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Abstract—Conventional fault-tolerant control schemes
typically assume the exponent of the faulty input to be 1,
overlooking its impact on actuator power. In this paper, we
propose a novel fault-tolerant control strategy that extends
the exponent to any positive odd integer, thus capturing
higher-order fault effects. In addition, by integrating a
Gaussian function to modify the constraint boundaries,
a novel suction-cup-type prescribed performance function
is proposed. Unlike existing prescribed performance func-
tions, this design uses a suction cup module to regulate out-
put overshoot without requiring asymmetric design. This
design is globally effective, eliminating the initial feasibility
conditions. Simulation results validate the effectiveness of
the proposed scheme.

Index—Actuator power, asymmetry-free, fault-tolerant
control, initial-feasibility-condition-free, suction-cup-type
prescribed performance.

I. INTRODUCTION

Fuzzy control is a well-established and effective methodol-
ogy widely used in nonlinear system control design [1]–[8].
However, prolonged operation often leads to actuator faults,
jeopardizing system stability and safety. To address these
challenges, fault-tolerant control (FTC) has become a key re-
search focus. Actuator faults are generally classified into gain
faults (affecting actuation efficiency) and bias faults (caused
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by sticking behavior) [9]–[20]. Conventional FTC approaches
typically assume a power index of 1 for faulty inputs, implying
no impact on power levels. Yet, this assumption contradicts
real-world observations—actuator failures can unpredictably
alter input power, creating discrepancies between theoretical
models and actual performance [21]. Consequently, a revised
fault model must account for power variations, where the
power index of faulty inputs deviates from 1. This shift
introduces additional complexity in control design, raising new
challenges for FTC strategy development.

Thanks to its explicit capability to regulate control per-
formance, prescribed performance control (PPC) has gained
widespread popularity in recent years. In traditional PPC
schemes [22]–[25], the constraint boundary is shaped in a
funnel form, ensuring that the tracking error remains within the
boundary through an error transformation technique. By fine-
tuning parameters associated with convergence rates and ini-
tial/final error positions, prescribed performance specifications
can be achieved, providing significant benefits for physical
systems requiring precise tracking control [26]–[28]. However,
rapid convergence inevitably leads to output overshoot. To
address this issue, various asymmetric design schemes for PPC
[29]–[32] have been proposed. Whether considering indepen-
dent asymmetric designs [29], [30] or unified asymmetric de-
signs [31], [32], overshoot adjustment requires continuous tun-
ing of asymmetric parameters - an evidently time-consuming
process. While such tuning can help optimize overshoot, it
may not completely eliminate it, but rather compress it either
upward or downward, with excessive adjustments potentially
causing inverse overshoot [8]. Additionally, designing PPC
with a tunnel-shaped constraint can also effectively mitigate
output overshoot [33]–[35]. However, this approach compro-
mises the convergence rate, and the tunnel’s narrowness makes
it difficult to satisfy the initial feasibility condition (IFC). In
practice, the IFC serves as a fundamental requirement for PPC.
Specifically, the IFC requires that the initial error must remain
within the initial prescribed performance boundaries. If this
condition is violated, it becomes necessary to reselect new
and appropriately enlarged boundaries. However, the current
asymmetric design [29]–[32] and shape modification designs
[33]–[35] of PPC pay little attention to this point, making it
impossible to achieve optimization of overshoot on a global
scale. Consequently, the practicality of these PPC schemes
remains relatively low. Moreover, solutions related to PPC with
finite time [36], [37], fixed time [38], [39], predefined time



2

[40], [41], and prescribed time [42], [43] have been developed,
establishing an explicit connection between settling time and
PPC. Given the aforementioned observations, it would be
beneficial to develop a class of global PPC that simultaneously
accounts for settling time and minimizes overshoot, without
being constrained by the IFC. Furthermore, to the best of our
knowledge, no prior work has achieved overshoot optimization
under symmetric constraints.

In this paper, we propose a novel suction cup-type pre-
scribed performance fuzzy control scheme for a class of
nonlinear systems, while also considering a novel actuator
fault mode. The primary contributions of this work are as
follows:

1) This paper advances beyond conventional FTC ap-
proaches [9]–[20] by considering actuator faults that
induce unknown power variations, where the input power
index becomes an odd integer greater than 1. Building
on this analysis, we develop a novel fault-tolerant fuzzy
control algorithm with enhanced practical applicability.

2) Unlike existing PPC schemes [22]–[43], this paper pro-
poses a novel suction cup-type prescribed performance
design. This innovative suction cup design uniquely
eliminates overshoot without the need for asymmetric
configurations. Furthermore, it offers global applicability,
eliminating the requirement for IFC, and provides the
additional advantage of explicitly adjustable settling time.

