

Suction Cup-Type Prescribed Performance Fault-Tolerant Fuzzy Control for Nonlinear Systems Considering Actuator Power

Yu Xia, *Member, IEEE*, Zsófia Lendek, *Member, IEEE*, Radu-Emil Precup, *Fellow, IEEE*, Ramesh K. Agarwal, *Life Fellow, IEEE*, and Imre J. Rudas, *Life Fellow, IEEE*

Abstract—Conventional fault-tolerant control schemes typically assume the exponent of the faulty input to be 1, overlooking its impact on actuator power. In this paper, we propose a novel fault-tolerant control strategy that extends the exponent to any positive odd integer, thus capturing higher-order fault effects. In addition, by integrating a Gaussian function to modify the constraint boundaries, a novel suction-cup-type prescribed performance function is proposed. Unlike existing prescribed performance functions, this design uses a suction cup module to regulate output overshoot without requiring asymmetric design. This design is globally effective, eliminating the initial feasibility conditions. Simulation results validate the effectiveness of the proposed scheme.

Index—Actuator power, asymmetry-free, fault-tolerant control, initial-feasibility-condition-free, suction-cup-type prescribed performance.

I. INTRODUCTION

Fuzzy control is a well-established and effective methodology widely used in nonlinear system control design [1]–[8]. However, prolonged operation often leads to actuator faults, jeopardizing system stability and safety. To address these challenges, fault-tolerant control (FTC) has become a key research focus. Actuator faults are generally classified into gain faults (affecting actuation efficiency) and bias faults (caused

This work was supported in part by the Postdoctoral Fellowship Program of CPSF under Grant GZC20250940; in part by the project Romanian Hub for Artificial Intelligence-HRIA, Smart Growth, Digitization and Financial Instruments Program, MySMIS under Grant 334906; and in part by a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI, project number ERANET-ENUAC-e-MATS, within PNCDI IV. (Corresponding authors: Zsófia Lendek and Radu-Emil Precup.)

Yu Xia is with the State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail: rainyx@sjtu.edu.cn).

Zsófia Lendek is with the Department of Automation, Technical University of Cluj-Napoca; Memorandumului 28, 400114, Cluj-Napoca, Romania (e-mail: zsofia.lendek@aut.utcluj.ro).

Radu-Emil Precup is with the Department of Automation and Applied Informatics, Politehnica University of Timisoara, 300223 Timisoara, Romania, and also with the Center for Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Branch, Bd. Mihai Viteazu 24, 300223 Timisoara, Romania (e-mail: radu.precup@aut.upt.ro).

Ramesh K. Agarwal is with the Department of Mechanical Engineering, Washington University in St. Louis Campus, St. Louis, MO 63130 USA (e-mail: agarwalr@seas.wustl.edu).

Imre J. Rudas is with the Research and Innovation Centre, Óbuda University, 1034 Budapest, Hungary (e-mail: rudas@uni-obuda.hu).

by sticking behavior) [9]–[20]. Conventional FTC approaches typically assume a power index of 1 for faulty inputs, implying no impact on power levels. Yet, this assumption contradicts real-world observations—actuator failures can unpredictably alter input power, creating discrepancies between theoretical models and actual performance [21]. Consequently, a revised fault model must account for power variations, where the power index of faulty inputs deviates from 1. This shift introduces additional complexity in control design, raising new challenges for FTC strategy development.

Thanks to its explicit capability to regulate control performance, prescribed performance control (PPC) has gained widespread popularity in recent years. In traditional PPC schemes [22]–[25], the constraint boundary is shaped in a funnel form, ensuring that the tracking error remains within the boundary through an error transformation technique. By fine-tuning parameters associated with convergence rates and initial/final error positions, prescribed performance specifications can be achieved, providing significant benefits for physical systems requiring precise tracking control [26]–[28]. However, rapid convergence inevitably leads to output overshoot. To address this issue, various asymmetric design schemes for PPC [29]–[32] have been proposed. Whether considering independent asymmetric designs [29], [30] or unified asymmetric designs [31], [32], overshoot adjustment requires continuous tuning of asymmetric parameters - an evidently time-consuming process. While such tuning can help optimize overshoot, it may not completely eliminate it, but rather compress it either upward or downward, with excessive adjustments potentially causing inverse overshoot [8]. Additionally, designing PPC with a tunnel-shaped constraint can also effectively mitigate output overshoot [33]–[35]. However, this approach compromises the convergence rate, and the tunnel's narrowness makes it difficult to satisfy the initial feasibility condition (IFC). In practice, the IFC serves as a fundamental requirement for PPC. Specifically, the IFC requires that the initial error must remain within the initial prescribed performance boundaries. If this condition is violated, it becomes necessary to reselect new and appropriately enlarged boundaries. However, the current asymmetric design [29]–[32] and shape modification designs [33]–[35] of PPC pay little attention to this point, making it impossible to achieve optimization of overshoot on a global scale. Consequently, the practicality of these PPC schemes remains relatively low. Moreover, solutions related to PPC with finite time [36], [37], fixed time [38], [39], predefined time

[40], [41], and prescribed time [42], [43] have been developed, establishing an explicit connection between settling time and PPC. Given the aforementioned observations, it would be beneficial to develop a class of global PPC that simultaneously accounts for settling time and minimizes overshoot, without being constrained by the IFC. Furthermore, to the best of our knowledge, no prior work has achieved overshoot optimization under symmetric constraints.

In this paper, we propose a novel suction cup-type prescribed performance fuzzy control scheme for a class of nonlinear systems, while also considering a novel actuator fault mode. The primary contributions of this work are as follows:

- 1) This paper advances beyond conventional FTC approaches [9]–[20] by considering actuator faults that induce unknown power variations, where the input power index becomes an odd integer greater than 1. Building on this analysis, we develop a novel fault-tolerant fuzzy control algorithm with enhanced practical applicability.
- 2) Unlike existing PPC schemes [22]–[43], this paper proposes a novel suction cup-type prescribed performance design. This innovative suction cup design uniquely eliminates overshoot without the need for asymmetric configurations. Furthermore, it offers global applicability, eliminating the requirement for IFC, and provides the additional advantage of explicitly adjustable settling time.

