
scheduling approach. In this experiment, the state estimate
is validated against underwater acoustic positioning.

Next, in Section II, we provide the analysis of the stochas-
tic 2C EKF, followed by the methods for 2C scheduling in
both the linear and nonlinear cases in Section III. Simulation
and real-robot experimental results are given in Sections IV
and V, respectively. Section VI concludes the paper.

II. ANALYSIS OF STOCHASTIC-2C EXTENDED KALMAN
FILTERING

The main theoretical contribution of the paper is to analyze
the statistical properties of the covariance matrices for the

EKF, when applied to a class of discrete-time nonlinear
systems with intermittent 2C measurements.

We consider the discrete-time nonlinear system

xk+1 = f(xk) +Buk + wk,

yk = Cxk + vk,
(1)

where xk ∈ Rnx denotes the state at time k, u ∈ Rnu is
the input, y ∈ Rny is the measured output, and w and v
are zero-mean white noises, with covariances Q = QT > 0
and R = RT > 0, respectively. B is the input matrix and
f : Rn → Rn is a vector function. Note that a linear input
dependence is assumed.

We consider a scenario similar to [6], with the measure-
ment vector y supplied by two sets of sensors, whose outputs
are encoded separately and sent via two different channels.
The output y is consequently partitioned as(

yk,1
yk,2

)
=

(
C1

C2

)
xk +

(
vk,1
vk,2

)
(2)

with yk =

(
yk,1
yk,2

)
, C =

(
C1

C2

)
, vk =

(
vk,1
vk,2

)
. The

measurement noises are v1,k ∼ N(0, R11) and v2,k ∼
N(0, R22), where R =

(
R11 R12

R21 R22

)
. The channels may be

lossy and not all measurement packages are received. The
arrival of measurement yk,i, i = 1, 2, at time k is given
by a binary variable, γk,i, sampled from a Bernoulli process
with probability P (γk,i = 1) = λi, i = 1, 2. We consider
independent sensors and channels, so the probability of both
measurements arriving at the same time is λ1λ2.

To estimate the states of the system, we consider an EKF.
We denote Ak := ∂f

∂x |x̂k|k and develop general results. Later
on, to obtain conditions that are easier to implement, we will
consider the case when Ak ∈ Co(Aj), j = 1, 2, · · · , a,
where Co(.) denotes the convex hull.

The time update is independent of the measurements and
the predictions are based on model (1), i.e.,

x̂k+1|k = f(x̂k|k) +Buk,

Pk+1|k = AkPk|kA
T
k +Q,

(3)

where the usual notations are used, i.e., k + 1|k denotes
prediction and so x̂k+1|k is the predicted state, x̂k|k is
the estimated state after the kth measurement has been
processed, Pk|k is the estimator covariance matrix at the
same moment, and so on.

Following [6], [8], the update equations depend on the
measurements received. If no measurements are received,
then only prediction is performed. Otherwise, the state and
the covariance matrices are updated using the received mea-
surements, i.e.,

x̂k+1|k+1 = x̂k+1|k+

+ γk+1,1γk+1,2Pk+1|kC
T (CPk+1|kC

T +R)−1×
× (yk+1 − Cx̂k+1|k)

+ γk+1,1(1− γk+1,2)Pk+1|kC
T
1 (C1Pk+1|kC

T
1 +R11)

−1×
× (yk+1,1 − C1x̂k+1|k)



+ (1− γk+1,1)γk+1,2Pk+1|kC
T
2 (C2Pk+1|kC

T
2 +R22)

−1×
× (yk+1,2 − C2x̂k+1|k),

Pk+1|k+1 = Pk+1|k−
− γk+1,1γk+1,2Pk+1|kC

T (CPk+1|kC
T +R)−1CPk+1|k

− γk+1,1(1− γk+1,2)Pk+1|kC
T
1 (C1Pk+1|kC

T
1 +R11)

−1×
× C1Pk+1|k

− (1− γk+1,1)γk+1,2Pk+1|kC
T
2 (C2Pk+1|kC

T
2 +R22)

−1×
× C2Pk+1|k.