The organization of this paper is as follows: Section II
elaborates on the control problem under consideration with
the unknown actuator power. Section III introduces the design
method of the global suction cup-type prescribed performance
function, and, based on the nonlinear mapping function and
Section II, presents the controller design and stability analysis.
Section IV conducts simulations using a mass-spring-damper
system as an example and analyzes the results. Section V
summarizes this work.

In this paper, we adopt the following notations: R denotes
the set of real numbers, R+ denotes the set of nonnegative
real numbers, and Rn denotes the set of n-dimensional real
vectors. For any real number a, |a| denotes its absolute
value, and sgn(a) denotes the signum function, defined as:
sgn(a) = −1, if a < 0; sgn(a) = 0, if a = 0; sgn(a) = 1, if
a > 0. A function is said to be C1 (first-order continuously
differentiable) if it is continuous and has a continuous first
derivative.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

In the absence of faults, the nonlinear system admits the
following form:

ẋi = xi+1 + fi (x̄i) , i = 1, . . . , n− 1,

ẋn = u+ fn (x) ,

y = x1,

(1)

where x = [x1, . . . , xn]
T ∈ Rn denotes the system state with

the initial value x (t0) = x0, u ∈ R denotes the input, y ∈ R
denotes the output, and fj : Rn → R, j = 1, . . . , n denotes
the unknown continuous function.

Practical systems inevitably experience actuator faults, com-
monly represented by:

u = g (x) ν + b (x) , (2)

where ν is the designed control input, 0 < g(x) ≤ 1
characterizes actuation effectiveness loss, and b(x) represents
the bias from stuck actuators.

While Model (2) represents the standard actuator fault
characterization [9]–[20], practical systems exhibit power ex-
ponent variations due to degradation effects [21], [49], [50].
Accounting for this, we generalize (2) to:

uq = (g (x) ν + b (x))
q
, (3)

where q represents the altered power characteristic.
Combining (1) and (3) yields

ẋi = xi+1 + fi (x̄i) , i = 1, . . . , n− 1,

ẋn = (g (x) ν + b (x))
q
+ fn (x) ,

y = x1.

(4)

Remark 1: While classical works (e.g., [21], [51], [52]) have
studied nonlinear systems with unknown powers (e.g., ẋj =
fj(x) + x

qj
j+1), the interplay between unknown powers and

actuator faults remains unexplored. This paper bridges that
gap by proposing the model (3), which explicitly links these
two issues. The coexistence of unknown powers and actuator
faults not only distinguishes our system from prior work but
also introduces significant design challenges, forming one of
the core focuses of this study.

Remark 2: Physical degradation mechanisms (fatigue, aging,
etc.) inherently exhibit nonlinear damage accumulation where
q > 1 is physically justified. Established models like Coffin-
Manson [53] (fatigue) and Arrhenius [54] (aging) demonstrate
superlinear damage growth (q > 1) under stress/loading,
explaining accelerated failure modes. While q < 1 may
describe initial sublinear processes (e.g., early-stage creep),
long-term degradation is dominated by q > 1 behavior, making
model (3) with q > 1 empirically grounded.

Remark 3: Beyond odd positive integers, two alternative
cases for q exist:
(i) Even positive q (e.g., q = 2): The system ẋ = x + u2

demonstrates the fundamental limitation where both pos-
itive and negative inputs contribute positively, preventing
guaranteed stabilization;

(ii) Time-varying q(t) (e.g., q(t) = sin(t) + 5): Introduces
controller design challenges due to (a) stability verifica-
tion difficulties; and (b) unpredictable control effects from
varying input influence.

Thus, the restriction to odd positive integers preserves both
theoretical and practical validity.

The dynamics described by (4) find practical application
in modeling boiler-turbine units [55] and various mechanical
systems with weak coupling, underactuation, or instability
[49]. This model accounts for real-world factors like mate-
rial hardening, spring aging, and operational variations that
contribute to unknown power effects, thereby enhancing the
scope and effectiveness of FTC strategies.
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The objective of this study is to develop a state-feedback
control strategy that guarantees:
(i) Boundedness of all closed-loop signals in the system (4);

and
(ii) The tracking error e(t) = y(t) − yd(t) remains within

prescribed performance boundaries and converges to a
predefined arbitrarily small residual set within a finite
time.

Some useful lemmas and assumptions are presented next.
Lemma 1 [6]: An unknown continuous function F (χ) can

be effectively approximated by a fuzzy logic system (FLS)
through the following representation:

F (χ) = ΘTψ (χ) + ϵ (χ) ,
(
|ϵ (χ)| ≤ ϵ∗, ϵ∗ ∈ R+

)
,

where ϵ (χ) is the approximation error, Θ is the weight vector,
and ψ (χ) = [ψ1 (χ) , . . . , ψn (χ)]

T
/
∑n
i=1 ψi (χ) is the basis

function, usually chosen as a Gaussian function:

ψi (χ) = exp

[
−(χ− δi)

T
(χ− δi)

φ2
i

]
with δi and φi, respectively, denoting the center and width.