The organization of this paper is as follows: Section II elaborates on the control problem under consideration with the unknown actuator power. Section III introduces the design method of the global suction cup-type prescribed performance function, and, based on the nonlinear mapping function and Section II, presents the controller design and stability analysis. Section IV conducts simulations using a mass-spring-damper system as an example and analyzes the results. Section V summarizes this work.

In this paper, we adopt the following notations: \mathbb{R} denotes the set of real numbers, \mathbb{R}^+ denotes the set of nonnegative real numbers, and \mathbb{R}^n denotes the set of n -dimensional real vectors. For any real number a , $|a|$ denotes its absolute value, and $\text{sgn}(a)$ denotes the signum function, defined as: $\text{sgn}(a) = -1$, if $a < 0$; $\text{sgn}(a) = 0$, if $a = 0$; $\text{sgn}(a) = 1$, if $a > 0$. A function is said to be C^1 (first-order continuously differentiable) if it is continuous and has a continuous first derivative.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

In the absence of faults, the nonlinear system admits the following form:

$$\begin{cases} \dot{x}_i = x_{i+1} + f_i(\bar{x}_i), & i = 1, \dots, n-1, \\ \dot{x}_n = u + f_n(x), \\ y = x_1, \end{cases} \quad (1)$$

where $x = [x_1, \dots, x_n]^T \in \mathbb{R}^n$ denotes the system state with the initial value $x(t_0) = x_0$, $u \in \mathbb{R}$ denotes the input, $y \in \mathbb{R}$ denotes the output, and $f_j : \mathbb{R}^n \rightarrow \mathbb{R}, j = 1, \dots, n$ denotes the unknown continuous function.

Practical systems inevitably experience actuator faults, commonly represented by:

$$u = g(x)\nu + b(x), \quad (2)$$

where ν is the designed control input, $0 < g(x) \leq 1$ characterizes actuation effectiveness loss, and $b(x)$ represents the bias from stuck actuators.

While Model (2) represents the standard actuator fault characterization [9]–[20], practical systems exhibit power exponent variations due to degradation effects [21], [49], [50]. Accounting for this, we generalize (2) to:

$$u^q = (g(x)\nu + b(x))^q, \quad (3)$$

where q represents the altered power characteristic.

Combining (1) and (3) yields

$$\begin{cases} \dot{x}_i = x_{i+1} + f_i(\bar{x}_i), & i = 1, \dots, n-1, \\ \dot{x}_n = (g(x)\nu + b(x))^q + f_n(x), \\ y = x_1. \end{cases} \quad (4)$$

Remark 1: While classical works (e.g., [21], [51], [52]) have studied nonlinear systems with unknown powers (e.g., $\dot{x}_j = f_j(x) + x_{j+1}^{q_j}$), the interplay between unknown powers and actuator faults remains unexplored. This paper bridges that gap by proposing the model (3), which explicitly links these two issues. The coexistence of unknown powers and actuator faults not only distinguishes our system from prior work but also introduces significant design challenges, forming one of the core focuses of this study.

Remark 2: Physical degradation mechanisms (fatigue, aging, etc.) inherently exhibit nonlinear damage accumulation where $q > 1$ is physically justified. Established models like Coffin-Manson [53] (fatigue) and Arrhenius [54] (aging) demonstrate superlinear damage growth ($q > 1$) under stress/loading, explaining accelerated failure modes. While $q < 1$ may describe initial sublinear processes (e.g., early-stage creep), long-term degradation is dominated by $q > 1$ behavior, making model (3) with $q > 1$ empirically grounded.

Remark 3: Beyond odd positive integers, two alternative cases for q exist:

- (i) Even positive q (e.g., $q = 2$): The system $\dot{x} = x + u^2$ demonstrates the fundamental limitation where both positive and negative inputs contribute positively, preventing guaranteed stabilization;
- (ii) Time-varying $q(t)$ (e.g., $q(t) = \sin(t) + 5$): Introduces controller design challenges due to (a) stability verification difficulties; and (b) unpredictable control effects from varying input influence.

Thus, the restriction to odd positive integers preserves both theoretical and practical validity.

The dynamics described by (4) find practical application in modeling boiler-turbine units [55] and various mechanical systems with weak coupling, underactuation, or instability [49]. This model accounts for real-world factors like material hardening, spring aging, and operational variations that contribute to unknown power effects, thereby enhancing the scope and effectiveness of FTC strategies.

The objective of this study is to develop a state-feedback control strategy that guarantees:

- (i) Boundedness of all closed-loop signals in the system (4); and
- (ii) The tracking error $e(t) = y(t) - y_d(t)$ remains within prescribed performance boundaries and converges to a predefined arbitrarily small residual set within a finite time.

Some useful lemmas and assumptions are presented next.

Lemma 1 [6]: An unknown continuous function $F(\chi)$ can be effectively approximated by a fuzzy logic system (FLS) through the following representation:

$$F(\chi) = \Theta^T \psi(\chi) + \epsilon(\chi), \quad (|\epsilon(\chi)| \leq \epsilon^*, \epsilon^* \in \mathbb{R}^+),$$

where $\epsilon(\chi)$ is the approximation error, Θ is the weight vector, and $\psi(\chi) = [\psi_1(\chi), \dots, \psi_n(\chi)]^T / \sum_{i=1}^n \psi_i(\chi)$ is the basis function, usually chosen as a Gaussian function:

$$\psi_i(\chi) = \exp \left[\frac{-(\chi - \delta_i)^T (\chi - \delta_i)}{\varphi_i^2} \right]$$

with δ_i and φ_i , respectively, denoting the center and width.