(4)
In what follows, we use the simplified notation Pk+1 :=
Pk+1|k. Then, the predicted covariance matrix at sample k+1
can be expressed as

Pk+1 = AkPkA
T
k +Q−

− γk,1γk,2AkPkCT (CPkCT +R)−1CPkA
T
k

− γk,1(1− γk,2)AkPkCT1 (C1PkC
T
1 +R11)

−1C1PkA
T
k

− (1− γk,1)γk,2AkPkCT2 (C2PkC
T
2 +R22)

−1C2PkA
T
k .
(5)

Remark 1: Note that contrary to the linear case, the
matrices Pk, Pk+1|k are not the error covariance matrices.
However, for simplicity, we will refer to them as such.
Furthermore, since measurements may be lost, both x̂ and
P become random variables (as they depend on the random
variables γ1 and γ2).

In this setting, our goal is to determine conditions on the
existence of an upper bound on the covariance matrices Pk,
given the arrival probabilities λ1 and λ2 of the measure-
ments; and to determine the minimal arrival probabilities λ1
and λ2 such that the covariance matrices remain bounded.
In order to do this, we exploit and generalize some of the
results presented in [6] and [8]. Similar to the mentioned
results, we define the functions:

gλ1λ2
(k,X) := AkXA

T
k +Q−

− λ1λ2AkXCT (CXCT +R)−1CXATk

− λ1(1− λ2)AkXCT1 (C1XC
T
1 +R11)

−1C1XA
T
k

− (1− λ1)λ2AkXCT2 (C2XC
T
2 +R22)

−1C2XA
T
k

(6)

and

ϕ(k,Kk,Kk,1,Kk,2, X) :=

(1− λ1)(1− λ2)(AkXATk +Q) + λ1λ2(FkXF
T
k + Vk)

+ λ1(1− λ2)(Fk,1XFTk,1 + Vk,1)

+ (1− λ1)λ2(Fk,2XFTk,2 + Vk,2),
(7)

where Fk = Ak + KC, Fk,1 = Ak + Kk,1C1, Fk,2 =
Ak + Kk,2C2, Vk = Q + KkRK

T
k , Vk,1 = Q +

Kk,1R11K
T
k,1, Vk,2 = Q + Kk,2R22K

T
k,2, and X ≥

0. We also define Kk,x = −AkXCT (CXCT + R)−1,
Kk,1,x = −AkXCT2 (C1XC

T
1 + R11)

−1, Kk,2,x =
−AkXCT2 (C2XC

T
2 +R22)

−1.
It is straightforward to see that in the linear case, when

Ak is constant, the problem reduces to that in [6]. Fur-
thermore, for a fixed k, the properties in [6] and Lem-
mas 1 and 2 in [8] hold. Specifically, for any given k,

we have that E(Pk+1|Pk) = gλ1λ2(k, Pk), gλ1λ2(k,X)
is concave and non-decreasing in X , gλ1λ2

(k,X) ≥
(1 − λ1)(1 − λ2)AkXA

T
k + Q, and thus it is possi-

ble to obtain a lower bound on E(gλ1λ2
(k, Pk)). Fur-

thermore, with the definitions of Kk,x, Kk,1,x, and
Kk,2,x, it follows that ϕ(k,Kk,x,Kk,1,x,Kk,2,x, X) =
minKk,x,Kk,1,x,Kk,2,x

ϕ(k,Kk,Kk,1,Kk,2, X).
Next, we state some lemmas that will be useful for

developing the boundedness conditions.
Lemma 1: Define the operator

L(k, Y ) := (1− λ1)(1− λ2)(AkY ATk ) + λ1λ2FkY F
T
k

+ λ1(1− λ2)Fk,1Y FTk,1 + (1− λ1)λ2Fk,2Y FTk,2.
(8)

L(k, Y ) is linear in Y and L(k, Y ) ≥ 0. Assume that there
exists Ȳ > 0 such that Ȳ > L(k, Ȳ ), ∀k. Then,

1) ∀W ≥ 0, limk→∞ L(k,W ) = 0.
2) Let Uk ≥ 0 bounded and consider Yk+1 = L(k, Yk)+

Uk initialized at Y0. Then, the sequence Yk is bounded.
Proof: Based on the assumption that ∃Ȳ > 0 so that

Ȳ > L(k, Ȳ ), ∀k, one can choose 0 ≤ r < 1 so that
L(k, Ȳ ) < rȲ , ∀k. The rest of the proof follows the same
lines as that of Lemma 3 in [8].