Lemma 2 [21]: For any h(t) ∈ C1 bounded as h < h(t) < h̄
and s ∈ R, |s|h ≤ |s|h + |s|h̄.

Lemma 3 [44]: Given h(t) ∈ C1 with h(t) ≥ 1 and si ∈ R,∑n
i=1 |si|h ≤ (

∑n
i=1 |si|)

h ≤ nh−1
∑n
i=1 |si|h.

Assumption 1 [45]: The desired trajectory yd and its first-
order derivative ẏd are continuous and bounded.

Assumption 2 [10]: The gain g(x) ∈ [g, ḡ] ⊆ (0, 1] and
bias |b(x)| ∈ [b, b̄] are bounded with known positive bounds
g, ḡ, b, b̄.

Assumption 3: The power q is bounded by known odd
integers q ≤ q ≤ q̄.

Remark 4: Assumptions 1 and 2 ensure system controllabil-
ity, a crucial property for both theoretical analysis and practical
implementations [46]–[48]. Assumption 3 guarantees consis-
tent control directionality between (·)1 and (·)q operations, a
fundamental requirement [9]–[21] for higher-power systems.

III. MAIN RESULTS

A. Global Suction Cup-Type Prescribed Performance

Define the finite-time prescribed performance function ϱ (t)
as

ϱ (t) =

{
(r0 − rf ) e

lt
t−T + rf , t ∈ [0, T ) ,

rf , t ∈ [T,+∞) ,

where 0 < rf ≪ r0, l ∈ R+, and T ∈ R+ are design
parameters. The function ϱ(t) satisfies (i) ϱ(0) = r0; (ii)
limt→T− ϱ(t) = rf ; and (iii) ϱ(t) ∈ [rf , r0] for all t ≥ 0.

To remove IFC and minimize output overshoot, a novel
global suction-cup type prescribed performance function is
proposed as follows. Let

Fu (t) = ϱ(t)

[r0−ϱ(t)]Λ
+ SuGu,

Fl (t) = − ϱ(t)

[r0−ϱ(t)]Λ
− SlGl.

(5)

(a) (b)

Fig. 1. (a) indicates overshoot under symmetry constraints; (b) shows that
the overshoot in (a) is optimized in the presence of the suction cup module.

and

Su =


1, if e(0) > 0,

0, if e(0) = 0,

−1, if e(0) < 0,

Sl =


1, if e(0) < 0,

0, if e(0) = 0,

−1, if e(0) > 0,

Gu = ȷu exp
(
− (t−κu)

2

2σ2
u

)
,

Gl = ȷl exp
(
− (t−κl)

2

2σ2
l

)
,

where Gu, Gl denote suction cup modules, and 0 < Λ ≤ 1,
ȷu, ȷl, κu, κl, σu, and σl are design constants.

The prescribed performance boundaries in (5) consist of two
components:
(i) Fundamental boundaries ϱ(t)

[r0−ϱ(t)]Λ that amplify the initial
value of ϱ(t) to infinity through division by [r0 − ϱ(t)]Λ

to remove the IFC; and
(ii) Auxiliary boundaries SuGu and SlGl for overshoot op-

timization, where Su and Sl determine the activation of
the upper or lower boundary suction cup Gu or Gl based
on the overshoot direction.

The functions Fu(t) and Fl(t) satisfy (i) Fu(t) → +∞ and
Fl(t) → −∞ if and only if t → 0+; (ii) limt→T− Fu(t) =

rf
|r0−rf |Λ , limt→T− Fl(t) = − rf

|r0−rf |Λ ; and (iii) for all t ≥ 0,

Fu(t) ∈
[

rf
|r0−rf |Λ ,+∞

)
and Fl(t) ∈

(
−∞,− rf

|r0−rf |Λ

]
.

Remark 5: In traditional PPC [22]–[25], the IFC is manda-
tory, meaning that the initial error e (0) must satisfy the
condition Fl (0) < e (0) < Fu (0). However, in this paper,
the initial boundaries are infinite, and any initial error e (0)
satisfies the condition −∞ < e (0) < +∞, thereby removing
the IFC and achieving the global PPC.

Remark 6: Conventional PPC methods [22]–[25] face a fun-
damental trade-off between convergence rate and overshoot,
where faster convergence typically increases overshoot. While
asymmetric designs [29]–[32] can reduce overshoot, they
inherently limit global prescribed performance due to IFC con-
straints. Moreover, their parameter tuning is time-consuming
and may cause inverse overshoot [8]. This paper proposes
a breakthrough solution: a suction cup module that actively
attracts and adjusts overshoot while maintaining symmetric
constraints, enabling both overshoot optimization and global
prescribed performance (Fig. 1). This approach overcomes the
limitations of asymmetric methods while preserving design
simplicity.