Lemma 2 [21]: For any $h(t) \in C^1$ bounded as $\underline{h} < h(t) < \bar{h}$ and $s \in \mathbb{R}$, $|s|^h \leq |s|^{\underline{h}} + |s|^{\bar{h}}$.

Lemma 3 [44]: Given $h(t) \in C^1$ with $h(t) \geq 1$ and $s_i \in \mathbb{R}$, $\sum_{i=1}^n |s_i|^h \leq (\sum_{i=1}^n |s_i|)^h \leq n^{h-1} \sum_{i=1}^n |s_i|^h$.

Assumption 1 [45]: The desired trajectory y_d and its first-order derivative \dot{y}_d are continuous and bounded.

Assumption 2 [10]: The gain $g(x) \in [g, \bar{g}] \subseteq (0, 1]$ and bias $|b(x)| \in [\underline{b}, \bar{b}]$ are bounded with known positive bounds $g, \bar{g}, \underline{b}, \bar{b}$.

Assumption 3: The power q is bounded by known odd integers $\underline{q} \leq q \leq \bar{q}$.

Remark 4: Assumptions 1 and 2 ensure system controllability, a crucial property for both theoretical analysis and practical implementations [46]–[48]. Assumption 3 guarantees consistent control directionality between $(\cdot)^1$ and $(\cdot)^q$ operations, a fundamental requirement [9]–[21] for higher-power systems.

III. MAIN RESULTS

A. Global Suction Cup-Type Prescribed Performance

Define the finite-time prescribed performance function $\varrho(t)$ as

$$\varrho(t) = \begin{cases} (r_0 - r_f) e^{\frac{lt}{T-r_f}} + r_f, & t \in [0, T), \\ r_f, & t \in [T, +\infty), \end{cases}$$

where $0 < r_f \ll r_0$, $l \in \mathbb{R}^+$, and $T \in \mathbb{R}^+$ are design parameters. The function $\varrho(t)$ satisfies (i) $\varrho(0) = r_0$; (ii) $\lim_{t \rightarrow T^-} \varrho(t) = r_f$; and (iii) $\varrho(t) \in [r_f, r_0]$ for all $t \geq 0$.

To remove IFC and minimize output overshoot, a novel global suction-cup type prescribed performance function is proposed as follows. Let

$$\begin{aligned} \mathcal{F}_u(t) &= \frac{\varrho(t)}{[r_0 - \varrho(t)]^\Lambda} + \mathcal{S}_u \mathcal{G}_u, \\ \mathcal{F}_l(t) &= -\frac{\varrho(t)}{[r_0 - \varrho(t)]^\Lambda} - \mathcal{S}_l \mathcal{G}_l. \end{aligned} \quad (5)$$

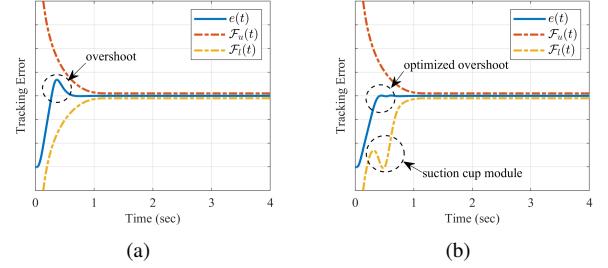


Fig. 1. (a) indicates overshoot under symmetry constraints; (b) shows that the overshoot in (a) is optimized in the presence of the suction cup module.

and

$$\mathcal{S}_u = \begin{cases} 1, & \text{if } e(0) > 0, \\ 0, & \text{if } e(0) = 0, \\ -1, & \text{if } e(0) < 0, \end{cases} \quad \mathcal{S}_l = \begin{cases} 1, & \text{if } e(0) < 0, \\ 0, & \text{if } e(0) = 0, \\ -1, & \text{if } e(0) > 0, \end{cases}$$

$$\mathcal{G}_u = \mathcal{J}_u \exp \left(-\frac{(t - \kappa_u)^2}{2\sigma_u^2} \right),$$

$$\mathcal{G}_l = \mathcal{J}_l \exp \left(-\frac{(t - \kappa_l)^2}{2\sigma_l^2} \right),$$

where $\mathcal{G}_u, \mathcal{G}_l$ denote suction cup modules, and $0 < \Lambda \leq 1$, $\mathcal{J}_u, \mathcal{J}_l, \kappa_u, \kappa_l, \sigma_u$, and σ_l are design constants.

The prescribed performance boundaries in (5) consist of two components:

- (i) Fundamental boundaries $\frac{\varrho(t)}{[r_0 - \varrho(t)]^\Lambda}$ that amplify the initial value of $\varrho(t)$ to infinity through division by $[r_0 - \varrho(t)]^\Lambda$ to remove the IFC; and
- (ii) Auxiliary boundaries $\mathcal{S}_u \mathcal{G}_u$ and $\mathcal{S}_l \mathcal{G}_l$ for overshoot optimization, where \mathcal{S}_u and \mathcal{S}_l determine the activation of the upper or lower boundary suction cup \mathcal{G}_u or \mathcal{G}_l based on the overshoot direction.

The functions $\mathcal{F}_u(t)$ and $\mathcal{F}_l(t)$ satisfy (i) $\mathcal{F}_u(t) \rightarrow +\infty$ and $\mathcal{F}_l(t) \rightarrow -\infty$ if and only if $t \rightarrow 0^+$; (ii) $\lim_{t \rightarrow T^-} \mathcal{F}_u(t) = \frac{r_f}{[r_0 - r_f]^\Lambda}$, $\lim_{t \rightarrow T^-} \mathcal{F}_l(t) = -\frac{r_f}{[r_0 - r_f]^\Lambda}$; and (iii) for all $t \geq 0$, $\mathcal{F}_u(t) \in \left[\frac{r_f}{[r_0 - r_f]^\Lambda}, +\infty \right)$ and $\mathcal{F}_l(t) \in \left(-\infty, -\frac{r_f}{[r_0 - r_f]^\Lambda} \right]$.