Lemma 2: Consider the operator ϕ(k,K,K1,K2, X) de-
fined in (7). If there exist matrices Kk, Kk,1, Kk,2, and
P̄ > 0 so that P̄ > ϕ(k,Kk,Kk,1,Kk,2, P̄ ), then the
sequence Pk+1 = gλ1,λ2

(k, P0) is bounded for any P0.
Proof: Define the matrices Fk = Ak +KkC, Fk,1 =

Ak + Kk,1C, and Fk,2 = Ak + Kk,2C and consider the
operator L(k, Y ) defined in (8). It is easy to verify that
ϕ(k,Kk,Kk,1,Kk,2, X) = L(k,X) + (1− λ1)(1− λ2)Q+
λ1λ2Vk + λ1(1 − λ2)Vk,1 + (1 − λ1)λ2Vk,2, where Vk =
Q + KkRK

T
k , Vk,1 = Q + Kk,1R11K

T
k,1, Vk,2 = Q +

Kk,2R22K
T
k,2, i.e., ϕ(k,Kk,Kk,1,Kk,2, X) = L(k,X)+Uk,

with Uk being defined as Uk = (1−λ1)(1−λ2)Q+λ1λ2Vk+
λ1(1− λ2)Vk,1 + (1− λ1)λ2Vk,2 and, since Q > 0, R > 0,
R11 > 0, R22 > 0, Uk > 0. Using the assumption that
P̄ > ϕ(k,Kk,Kk,1,Kk,2, P̄ ), we have P̄ > L(k, P̄ )+Uk >
L(k, P̄ ).

On the other hand, we also have Pk+1 = gλ1λ2(k, Pk) ≤
ϕ(k,Kk,Kk,1,Kk,2, Pk) = L(k, Pk) + Uk. Based on
Lemma 1, the sequence Pk is bounded.

We are now ready to state the main result on the bound-
edness of the covariance matrices:

Theorem 1: Consider the operator
ϕ(k,Kk,Kk,1,Kk,2, X) defined in (7). Assume that
there exist matrices Kk, Kk,1, Kk,2 and a positive matrix
P = PT > 0 so that P > ϕ(k,Kk,Kk,1,Kk,2, P ).
Then, for any initial condition P0 ≥ 0, limk→∞ Pk =
limk→∞ gλ1λ2

(k, P0) is bounded.
Remark 2: Contrary to the results in [6], [8], a single point

of transition or a transition curve between boundedness and
unboundedness of Pk in general will not exist. However, a
worst-case upper bound on the critical probabilities λ1 and
λ2 can be computed similarly to Theorem 2 of [6].

If (λ1, λ2) is such that boundedness is maintained, a limit
on the bound of Pk is given by the following theorem:



Theorem 2: Assume that (Ak, Q) is controllable, (Ak, C)
is detectable ∀k and the pair (λ1, λ2) is such that Pk is
bounded. Then, limk→∞ Pk ≤ V , where V > gλ1λ2(k, V ),
V > 0, ∀k.

Proof: Follows the lines of Theorem 6 in [8], taking
into account that V > 0 and V > gλ1λ2(k, V ) have to
hold ∀k.

Next, we formulate a theorem to compute a worst-case
upper bound on the probabilities.

Theorem 3: If (Ak, Q) is controllable, (Ak, C) is de-
tectable ∀k, then the following statements are equivalent:

1) there exists X̄ > 0 such that X̄ > gλ1λ2
(k, X̄), ∀k,

2) there exist Kk, Kk,1, Kk,2 and X̄ > 0 so that X̄ >
ϕ(k,Kk,Kk,1,Kk,2, X̄), ∀k,

3) there exist Z̄k, Z̄k,1, Z̄k,2, and 0 < Ȳ ≤ I such that
∀k

Ψk =


Y

√
λ1λ2(Y Ak + ZkC) Ψ13 Ψ14

(∗) Y 0 0
(∗) (∗) Y 0
(∗) (∗) (∗) Y

 > 0,

(9)
where Ψ13 =

√
λ1(1− λ2)(Y Ak + Zk,1C1), Ψ14 =√

λ2(1− λ1)(Y Ak + Zk,2C2) and (∗) denotes the
symmetric term.