Remark 7: The suction cup module employs a Gaussian
function defined by three parameter pairs:
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1) ȷu and ȷl determine the amplitude of the Gaussian func-
tion, which corresponds to the height of the convexity.

2) κu and κl determine the center position of the Gaussian
function, which corresponds to the location of the con-
vexity.

3) σu and σl determine the standard deviation of the Gaus-
sian function, which corresponds to the width of the
convexity.

Remark 8: The parameter T offers a viable phase classifica-
tion for the adjustment of the suction cup module. Specifically,
the conditions κu + σu ≤ T and κl + σl ≤ T ensure that
the regulation of overshoot in the suction cup module occurs
only during transient phases, without compromising steady-
state performance.

B. Control Design

Define the following nonlinear mapping function:

N (t) = ln

(
Υ(t)

1−Υ(t)

)
, (6)

where Υ(t) = e(t)−Fl(t)
Fu(t)−Fl(t)

. Calculating the derivative of N (t)
yields

Ṅ (t) = ℘ [ẋ1 − ẏd + ð] , (7)

where ℘ = 1
Υ(t)[1−Υ(t)][Fu(t)−Fl(t)]

> 0,

ð =
−e(t)[Ḟu(t)−Ḟl(t)]+Fl(t)Ḟu(t)−Ḟl(t)Fu(t)

Fu(t)−Fl(t)
.

The controller design will be implemented within the back-
stepping framework. Define the following error system:

v1 = N ,

vj = xj − αj−1, j = 2, . . . , n− 1,

vn = xn − αn−1,

Φ̃i = Φi − Φ̂i, i = 1, . . . , n,

(8)

where Φ̂i is the estimated value of Φi with Φi = ∥Θi∥2, and
αj is the virtual control signal to be designed.

Step 1: Choose the candidate Lyapunov function (CLF) as

V1 =
1

2
v21 +

1

2η1
Φ̃2

1, (9)

where η1 ∈ R+ denotes a design parameter.
Calculating the derivative of V1 yields

V̇1 = ℘v1 [F1 (χ1) + α1]− ℘2v21 −
1

η1
Φ̃1

˙̂
Φ1, (10)

where F1 (χ1) = f1 + v2 − ẏd + ð+ ℘v1, χ1 = [x1, x2, yd]
T.

Lemma 1 suggests the use of FLSs for approximating
Fi (χi), i.e., Fi (χi) = ΘT

i ψi (χi) + ϵi (χi), where |ϵi (χi)| ≤
ϵ∗i , ϵ

∗
i ∈ R+, i = 1, . . . , n.

According to 0 < ψT
i (·)ψi (·) ≤ 1 and the mean inequality,

one has

℘v1F1(χ1) ≤ |℘v1| |F1(χ1)|
≤ |℘v1| ∥ψ1(X1)∥ · Φ1/2

1 + |℘v1| ϵ∗1

≤ ℘2v21∥ψ1(X1)∥2

2
+

Φ1

2∥ψ1(X1)∥2

+
℘2v21
2

+
(ϵ∗1)

2

2

=
℘2v21Φ1

2∥ψ1(X1)∥2
+ ℘2v21 + ϕ1

(11)

where ϕ1 = 1/2 + (ϵ∗1)
2/4, X1 = [x1, yd]

T.
Design α1 and ˙̂

Φ1 as

α1 = −k1
℘
v1 −

℘v1Φ̂1

2∥ψ1 (X1)∥2
, (12)

˙̂
Φ1 =

η1℘
2v21

2∥ψ1 (X1)∥2
− β1Φ̂1, (13)

where k1, β1 ∈ R+ denote design parameters.
Substituting (11)–(13) into (10) yields

V̇1 ≤ −k1v21 +
β1
η1

Φ̃1Φ̂1 + ϕ1. (14)

Step j (j = 2, . . . , n− 1): Choose the CLF as

Vj = Vj−1 +
1

2
v2j +

1

2ηj
Φ̃2
j , (15)

where ηj ∈ R+ denotes a design parameter.
Calculating the derivative of Vj yields

V̇j = V̇j−1 + vj [Fj (χj) + αj ]− v2j −
1

ηj
Φ̃j

˙̂
Φj , (16)

where Fj (χj) = fj + vj+1 − α̇j−1 + vj , χj =

[x1, x2, . . . , xj+1, yd]
T.

Similar to (11), one has

vjFj (χj) ≤
v2jΦj

2∥ψj (Xj)∥2
+ v2j + ϕj , (17)

where ϕj = 1/2 + (ϵ∗j )
2/4, and Xj = [x1, x2, . . . , xj , yd]

T.