Remark 5: In traditional PPC [22]–[25], the IFC is mandatory, meaning that the initial error $e(0)$ must satisfy the condition $\mathcal{F}_l(0) < e(0) < \mathcal{F}_u(0)$. However, in this paper, the initial boundaries are infinite, and any initial error $e(0)$ satisfies the condition $-\infty < e(0) < +\infty$, thereby removing the IFC and achieving the global PPC.

Remark 6: Conventional PPC methods [22]–[25] face a fundamental trade-off between convergence rate and overshoot, where faster convergence typically increases overshoot. While asymmetric designs [29]–[32] can reduce overshoot, they inherently limit global prescribed performance due to IFC constraints. Moreover, their parameter tuning is time-consuming and may cause inverse overshoot [8]. This paper proposes a breakthrough solution: a suction cup module that actively attracts and adjusts overshoot while maintaining symmetric constraints, enabling both overshoot optimization and global prescribed performance (Fig. 1). This approach overcomes the limitations of asymmetric methods while preserving design simplicity.

Remark 7: The suction cup module employs a Gaussian function defined by three parameter pairs:

- 1) γ_u and γ_l determine the amplitude of the Gaussian function, which corresponds to the height of the convexity.
- 2) κ_u and κ_l determine the center position of the Gaussian function, which corresponds to the location of the convexity.
- 3) σ_u and σ_l determine the standard deviation of the Gaussian function, which corresponds to the width of the convexity.

Remark 8: The parameter T offers a viable phase classification for the adjustment of the suction cup module. Specifically, the conditions $\kappa_u + \sigma_u \leq T$ and $\kappa_l + \sigma_l \leq T$ ensure that the regulation of overshoot in the suction cup module occurs only during transient phases, without compromising steady-state performance.

B. Control Design

Define the following nonlinear mapping function:

$$\mathcal{N}(t) = \ln \left(\frac{\Upsilon(t)}{1 - \Upsilon(t)} \right), \quad (6)$$

where $\Upsilon(t) = \frac{e(t) - \mathcal{F}_l(t)}{\mathcal{F}_u(t) - \mathcal{F}_l(t)}$. Calculating the derivative of $\mathcal{N}(t)$ yields

$$\dot{\mathcal{N}}(t) = \wp [\dot{x}_1 - \dot{y}_d + \bar{\delta}], \quad (7)$$

where $\wp = \frac{1}{\Upsilon(t)[1 - \Upsilon(t)][\mathcal{F}_u(t) - \mathcal{F}_l(t)]} > 0$,
 $\bar{\delta} = \frac{-e(t)[\dot{\mathcal{F}}_u(t) - \dot{\mathcal{F}}_l(t)] + \mathcal{F}_l(t)\dot{\mathcal{F}}_u(t) - \dot{\mathcal{F}}_l(t)\mathcal{F}_u(t)}{\mathcal{F}_u(t) - \mathcal{F}_l(t)}$.

The controller design will be implemented within the backstepping framework. Define the following error system:

$$\begin{cases} v_1 = \mathcal{N}, \\ v_j = x_j - \alpha_{j-1}, j = 2, \dots, n-1, \\ v_n = x_n - \alpha_{n-1}, \\ \tilde{\Phi}_i = \Phi_i - \hat{\Phi}_i, i = 1, \dots, n, \end{cases} \quad (8)$$

where $\hat{\Phi}_i$ is the estimated value of Φ_i with $\Phi_i = \|\Theta_i\|^2$, and α_j is the virtual control signal to be designed.

Step 1: Choose the candidate Lyapunov function (CLF) as

$$V_1 = \frac{1}{2}v_1^2 + \frac{1}{2\eta_1}\tilde{\Phi}_1^2, \quad (9)$$

where $\eta_1 \in \mathbb{R}^+$ denotes a design parameter.

Calculating the derivative of V_1 yields

$$\dot{V}_1 = \wp v_1 [F_1(\chi_1) + \alpha_1] - \wp^2 v_1^2 - \frac{1}{\eta_1}\tilde{\Phi}_1 \dot{\hat{\Phi}}_1, \quad (10)$$

where $F_1(\chi_1) = f_1 + v_2 - \dot{y}_d + \bar{\delta} + \wp v_1$, $\chi_1 = [x_1, x_2, y_d]^T$.

Lemma 1 suggests the use of FLSs for approximating $F_i(\chi_i)$, i.e., $F_i(\chi_i) = \Theta_i^T \psi_i(\chi_i) + \epsilon_i(\chi_i)$, where $|\epsilon_i(\chi_i)| \leq \epsilon_i^*$, $\epsilon_i^* \in \mathbb{R}^+$, $i = 1, \dots, n$.

According to $0 < \psi_i^T(\cdot) \psi_i(\cdot) \leq 1$ and the mean inequality, one has

$$\begin{aligned} \wp v_1 F_1(\chi_1) &\leq |\wp v_1| |F_1(\chi_1)| \\ &\leq |\wp v_1| \|\psi_1(\mathbb{X}_1)\| \cdot \Phi_1^{1/2} + |\wp v_1| \epsilon_1^* \\ &\leq \frac{\wp^2 v_1^2 \|\psi_1(\mathbb{X}_1)\|^2}{2} + \frac{\Phi_1}{2\|\psi_1(\mathbb{X}_1)\|^2} \\ &\quad + \frac{\wp^2 v_1^2}{2} + \frac{(\epsilon_1^*)^2}{2} \\ &= \frac{\wp^2 v_1^2 \Phi_1}{2\|\psi_1(\mathbb{X}_1)\|^2} + \wp^2 v_1^2 + \phi_1 \end{aligned} \quad (11)$$

where $\phi_1 = 1/2 + (\epsilon_1^*)^2/4$, $\mathbb{X}_1 = [x_1, y_d]^T$.