The condition formulated in (9) is bilinear, due to having
to search for λ1, λ2, Y , etc. However, if either λ1 or λ2 is
fixed, then bisection can be used to find the other probability,
i.e., one will have to solve a set of LMI feasibility problems.
Once a suitable pair (λ1, λ2) is found, an upper bound on
the matrix Pk can be computed as in the next theorem.

Theorem 4: If there exist Z̄k, Z̄k,1, Z̄k,2 and 0 < Ȳ ≤
I such that (9) is satisfied, then an upper bound on
limk→∞ gλ1λ2(k, V ) can be found by solving

argmaxV Trace(V )

subject to V > 0, Γ(V ) ≥ 0
(10)

where

Γ(V ) =


AkV A

T
k +Q− V

√
λ1λ2AkV C

T Γ13 Γ14

(∗) CV CT +R 0 0
(∗) (∗) Γ33 0
(∗) (∗) (∗) Γ44


(11)

Γ13 =
√
λ1(1− λ2)AkV CT1 , Γ14 =

√
λ2(1− λ1)AkV CT2 ,

Γ33 = C1V C
T
1 +R11, Γ44 = C2V C

T
2 +R22.

In the developments so far we have considered that
the state matrices Ak vary in time without any further
constraints. This means that the number of conditions to
be solved for Theorems 3 and 4, respectively, is infinite.
In practice, however, a domain (possibly overestimated) in
which the matrices vary can usually be determined, e.g.,
by applying sector nonlinearity [20] to the expressions of
∂f
∂xx. Therefore, in what follows, we impose the following
assumption.

Assumption 1: There exist constant matrices Aj , and
functions hj(·), hj(k) ≥ 0,

∑a
j=1 hj(k) = 1 so that

Ak ∈ Co(Aj), j = 1, 2, · · · , a, i.e., each matrix Ak can

be expressed as the convex combination of the matrices Aj ,
j = 1, 2, · · · , a, Ak =

∑a
j=1 hj(k)Aj .

Remark 3: Although Assumption 1 may be conservative,
it is an efficient way to reduce the number of conditions to
be solved and gives a way to determine a priori worst-case
upper bounds on the critical probabilities λ1 and λ2.

Under Assumption 1, a sufficient condition for condition
(9) to hold is:

Proposition 1: If there exist Zj , Zj,1, Zj,2 and 0 < Ȳ ≤ I
such that ∀k

Ψ2
j =


Y

√
λ1λ2(YAj + ZjC) Ψ2

13 Ψ2
14

(∗) Y 0 0
(∗) (∗) Y 0
(∗) (∗) (∗) Y

 > 0

(12)
holds for j = 1, 2, . . . , a, where Ψ2

13 =√
λ1(1− λ2)(YAj+Zj,1C1), Ψ2

14 =
√
λ2(1− λ1)(YAj+

Zj,2C2), then condition (9) holds.
Proof: Let Zk =

∑a
j=1 hj(k)Zj , Zk,1 =∑a

j=1 hj(k)Zk,j , and Zk,2 =
∑a
j=1 hj(k)Zj,2. Taking into

account that Ak =
∑a
j=1 hj(k)Aj , Ψk =

∑a
j=1 hj(k)Ψ

2
j .

Since hj(k) ≥ 0 and
∑a
j=1 hj(k) = 1, Ψ2

j > 0, j =
1, 2, . . . , a, that implies Ψk > 0. □

A sufficient condition for Theorem 4 is formulated as
follows:

Proposition 2: If there exist Zj , Zj,1, Zj,2, j =
1, 2, . . . , a, and 0 < Ȳ ≤ I such that (12) is satisfied,
then an upper bound on limk→∞ gλ1λ2

(k, V ) can be found
solving

argmaxV Trace(V )

subject to V > 0, Γ2(V ) ≥ 0, j = 1, 2, . . . , a
(13)

where

Γ2(V ) =
Aj +ATj +Q− V

√
λ1λ2AjV CT Γ2

13 Γ2
14 I

(∗) CV CT +R 0 0 0
(∗) (∗) Γ2

33 0 0
(∗) (∗) (∗) Γ2

44 0
(∗) (∗) (∗) (∗) V


(14)

Γ2
13 =

√
λ1(1− λ2)AjV CT1 , Γ2

14 =
√
λ2(1− λ1)AjV CT2 ,

Γ2
33 = C1V C

T
1 +R11, Γ2

44 = C2V C
T
2 +R22.