Design αj and ˙̂
Φj as

αj = −kjvj −
vjΦ̂j

2∥ψj (Xj)∥2
, (18)

˙̂
Φj =

ηjv
2
j

2∥ψj (Xj)∥2
− βjΦ̂j , (19)

where kj , βj ∈ R+ denote design parameters.
From (16)–(19), one has

V̇j ≤ −
j∑

m=1

kmv
2
m +

j∑
m=1

βm
ηm

Φ̃mΦ̂m +

j∑
m=1

ϕm. (20)

Step n: Choose the CLF as

Vn = Vn−1 +
1

2
v2n +

1

2ηn

(
Φ̃∗
n

)2
, (21)
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where ηn ∈ R+ denotes a design parameter, Φ̃∗
n = Φ∗

n − Φ̂∗
n,

and Φ∗
n = Φ

q+1
2

n ∥ψn(Xn)∥q+1

q+1 .
From (21), one has

V̇n = V̇n−1 + vn [(gν + b)
q − α̇n−1 + fn]− 1

ηn
Φ̃∗
n
˙̂
Φ∗
n.

(22)
Note that

(gν + b)
q
=

(
q

0

)
(gν)

q
+

(
q

1

)
(gν)

q−1
b

+

(
q

2

)
(gν)

q−2
b2 + · · ·

+

(
q

q − 1

)
gνbq−1 +

(
q

q

)
bq

= (gν)
q
+
q−1∑
i=1

(
q

i

)
(gν)

q−i
bi + bq,

where

(
q

i

)
= q!

i!(q−i)! .

According to Young’s inequality, one has(
q

i

)
(gν)

q−i
bi ≤

(
q

i

)
|gν|q−i|b|i

≤

(
q

i

)(
ϑ1

i
q |gν|

q
+ ϑ1

− i
q−i q−i

q |b|q
)
,

where ϑ1 ∈ R+ is a design constant.
It follows that

q−1∑
i

(
q

i

)
(gν)

q−i
bi

≤
q−1∑
i=1

(
q

i

)(
ϑ1

i
q |gν|

q
+ ϑ1

− i
q−i q−i

q |b|q
)

≤
q−1∑
i=1

(
q

i

)(
ϑ1

i
q |gν|

q
)
+
q−1∑
i=1

(
q

i

)(
ϑ1

− i
q−i q−i

q |b|q
)
.

Thus, one has

vn(gν + b)
q

≤

[
vn + |vn| sgn (gν)

q−1∑
i=1

(
q

i

)(
ϑ1

i
q

)]
(gν)

q

+

[
vn + |vn| sgn (b)

q−1∑
i=1

(
q

i

)(
ϑ1

− i
q−i q−i

q

)]
bq

= [vn + |vn| sgn (gν) ς1] (gν)q

+ [vn + |vn| sgn (b) ς2] bq,
(23)

where

ς1 =
q−1∑
i=1

(
q

i

)(
ϑ1

i
q

)
,

ς2 =
q−1∑
i=1

(
q

i

)(
ϑ1

− i
q−i q−i

q

)
.

From Assumptions 2–3, bq ≤ max(bq, b̄q) ≤ b̄q holds
universally since |b| ∈ [b, b̄] and q ∈ [q, q̄] ≥ 1.

Then, one has

vn [1 + sgn (vn) sgn (b) ς2] b
q ≤ (1 + ς2) |vn| b̄q. (24)

Substituting (24) into (23) yields

vn(gν + b)
q

≤ vn [1 + sgn (vn) sgn (gν) ς1] g
qνq

+ (1 + ς2) |vn| b̄q.
(25)

Substituting (25) into (22) yields

V̇n ≤ V̇n−1 + vn (ϖν
q − α̇n−1 + fn)

+ (1 + ς2) |vn| b̄q − 1
ηn

Φ̃∗
n
˙̂
Φ∗
n,

(26)

where ϖ = [1 + sgn (vn) sgn (gν) ς1] g
q .

According to Young’s inequality, one has

(1 + ς2) |vn| b̄q ≤
1

q + 1
b̄q+1|vn|q+1

+
q

q + 1
, (27)

Substituting (27) into (26) yields

V̇n ≤ V̇n−1 + vn [ϖν
q + Fn (χn)]

+ 1
q+1 b̄

q+1|vn|q+1
+ q

q+1 − 1
ηn

Φ̃∗
n
˙̂
Φ∗
n,

(28)

where Fn (χn) = −α̇n−1 + fn, and χn =
[x1, x2, . . . , xn, yd]

T.
Similar to (11) and (17), one has

vnFn (Zn) ≤
Φ

q+1
2

n ∥ψn (Xn)∥q+1
vq+1
n

q + 1
+ ϕn, (29)

where ϕn = 2q/ (q + 1) + (ϵ∗n)
q+1/ (q + 1), and Xn = χn.