Design α_1 and $\dot{\hat{\Phi}}_1$ as

$$\alpha_1 = -\frac{k_1}{\wp} v_1 - \frac{\wp v_1 \hat{\Phi}_1}{2\|\psi_1(\mathbb{X}_1)\|^2}, \quad (12)$$

$$\dot{\hat{\Phi}}_1 = \frac{\eta_1 \wp^2 v_1^2}{2\|\psi_1(\mathbb{X}_1)\|^2} - \beta_1 \hat{\Phi}_1, \quad (13)$$

where $k_1, \beta_1 \in \mathbb{R}^+$ denote design parameters.

Substituting (11)–(13) into (10) yields

$$\dot{V}_1 \leq -k_1 v_1^2 + \frac{\beta_1}{\eta_1} \tilde{\Phi}_1 \hat{\Phi}_1 + \phi_1. \quad (14)$$

Step j ($j = 2, \dots, n-1$): Choose the CLF as

$$V_j = V_{j-1} + \frac{1}{2}v_j^2 + \frac{1}{2\eta_j}\tilde{\Phi}_j^2, \quad (15)$$

where $\eta_j \in \mathbb{R}^+$ denotes a design parameter.

Calculating the derivative of V_j yields

$$\dot{V}_j = \dot{V}_{j-1} + v_j [F_j(\chi_j) + \alpha_j] - v_j^2 - \frac{1}{\eta_j} \tilde{\Phi}_j \dot{\hat{\Phi}}_j, \quad (16)$$

where $F_j(\chi_j) = f_j + v_{j+1} - \dot{\alpha}_{j-1} + v_j$, $\chi_j = [x_1, x_2, \dots, x_{j+1}, y_d]^T$.

Similar to (11), one has

$$v_j F_j(\chi_j) \leq \frac{v_j^2 \Phi_j}{2\|\psi_j(\mathbb{X}_j)\|^2} + v_j^2 + \phi_j, \quad (17)$$

where $\phi_j = 1/2 + (\epsilon_j^*)^2/4$, and $\mathbb{X}_j = [x_1, x_2, \dots, x_j, y_d]^T$.

Design α_j and $\dot{\hat{\Phi}}_j$ as

$$\alpha_j = -k_j v_j - \frac{v_j \hat{\Phi}_j}{2\|\psi_j(\mathbb{X}_j)\|^2}, \quad (18)$$

$$\dot{\hat{\Phi}}_j = \frac{\eta_j v_j^2}{2\|\psi_j(\mathbb{X}_j)\|^2} - \beta_j \hat{\Phi}_j, \quad (19)$$

where $k_j, \beta_j \in \mathbb{R}^+$ denote design parameters.

From (16)–(19), one has

$$\dot{V}_j \leq - \sum_{m=1}^j k_m v_m^2 + \sum_{m=1}^j \frac{\beta_m}{\eta_m} \tilde{\Phi}_m \hat{\Phi}_m + \sum_{m=1}^j \phi_m. \quad (20)$$

Step n: Choose the CLF as

$$V_n = V_{n-1} + \frac{1}{2}v_n^2 + \frac{1}{2\eta_n} (\tilde{\Phi}_n^*)^2, \quad (21)$$

where $\eta_n \in \mathbb{R}^+$ denotes a design parameter, $\tilde{\Phi}_n^* = \Phi_n^* - \hat{\Phi}_n^*$, and $\Phi_n^* = \frac{\Phi_n^{q+1}}{q+1} \|\psi_n(\mathbb{X}_n)\|^{q+1}$.
From (21), one has

$$\dot{V}_n = \dot{V}_{n-1} + v_n [(g\nu + b)^q - \dot{\alpha}_{n-1} + f_n] - \frac{1}{\eta_n} \tilde{\Phi}_n^* \dot{\hat{\Phi}}_n^*. \quad (22)$$

Note that

$$\begin{aligned} (g\nu + b)^q &= \binom{q}{0} (g\nu)^q + \binom{q}{1} (g\nu)^{q-1} b \\ &\quad + \binom{q}{2} (g\nu)^{q-2} b^2 + \dots \\ &\quad + \binom{q}{q-1} g\nu b^{q-1} + \binom{q}{q} b^q \\ &= (g\nu)^q + \sum_{i=1}^{q-1} \binom{q}{i} (g\nu)^{q-i} b^i + b^q, \end{aligned}$$

$$\text{where } \binom{q}{i} = \frac{q!}{i!(q-i)!}.$$

According to Young's inequality, one has

$$\begin{aligned} \binom{q}{i} (g\nu)^{q-i} b^i &\leq \binom{q}{i} |g\nu|^{q-i} |b|^i \\ &\leq \binom{q}{i} \left(\vartheta_1 \frac{i}{q} |g\nu|^q + \vartheta_1^{-\frac{i}{q-i}} \frac{q-i}{q} |b|^q \right), \end{aligned}$$

where $\vartheta_1 \in \mathbb{R}^+$ is a design constant.