Proof: Recall that ∀k, Ak =
∑a
j=1 hj(k)Aj .

Note that AkV A
T
k ≥ Ak + ATk − V −1, thus

AkV A
T
k +Q− V

√
λ1λ2AkV C

T Γ13 Γ14

(∗) CV CT +R 0 0
(∗) (∗) Γ33 0
(∗) (∗) (∗) Γ44

 ≥


Ak +ATk +Q− V − V −1

√
λ1λ2AkV C

T Γ13 Γ14

(∗) CV CT +R 0 0
(∗) (∗) Γ33 0
(∗) (∗) (∗) Γ44

.

Applying a Schur complement on the element
Ak + ATk + Q − V − V −1 and taking into account
that Ak =

∑a
j=1 hj(k)Aj , ∀k, we obtain (14). □



Remark 4: The conditions stated in Propositions 1 and 2
may in some cases be overly conservative as, if satisfied, they
will guarantee boundedness and determine an upper bound,
respectively, for all the nonlinear systems in the polytope.

Remark 5: It can easily be seen that the conditions in
Propositions 1 and 2 reduce to those in Theorems 5 and
6 in [6] in the case of a constant state matrix, i.e., when
Ak = A, ∀k or Aj = A, j = 1, 2, . . . , a. Specifically,
condition (12) reduces to

Ψl =


Y

√
λ1λ2(Y A+ ZC) Ψl13 Ψl14

(∗) Y 0 0
(∗) (∗) Y 0
(∗) (∗) (∗) Y

 > 0 (15)

with Ψl13 =
√
λ1(1− λ2)(Y A + Z1C1), Ψl14 =√

λ2(1− λ1)(Y A+Z2C2) and the bound on the covariance
can be calculated by solving

argmaxV Trace(V )

subject to V > 0, Γl(V ) ≥ 0, j = 1, 2, . . . , a
(16)

where

Γl(V ) =


AV AT +Q

√
λ1λ2AV C

T Γl13 Γl14
(∗) CV CT +R 0 0
(∗) (∗) Γ2

33 0
(∗) (∗) (∗) Γl44


(17)

Γl13 =
√
λ1(1− λ2)AV CT1 , Γl14 =

√
λ2(1− λ1)AV CT2 ,

Γl33 = C1V C
T
1 +R11, Γ2

44 = C2V C
T
2 +R22. Furthermore,

if only a single intermittent-measurement channel is con-
sidered, the conditions become those in Theorems 5 and 6
in [8].

III. TWO-CHANNEL SCHEDULING

Moving now to the 2C scheduling problem, a straight-
forward way to solve it is to find a pair of arrival rates
(λ1, λ2) that satisfy (12) and therefore ensure boundedness
of the error covariance matrix; and then to read each channel
i ∈ {1, 2} with period Ti = ⌊ 1

λi
⌋. Since there may be many

such pairs, we formulate an optimization problem to select
the best one:

min
(λ1,λ2)∈L s.t. (12)

τ + e
1

1−λ1 + e
1

1−λ2 , (18)

where set L contains finitely many candidate pairs (λ1, λ2),
and τ = Trace(V ∗) with V ∗ being the solution of (13)
for the pair (λ1, λ2). We take finitely many pairs to be
able to solve the optimization problem by enumeration. The
objective function (18) aims to minimize both the value of
the trace (via its upper bound as a proxy) and the arrival
rates (channel usage). The exponential formulas in λi are
used to induce a preference for low arrival rates whenever
possible, in order to reduce network usage. However, a lower
rate causes the estimation error to grow, so usage is only
reduced subject to the LMI constraint on the error trace.