Design ν and ˙̂
Φ∗
n as

ν =


−

(
1
ξ1

+ 1

ξ
1
q̄
1

)
Ξ (vn + vq̄n) , vn ≥ 0,

−

(
1
ξ2

+ 1

ξ
1
q̄
2

)
Ξ (vn + vq̄n) , vn < 0,

(30)

˙̂
Φ∗
n = ηn|vn|1+q̄, (31)

where ξ1 = (1− ς1) g
q̄ , ξ2 = (1 + ς1) g

q̄ , and Ξ =
(
Φ̂∗
n

) 1
q

+(
Φ̂∗
n

) 1
q̄

.
where ηn ∈ R+ is a design constant.
Given vn ≥ 0, we obtain ν ≤ 0 and therefore gν ≤ 0.

vnϖν
q = vn [1 + sgn (vn) sgn (gν) ς1] g

qνq

= vn (1− ς1) g
qνq.

(32)

With ϑ1 chosen sufficiently small, (1− ς1) > 0 holds, and
(32) implies

(1− ς1) g
q ≥ (1− ς1) g

q̄ = ξ1, ξ1 > 0.

Substituting (31) into (32) yields

vnϖν
q = −vn (1− ς1) g

q

(
1
ξ1

+ 1

ξ
1
q̄
1

)q
Ξq(vn + vq̄n)

q

= − (1− ς1) g
q

(
1
ξ1

+ 1

ξ
1
q̄
1

)q
Ξq |vn|

(
|vn|+ |vn|q̄

)q
.

(33)
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By Lemma 2, |vn|q ≤ |vn|q + |vn|q̄ . From Assumption 3,
1 + q ≤ 1 + q ≤ 1 + q̄ ≤ 1 + q̄q holds, yielding

0 < |vn|1+q̄ ≤ |vn|1+q̄q + |vn|1+q,

and
− |vn|

(
|vn|+ |vn|q̄

)q ≤ −|vn|1+q̄. (34)

By Lemma 3, one has

− (1− ς1) g
q

(
1
ξ1

+ 1

ξ
1
q̄
1

)q
≤ −ξ1

(
1
ξq1

+ 1

ξ
q
q̄
1

)
≤ −ξ1−q1 − ξ

1− q
q̄

1 .

For ξ1 ≥ 1, both −ξ1−q/q̄1 ≤ −1 and −ξ1−q1 ≤ −1 hold
since q ≥ 1. Then, one has

− (1− ς1) g
q

 1

ξ1
+

1

ξ
1
q̄

1

q

≤ −1. (35)

Similar to (35), one has

−
((

Φ̂∗
n

) 1
q

+
(
Φ̂∗
n

) 1
q̄

)q
≤ −Φ̂∗

n. (36)

Substituting (34)–(36) into (33) yields

vnϖν
q ≤ −Φ̂∗

n|vn|
1+q̄

. (37)

The vn < 0 case follows analogously to vn ≥ 0 and is
omitted for brevity.

From (28)–(31), and (37), one has

V̇n ≤ ϕ̄n + Φ̃∗
n|vn|

1+q̄ − 1
ηn

Φ̃∗
n
˙̂
Φ∗
n

−
n−1∑
i=1

kiv
2
i +

n−1∑
i=1

βi

ηi
Φ̃iΦ̂i,

≤ −
n−1∑
i=1

kiv
2
i +

n−1∑
i=1

βi

ηi
Φ̃iΦ̂i + ϕ̄n,

(38)

where ϕ̄n =
∑n
i=1 ϕi + b̄q+1|vn|q+1

/ (q + 1) + q/ (q + 1).
Substituting the inequality Φ̃iΦ̂i ≤ 1

2 (Φ
2
i − Φ̃2

i ) into (38)
yields

V̇n ≤ −
n−1∑
i=1

kiv
2
i −

n−1∑
i=1

βi

2ηi
Φ̃2
i + ϕ, (39)

where ϕ = ϕ̄n +
∑n−1
i=1 βiΦ

2
i / (2ηi).

Let µ = min
1≤i≤n−1

{2ki, βi}, one has

V̇n ≤ −µVn + ϕ. (40)

Integrating (40) yields

Vn ≤ Vn (0) e
−µt + ϕ

µ ≤ Vn (0) +
ϕ
µ . (41)

From (41), vi, Φ̃j , and Φ̃∗
n (i = 1, . . . , n; j = 1, . . . , n− 1)

are bounded. Combining this result with (12), (13), (18), (19),
(30), (31), and the definition of uq , it follows that αj , Φ̂j ,
Φ̂∗
n, ν, and uq remain bounded. Furthermore, the error system

definition (8) guarantees the boundedness of both N and xi.
This ensures the boundedness of all closed-loop signals in
system (4).

Fig. 2. Block diagram of proposed controller.