It follows that

$$\begin{aligned} &\sum_{i=1}^{q-1} \binom{q}{i} (g\nu)^{q-i} b^i \\ &\leq \sum_{i=1}^{q-1} \binom{q}{i} \left(\vartheta_1 \frac{i}{q} |g\nu|^q + \vartheta_1^{-\frac{i}{q-i}} \frac{q-i}{q} |b|^q \right) \\ &\leq \sum_{i=1}^{q-1} \binom{q}{i} \left(\vartheta_1 \frac{i}{q} |g\nu|^q \right) + \sum_{i=1}^{q-1} \binom{q}{i} \left(\vartheta_1^{-\frac{i}{q-i}} \frac{q-i}{q} |b|^q \right). \end{aligned}$$

Thus, one has

$$\begin{aligned} &v_n (g\nu + b)^q \\ &\leq \left[v_n + |v_n| \operatorname{sgn}(g\nu) \sum_{i=1}^{q-1} \binom{q}{i} \left(\vartheta_1 \frac{i}{q} \right) (g\nu)^q \right. \\ &\quad \left. + \left[v_n + |v_n| \operatorname{sgn}(b) \sum_{i=1}^{q-1} \binom{q}{i} \left(\vartheta_1^{-\frac{i}{q-i}} \frac{q-i}{q} \right) \right] b^q \right] \\ &= [v_n + |v_n| \operatorname{sgn}(g\nu) \varsigma_1] (g\nu)^q \\ &\quad + [v_n + |v_n| \operatorname{sgn}(b) \varsigma_2] b^q, \end{aligned} \quad (23)$$

where

$$\begin{aligned} \varsigma_1 &= \sum_{i=1}^{q-1} \binom{q}{i} \left(\vartheta_1 \frac{i}{q} \right), \\ \varsigma_2 &= \sum_{i=1}^{q-1} \binom{q}{i} \left(\vartheta_1^{-\frac{i}{q-i}} \frac{q-i}{q} \right). \end{aligned}$$

From Assumptions 2–3, $b^q \leq \max(\underline{b}^q, \bar{b}^q) \leq \bar{b}^q$ holds universally since $|b| \in [\underline{b}, \bar{b}]$ and $q \in [\underline{q}, \bar{q}] \geq 1$.

Then, one has

$$v_n [1 + \operatorname{sgn}(v_n) \operatorname{sgn}(b) \varsigma_2] b^q \leq (1 + \varsigma_2) |v_n| \bar{b}^q. \quad (24)$$

Substituting (24) into (23) yields

$$\begin{aligned} &v_n (g\nu + b)^q \\ &\leq v_n [1 + \operatorname{sgn}(v_n) \operatorname{sgn}(g\nu) \varsigma_1] g^q \nu^q \\ &\quad + (1 + \varsigma_2) |v_n| \bar{b}^q. \end{aligned} \quad (25)$$

Substituting (25) into (22) yields

$$\begin{aligned} \dot{V}_n &\leq \dot{V}_{n-1} + v_n (\varpi \nu^q - \dot{\alpha}_{n-1} + f_n) \\ &\quad + (1 + \varsigma_2) |v_n| \bar{b}^q - \frac{1}{\eta_n} \tilde{\Phi}_n^* \dot{\hat{\Phi}}_n^*, \end{aligned} \quad (26)$$

$$\text{where } \varpi = [1 + \operatorname{sgn}(v_n) \operatorname{sgn}(g\nu) \varsigma_1] g^q.$$

According to Young's inequality, one has

$$(1 + \varsigma_2) |v_n| \bar{b}^q \leq \frac{1}{q+1} \bar{b}^{q+1} |v_n|^{q+1} + \frac{q}{q+1}, \quad (27)$$

Substituting (27) into (26) yields

$$\begin{aligned} \dot{V}_n &\leq \dot{V}_{n-1} + v_n [\varpi \nu^q + F_n(\chi_n)] \\ &\quad + \frac{1}{q+1} \bar{b}^{q+1} |v_n|^{q+1} + \frac{q}{q+1} - \frac{1}{\eta_n} \tilde{\Phi}_n^* \dot{\hat{\Phi}}_n^*, \end{aligned} \quad (28)$$

$$\text{where } F_n(\chi_n) = -\dot{\alpha}_{n-1} + f_n, \text{ and } \chi_n = [x_1, x_2, \dots, x_n, y_d]^T.$$

Similar to (11) and (17), one has

$$v_n F_n(\mathcal{Z}_n) \leq \frac{\Phi_n^{\frac{q+1}{2}} \|\psi_n(\mathbb{X}_n)\|^{q+1} v_n^{q+1}}{q+1} + \phi_n, \quad (29)$$

$$\text{where } \phi_n = 2q/(q+1) + (\epsilon_n^*)^{q+1}/(q+1), \text{ and } \mathbb{X}_n = \chi_n.$$

Design ν and $\dot{\hat{\Phi}}_n^*$ as

$$\nu = \begin{cases} -\left(\frac{1}{\xi_1} + \frac{1}{\xi_1^{\bar{q}}}\right) \Xi(v_n + v_n^{\bar{q}}), & v_n \geq 0, \\ -\left(\frac{1}{\xi_2} + \frac{1}{\xi_2^{\bar{q}}}\right) \Xi(v_n + v_n^{\bar{q}}), & v_n < 0, \end{cases} \quad (30)$$

$$\dot{\hat{\Phi}}_n^* = \eta_n |v_n|^{1+\bar{q}}, \quad (31)$$

$$\text{where } \xi_1 = (1 - \varsigma_1) \underline{g}^{\bar{q}}, \xi_2 = (1 + \varsigma_1) \bar{g}^{\bar{q}}, \text{ and } \Xi = \left(\dot{\hat{\Phi}}_n^*\right)^{\frac{1}{q}} + \left(\dot{\hat{\Phi}}_n^*\right)^{\frac{1}{\bar{q}}}.$$

where $\eta_n \in \mathbb{R}^+$ is a design constant.