For 2C scheduling in the linear KF case, we apply a similar
procedure, but this time with the conditions of [6]:

min
(λ1,λ2)∈L s.t. (15)

τ ′ + e
1

1−λ1 + e
1

1−λ2 , (19)

Algorithm 1 2C EKF scheduling with iterative KF condi-
tions
Input: candidate set L, dynamics f , threshold δ

1: k1 ← −∞, k2 ← −∞
2: for each time step k ≥ 0 do
3: differentiate f around xk to find Ak
4: if k = 0, or ∆Ak ≥ δ and klin ≤ max{k1, k2} then
5: solve (19) to obtain (λ1, λ2)
6: klin ← k

7: if k − k1 ≥ ⌊ 1
λ1
⌋ then

8: measure y1,k
9: k1 ← k

10: if k − k2 ≥ ⌊ 1
λ2
⌋ then

11: measure y2,k
12: k2 ← k

13: run EKF prediction
14: if any measurement taken then
15: run EKF update by applying (4) for step k

where τ ′ = Trace(V ′) with V ′ being the solution of (16).
Since the EKF conditions may sometimes be overly con-

servative, we also propose an empirical alternative in which
we recompute the arrival rates by solving (19), whenever
the linearized dynamics deviate by more than a threshold δ
compared to the steps when the rates were previously com-
puted. The deviation is measured through the 2-norm of the
difference between the state transition matrix of the current
linearized dynamics and that of the linearized dynamics at
the time of the last recomputation: ∆Ak := ∥Ak − Aklin∥.
The extra condition klin ≤ max{k1, k2} ensures that at least
one measurement was taken after the last recomputation.
After each pair of rates is chosen, measurements via the two
channels are read with periods ⌊ 1

λi
⌋ between recomputations.

IV. SIMULATION RESULTS

All the simulations use either a KF or EKF to estimate
the states. The models used are discrete-time with sampling
period Ts = 0.05 s, and have the form

xk+1 = f(xk) + wk,

yk =

[
C1

C2

]
x+ vk,

(20)

with w and v representing Gaussian noises with covariances
1e−4I and 1e−2I respectively. The simulations are carried
out for a duration of 10min. In every case we check
the appropriate LMI conditions for stable estimates and/or
desired error covariance bounds. The LMIs are solved using
YALMIP [21] with the SeDuMi solver [22].

A. 2C Estimation and Scheduling for a Linear System

In this scenario we find bounds on the error trace for
Kalman filtering in the linear case, which as noted reduces
to the method in [6]; thus, we provide a numerical validation
of that method, which was not done in the original paper.
Moreover, we apply our new 2C scheduling procedure in



Fig. 1: Analytical bound versus actual trace of the error
covariance matrix in simulation.

the linear case. The dynamics model linear one-dimensional
motion. Following the structure in (20), f(x) = Ax with

A =

[
1 0.05
0 0.995

]
, and C1 =

[
1 0

]
, C2 =

[
0 1

]
. The

states x consist of the position x and velocity vx.
The arrival rates vary on a grid (λ1, λ2) ∈ L :=

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}2. Figure 1 com-
pares the analytical upper bounds τ ′ on the trace with the
traces obtained in simulation, for all values of λi on the grid.
The analytical values indeed serve as useful upper bounds for
the actual traces: they are always larger, but close in value.
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Fig. 2: Real versus KF-estimated trajectories for linear model
with sensor scheduling. The black dashed lines represent the
states and the teal lines are the estimates.

Next, to solve 2C scheduling, we use (19) to select a

pair (λ1, λ2) from the grid. This pair turns out to be λ1 =
0.1, λ2 = 0. Note that because the system is observable from
the first channel (position), the method chooses to not use
the second channel at all. KF results using scheduling with
this pair are shown in Figure 2. The analytical trace bound
is 113e−4, whereas the trace in simulation is 101e−4.

B. 2C Scheduling for Nonlinear Dynamics

In the nonlinear case, the dynamics used comprise a five
degree-of-freedom (5-DOF) constant acceleration kinematic
model. The degree of freedom removed from the standard 6-
DOF model is the pitch angle. This was done partly to control
computational complexity and partly because the real UUV
for which we will later use these dynamics lacks this degree
of freedom. Keeping the structure of (20), the state vector is
x = [x, y, z, ϕ, ψ, vx, vy, vz, vϕ, vψ, ax, ay, az]

T , and

f(x) =

x+ Ts



vx cosψ − vy sinψ cosϕ+ vz sinψ sinϕ
vx cosψ − vy sinψ cosϕ+ vz sinψ sinϕ

vy sinϕ+ vz cosϕ
vϕ

vψ cosϕ
ax
ay
az
05×1


,

C1 =
[
07×3 17×7

]
, C2 =

[
13×3 03×7

]
.