From the definition Υ(t) = e(t)−Fl(t)
Fu(t)−Fl(t)

, when Fl(0) <

e0 < Fu(0), we have Υ(0) ∈ (0, 1). Equation (6) indicates
that N (t) → ∞ if and only if Υ(t) approaches either 0+

or 1−. This implies that if Υ(0) is initially within (0,1) and
N (t) remains bounded, then Υ(t) ∈ (0, 1) for all t > 0.
Consequently, the initial condition Fl(0) < e0 < Fu(0)
(equivalent to Υ(0) ∈ (0, 1)) combined with bounded N (t)
guarantees Fl(t) < e(t) < Fu(t) for all t > 0. Furthermore,
from (5), Fl(0) → −∞ and Fu(0) → +∞, meaning any
finite initial error e(0) automatically satisfies the condition,
eliminating the IFC and ensuring the error remains within
prescribed performance boundaries. In addition, the definition
of ϱ(t) implies that both Fl(t) and Fu(t) can specify the
settling time T , guaranteeing that e(t) converges to a pre-
defined arbitrarily small residual set within a finite time. Fig.
2 provides a structural overview of the proposed controller.

Remark 9: This paper innovatively incorporates the un-
known power variation induced by actuator faults into the
control framework. For the case where the power exponent
is an odd integer greater than 1 (q > 1 and q ∈ Zodd), a more
general FTC strategy is proposed. By leveraging the binomial
theorem, the nonlinear term (g(x)ν + b(x))

q is transformed
into a polynomial form. Through inequality transformations
(Lemma 2 and Lemma 3), the design and stability proof of
this sophisticated fault-tolerant controller are rigorously estab-
lished. Moreover, this study proposes a suction-cup type pre-
scribed performance function, where the suction cup modules
Gu and Gl are designed to suppress overshoot without requiring
an asymmetric boundary design. By introducing the settling
time T into the prescribed performance function, the residual
error related to the finite-time prescribed performance bound
is ensured. Additionally, the dynamic scaling term ϱ(t)

[r0−ϱ(t)]Λ
extends the initial boundaries to infinity, thereby eliminating
the IFC constraint and ensuring global applicability.

IV. SIMULATION RESULTS

In this paper, the following mass-spring-damper system that
takes into account the aging of the spring is employed for
simulation validation:

ẋ1 = x2,

ẋ2 = [g (x1, x2) ν + b (x1, x2)]
q − 1

M f (x1, x2) ,

y = x1,

where the system parameters are selected as M =
0.8, f (x1, x2) = 2x21 + x31 sin (x1x2) + 0.2x22 cos

(
x22
)
,
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Fig. 3. Tracking error trajectory under different setting time T .

Fig. 4. Tracking error trajectories under different initial conditions x (0).

g (x1, x2) = 0.2 + 0.4 sin (x1x2), b (x1, x2) = cos
(
x21x2

)
,

and q = 3.
The control parameters are k1 = 5, η1 = η2 = 0.1, β1 = 3,

ϑ1 = 0.2, q̄ = 3, q = 3, g = 0.5, T = 2, r0 = 1, rf = 0.05,
Λ = 1, and l = 2. The initial conditions are x1 (0) = 0.5,
x2 (0) = 0.2, Φ̂1 (0) = 0.2, and Φ̂∗

2 (0) = 0. The desired
trajectory is yd = 0.5 sin (t).

Figs. 3 and 4 illustrate the tracking performance without the
use of suction cup modules. Fig. 3 illustrates the tracking error
under different time settings. It can be observed that a smaller
T leads to faster error convergence. Notably, this accelerated
convergence results from the performance boundary’s rapid
compression of the error (squeeze theorem), rather than being
directly related to system stability. Fig. 4 presents the tracking
error under different initial states. The results demonstrate that
the proposed method can adapt to varying initial conditions
without requiring boundary redesign, which eliminates the
IFC constraint and enables global PPC. Moreover, both Figs.
3 and 4 exhibit varying degrees of overshoot. Currently, the
methods used to reduce overshoot in PPC predominantly rely
on asymmetric designs [29]–[32]. These designs not only pose
an additional obstacle to the implementation of global PPC
but also involve a laborious tuning process. As a result, it

Fig. 5. Tracking error trajectories with/without suction cup.

Fig. 6. Trajectories of u and ν with p = 3.

Fig. 7. Trajectories of u and ν with p = 1.

becomes extremely difficult to achieve complete optimization
of the overshoot.

In this paper, we propose the use of suction cup modules to
optimize overshoot under symmetrical conditions. The design
parameters of the suction cup modules are set as ȷu = 6,
ȷl = 1.5, κu = κl = 0.45, and σu = σl = 0.1. As
demonstrated in Fig. 5, the presence of the suction cup
modules enables the realization of optimized overshoot under
symmetric constraints. Moreover, in the symmetric design,
the suction cup-type PPC operates exclusively during the
transient phase and eliminates the IFC. This method offers a
novel perspective on optimizing transient performance within
existing PPC schemes [22]–[43].