Given $v_n \geq 0$, we obtain $\nu \leq 0$ and therefore $g\nu \leq 0$.

$$\begin{aligned} v_n \varpi \nu^q &= v_n [1 + \operatorname{sgn}(v_n) \operatorname{sgn}(g\nu) \varsigma_1] g^q \nu^q \\ &= v_n (1 - \varsigma_1) g^q \nu^q. \end{aligned} \quad (32)$$

With ϑ_1 chosen sufficiently small, $(1 - \varsigma_1) > 0$ holds, and (32) implies

$$(1 - \varsigma_1) g^q \geq (1 - \varsigma_1) \underline{g}^{\bar{q}} = \xi_1, \xi_1 > 0.$$

Substituting (31) into (32) yields

$$\begin{aligned} v_n \varpi \nu^q &= -v_n (1 - \varsigma_1) g^q \left(\frac{1}{\xi_1} + \frac{1}{\xi_1^{\bar{q}}} \right)^q \Xi^q (v_n + v_n^{\bar{q}})^q \\ &= -(1 - \varsigma_1) g^q \left(\frac{1}{\xi_1} + \frac{1}{\xi_1^{\bar{q}}} \right)^q \Xi^q |v_n| (|v_n| + |v_n|^{\bar{q}})^q. \end{aligned} \quad (33)$$

By Lemma 2, $|v_n|^q \leq |v_n|^q + |v_n|^{\bar{q}}$. From Assumption 3, $1 + \underline{q} \leq 1 + q \leq 1 + \bar{q} \leq 1 + \bar{q}q$ holds, yielding

$$0 < |v_n|^{1+\bar{q}} \leq |v_n|^{1+\bar{q}q} + |v_n|^{1+\underline{q}},$$

and

$$-|v_n|(|v_n| + |v_n|^{\bar{q}})^q \leq -|v_n|^{1+\bar{q}}. \quad (34)$$

By Lemma 3, one has

$$\begin{aligned} & - (1 - \varsigma_1) g^q \left(\frac{1}{\xi_1} + \frac{1}{\xi_1^{\frac{1}{q}}} \right)^q \\ & \leq -\xi_1 \left(\frac{1}{\xi_1^q} + \frac{1}{\xi_1^{\frac{1}{q}}} \right) \leq -\xi_1^{1-q} - \xi_1^{1-\frac{q}{q}}. \end{aligned}$$

For $\xi_1 \geq 1$, both $-\xi_1^{1-q/\bar{q}} \leq -1$ and $-\xi_1^{1-q} \leq -1$ hold since $q \geq 1$. Then, one has

$$- (1 - \varsigma_1) g^q \left(\frac{1}{\xi_1} + \frac{1}{\xi_1^{\frac{1}{q}}} \right)^q \leq -1. \quad (35)$$

Similar to (35), one has

$$-\left(\left(\hat{\Phi}_n^* \right)^{\frac{1}{q}} + \left(\hat{\Phi}_n^* \right)^{\frac{1}{q}} \right)^q \leq -\hat{\Phi}_n^*. \quad (36)$$

Substituting (34)–(36) into (33) yields

$$v_n \varpi \nu^q \leq -\hat{\Phi}_n^* |v_n|^{1+\bar{q}}. \quad (37)$$

The $v_n < 0$ case follows analogously to $v_n \geq 0$ and is omitted for brevity.

From (28)–(31), and (37), one has

$$\begin{aligned} \dot{V}_n & \leq \bar{\phi}_n + \tilde{\Phi}_n^* |v_n|^{1+\bar{q}} - \frac{1}{\eta_n} \tilde{\Phi}_n^* \dot{\hat{\Phi}}_n^* \\ & - \sum_{i=1}^{n-1} k_i v_i^2 + \sum_{i=1}^{n-1} \frac{\beta_i}{\eta_i} \tilde{\Phi}_i \hat{\Phi}_i, \\ & \leq - \sum_{i=1}^{n-1} k_i v_i^2 + \sum_{i=1}^{n-1} \frac{\beta_i}{\eta_i} \tilde{\Phi}_i \hat{\Phi}_i + \bar{\phi}_n, \end{aligned} \quad (38)$$

where $\bar{\phi}_n = \sum_{i=1}^n \phi_i + \bar{b}^{q+1} |v_n|^{q+1} / (q+1) + q / (q+1)$.

Substituting the inequality $\tilde{\Phi}_i \hat{\Phi}_i \leq \frac{1}{2} (\Phi_i^2 - \tilde{\Phi}_i^2)$ into (38) yields

$$\dot{V}_n \leq - \sum_{i=1}^{n-1} k_i v_i^2 - \sum_{i=1}^{n-1} \frac{\beta_i}{2\eta_i} \tilde{\Phi}_i^2 + \phi, \quad (39)$$

where $\phi = \bar{\phi}_n + \sum_{i=1}^{n-1} \beta_i \Phi_i^2 / (2\eta_i)$.

Let $\mu = \min_{1 \leq i \leq n-1} \{2k_i, \beta_i\}$, one has

$$\dot{V}_n \leq -\mu V_n + \phi. \quad (40)$$

Integrating (40) yields

$$V_n \leq V_n(0) e^{-\mu t} + \frac{\phi}{\mu} \leq V_n(0) + \frac{\phi}{\mu}. \quad (41)$$

From (41), v_i , $\hat{\Phi}_j$, and $\tilde{\Phi}_n^*$ ($i = 1, \dots, n$; $j = 1, \dots, n-1$) are bounded. Combining this result with (12), (13), (18), (19), (30), (31), and the definition of u^q , it follows that α_j , $\hat{\Phi}_j$, $\tilde{\Phi}_n^*$, ν , and u^q remain bounded. Furthermore, the error system definition (8) guarantees the boundedness of both \mathcal{N} and x_i . This ensures the boundedness of all closed-loop signals in system (4).

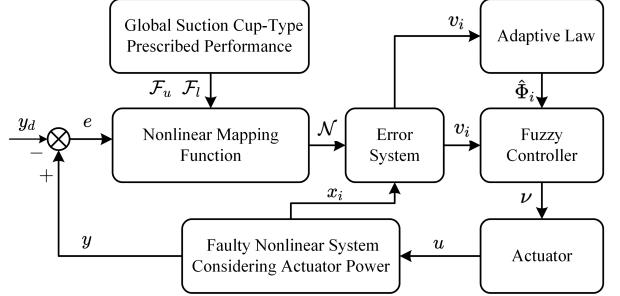


Fig. 2. Block diagram of proposed controller.