(21)

The sector nonlinearity approach is applied to the deriva-
tive of f with respect to the state, thereby obtaining the
matrices Aj needed to define the convex hull in which Ak
lives and to construct the LMI conditions.

The 2C scheduling problem (18) is solved with (λ1, λ2) ∈
L := {0.001, 0.01, 0.1, 0.5, 0.625}2. The chosen pair is λ1 =
0.1, λ2 = 0.1. For this pair, the trajectories of the linear and
angular positions and of their respective estimates are shown
in Figure 3. The analytical trace bound is 0.3874, whereas
the trace in simulation is 0.0936, showing that the conditions
are conservative.

This motivates us to perform another simulation, this time
using Algorithm 1 to compute the feedback periods for
the two channels. The threshold for the deviation of the
dynamics of the system is δ = 0.1, chosen experimentally.
The state trajectories are very similar to Figure 3, so they
are not shown here. Instead, Figure 4 shows the feedback
periods chosen along the simulation for both channels, along
with the feedback period which corresponds to the single
pair λ1 = 0.1, λ2 = 0.1 chosen using (18). It is apparent
that Algorithm 1 produces less conservative periods, albeit
without analytical guarantees. The trace for this simulation
is 0.1316.
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Fig. 3: Linear and angular positions and their estimates for
non-linear model with sensor scheduling. The black dashed
lines represent the states and the teal lines are the estimates.
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Fig. 4: Feedback periods for 2C scheduling with the non-
linear model.

V. EXPERIMENTAL RESULTS FOR AN UNDERWATER
ROBOT

Finally, we apply 2C scheduling with real data collected
for UUV pose estimation in the SeaClear project [7], see
Figure 5. The two channels correspond to the internal and
the off-board sensors. Similarly to the non-linear problem of
Section IV-B, the UUV measures its angular position and
velocity using an inertial measurement unit, and its linear
velocity using a Doppler velocity logger. Differently from

the simulated problem, the UUV also has direct access to
the measurement of its depth z using a pressure sensor. As a
result, the second channel only communicates the position of
the UUV in the XY-plane, determined from camera images
of a UAV, while the z coordinate is communicated on the
first channel.

Fig. 5: Left: MiniTortuga, the UUV used for the experiment.
Right: Example camera image of the UAV from the collected
data set, used to determine the position of the UUV (the
image has been cropped for better visibility).

The internal sensors provide feedback at each timestep
(λ1 = 1) and only the loop closure period for the data
sent by the UAV varies. The rate λ2 is selected from
the same set of discrete values as in Section IV-B, λ2 ∈
{0.001, 0.01, 0.1, 0.5, 0.625}. The linearized model used is
identical to that from the simulations. The EKF is imple-
mented using the robot localization library [23].

In this experiment, it turns out that irrespective of whether
(18) or the iterative Algorithm 1 is applied, the resulting
value of λ2 is always the same: 0.01. Thus, in this case the
EKF solution is less conservative than in the simulations,
possibly because along this trajectory the angles only rotate
the dynamics, without significantly affecting the stability
properties of the system.
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Fig. 6: Estimation results using channel scheduling for the
real UUV. The horizontal axis displays Unix epoch time.

Figure 6 compares the positions in the plane estimated



using the EKF with channel scheduling, versus positions read
from a short baseline (SBL) acoustic positioning system.
The SBL measurement is used as a proxy for the ground
truth position of the UUV. It can be seen that the estimated
position is close to the one measured by the SBL, with a
root mean squared error of 1.3915m between the two.

VI. CONCLUSIONS

This paper characterized the estimation error for an EKF
that reads sensors over two channels that drop measurements
stochastically, and proposed a solution to deterministically
choose when to read the channels when they are under the
control of the estimator. The approaches were validated both
in simulations and on real data. To generalize the approach in
future work, several interesting directions emerge: allowing
for an arbitrary number of channels instead of just two,
deriving similar results for the unscented Kalman filter, or
taking into account specific scheduling protocols.
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