Figs. 6 and 7 illustrate the FTC inputs with (q = 3)
and without (q = 1, representing traditional FTC techniques
[9]–[20]) considering power effects, where ν is an intermediate
control signal and u is the actual control signal applied to
the system. From these two figures, it can be observed that
since the control objectives are identical, the curves of the
actual control input u exhibit similar behavior. However, when
power effects are considered, ν must compensate for the cubic
nonlinearity, and the fault impact is amplified geometrically.
The physical significance lies in the fact that when an actuator
fails, the cubic operation (q = 3) nonlinearly amplifies the
fault characteristics, enabling the controller to detect minor
faults earlier and trigger compensation. In contrast, a linear
model (q = 1) exhibits lower sensitivity to faults and requires
a larger ν to achieve the same compensation effect. Moreover,
the significantly smaller amplitude of ν for q = 3 compared to
q = 1 indicates that the controller achieves fault suppression
with lower control energy. Therefore, the proposed power-
considered FTC method has the potential to provide a more
precise and nuanced assessment of actuator faults compared
to traditional FTC techniques [9]–[20].
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V. CONCLUSION

This paper proposes a novel prescribed performance FTC
scheme for nonlinear systems. First, the actuator power in-
dex q is incorporated into the FTC framework, providing a
more comprehensive evaluation of actuator faults. Next, the
introduction of the suction cup modules Gu and Gl in PPC
enables overshoot optimization under the global symmetric
condition. Simulation experiments based on a mass-spring-
damper system with faults due to the aging spring demonstrate
the effectiveness of the proposed scheme.
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Zsófia Lendek (Member IEEE) received the M.Sc.
degree in control engineering from the Technical
University of Cluj-Napoca, Romania, in 2003, the
Ph.D. degree from the Delft University of Tech-
nology, the Netherlands, in 2009, and her habil-
itation degree from the Technical University of
Cluj-Napoca, Romania, in 2019. She is currently a
Full Professor at the Technical University of Cluj-
Napoca, Romania. She has previously held research
positions in the Netherlands and in France. Her
research interests include observer and controller

design for nonlinear systems, in particular Takagi-Sugeno fuzzy systems,
which adapt the advantages of linear time-invariant system-based design to
nonlinear systems, with applications in several fields.

Dr. Lendek is an Associate Editor for IEEE TRANSACTIONS ON FUZZY
SYSTEMS and Engineering Applications of Artificial Intelligence and an
Editorial Board Member of Fuzzy Sets and Systems.

Radu-Emil Precup (Fellow, IEEE) received the
Dipl.Ing. (with honors) degree in automation and
computers from the “Traian Vuia” Polytechnic In-
stitute of Timisoara, Timisoara, Romania, the Dipl.
degree in mathematics from the West University
of Timisoara, Timisoara, and the Ph.D. degree in
automatic systems from the Politehnica University
of Timisoara (UPT), Timisoara, Romania, in 1987,
1993, and 1996, respectively. He is currently with
UPT, Timisoara, Romania, where he became a Pro-
fessor with the Department of Automation and Ap-

plied Informatics in 2000. From 2022, he is also a senior researcher (CS I)
and the head of the Data Science and Engineering Laboratory of the Center
for Fundamental and Advanced Technical Research, Romanian Academy –
Timisoara Branch, Romania. From 2016 to 2022, he was an Adjunct Professor
within the School of Engineering, Edith Cowan University, Joondalup, WA,
Australia. He is the author or co-author of more than 300 papers. His current
research interests include intelligent and data-driven control systems.

Prof. Precup is a corresponding member of the Romanian Academy, and a
member of the Technical Committees on Data-Driven Control and Monitoring,
and Control, Robotics and Mechatronics of the IEEE Industrial Electronics
Society. He is the Editor-in-Chief of Romanian Journal of Information Science
and Technology, a Senior Editor of IEEE Open Journal of the Computer
Society, and an Associate Editor of IEEE TRANSACTIONS ON CYBERNETICS
and IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.



10

Ramesh K. Agarwal (Life Fellow, IEEE) received
the Ph.D. degree in aerospace engineering from
Stanford University, Stanford, CA, USA, in 1975.
He is currently the William Palm Professor of engi-
neering and the Director of the Aerospace Research
and Education Center, Washington University in
St. Louis, St. Louis, MO, USA. He has authored
or coauthored more than 500 journal and refereed
conference articles. His research interests include
basic control system theory, fuzzy logic and neural
networks, and applications of nonlinear H∞ control

to flight and flow control. He was on the editorial board for more than 20
journals. He was the recipient of the SAE Aerospace Engineering Leadership
Award in 2013, the SAE Excellence in Engineering Education Award, the
SAE International Medal of Honor, and the AIAA Reed Aeronautics Award
in 2015. He is a Fellow of AAAS, AIAA, APS, ASME, and IET.

Imre J. Rudas (Life Fellow, IEEE) received the
bachelor’s degree in mechanical engineering from
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