From the definition $\Upsilon(t) = \frac{e(t) - \mathcal{F}_l(t)}{\mathcal{F}_u(t) - \mathcal{F}_l(t)}$, when $\mathcal{F}_l(0) < e_0 < \mathcal{F}_u(0)$, we have $\Upsilon(0) \in (0, 1)$. Equation (6) indicates that $\mathcal{N}(t) \rightarrow \infty$ if and only if $\Upsilon(t)$ approaches either 0^+ or 1^- . This implies that if $\Upsilon(0)$ is initially within $(0, 1)$ and $\mathcal{N}(t)$ remains bounded, then $\Upsilon(t) \in (0, 1)$ for all $t > 0$. Consequently, the initial condition $\mathcal{F}_l(0) < e_0 < \mathcal{F}_u(0)$ (equivalent to $\Upsilon(0) \in (0, 1)$) combined with bounded $\mathcal{N}(t)$ guarantees $\mathcal{F}_l(t) < e(t) < \mathcal{F}_u(t)$ for all $t > 0$. Furthermore, from (5), $\mathcal{F}_l(0) \rightarrow -\infty$ and $\mathcal{F}_u(0) \rightarrow +\infty$, meaning any finite initial error $e(0)$ automatically satisfies the condition, eliminating the IFC and ensuring the error remains within prescribed performance boundaries. In addition, the definition of $\varrho(t)$ implies that both $\mathcal{F}_l(t)$ and $\mathcal{F}_u(t)$ can specify the settling time T , guaranteeing that $e(t)$ converges to a predefined arbitrarily small residual set within a finite time. Fig. 2 provides a structural overview of the proposed controller.

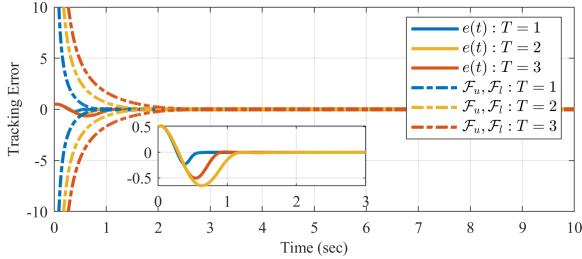
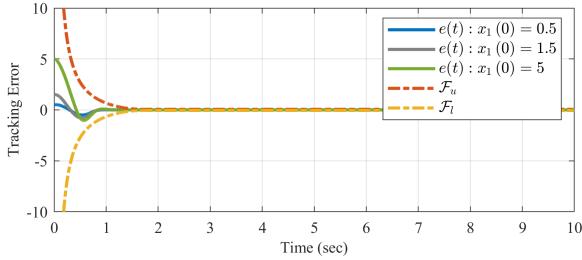
Remark 9: This paper innovatively incorporates the unknown power variation induced by actuator faults into the control framework. For the case where the power exponent is an odd integer greater than 1 ($q > 1$ and $q \in \mathbb{Z}_{\text{odd}}$), a more general FTC strategy is proposed. By leveraging the *binomial theorem*, the nonlinear term $(g(x)\nu + b(x))^q$ is transformed into a polynomial form. Through inequality transformations (Lemma 2 and Lemma 3), the design and stability proof of this sophisticated fault-tolerant controller are rigorously established. Moreover, this study proposes a suction-cup type prescribed performance function, where the suction cup modules \mathcal{G}_u and \mathcal{G}_l are designed to suppress overshoot without requiring an asymmetric boundary design. By introducing the settling time T into the prescribed performance function, the residual error related to the finite-time prescribed performance bound is ensured. Additionally, the dynamic scaling term $\frac{\varrho(t)}{[r_0 - \varrho(t)]^\lambda}$ extends the initial boundaries to infinity, thereby eliminating the IFC constraint and ensuring global applicability.

IV. SIMULATION RESULTS

In this paper, the following mass-spring-damper system that takes into account the aging of the spring is employed for simulation validation:

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = [g(x_1, x_2)\nu + b(x_1, x_2)]^q - \frac{1}{M} f(x_1, x_2), \\ y = x_1, \end{cases}$$

where the system parameters are selected as $M = 0.8$, $f(x_1, x_2) = 2x_1^2 + x_1^3 \sin(x_1 x_2) + 0.2x_2^2 \cos(x_2^2)$,

Fig. 3. Tracking error trajectory under different setting time T .Fig. 4. Tracking error trajectories under different initial conditions $x(0)$.

$g(x_1, x_2) = 0.2 + 0.4 \sin(x_1 x_2)$, $b(x_1, x_2) = \cos(x_1^2 x_2)$, and $q = 3$.

The control parameters are $k_1 = 5$, $\eta_1 = \eta_2 = 0.1$, $\beta_1 = 3$, $\vartheta_1 = 0.2$, $\bar{q} = 3$, $q = 0.5$, $T = 2$, $r_0 = 1$, $r_f = 0.05$, $\Lambda = 1$, and $l = 2$. The initial conditions are $x_1(0) = 0.5$, $x_2(0) = 0.2$, $\hat{\Phi}_1(0) = 0.2$, and $\hat{\Phi}_2^*(0) = 0$. The desired trajectory is $y_d = 0.5 \sin(t)$.

Figs. 3 and 4 illustrate the tracking performance without the use of suction cup modules. Fig. 3 illustrates the tracking error under different time settings. It can be observed that a smaller T leads to faster error convergence. Notably, this accelerated convergence results from the performance boundary's rapid compression of the error (squeeze theorem), rather than being directly related to system stability. Fig. 4 presents the tracking error under different initial states. The results demonstrate that the proposed method can adapt to varying initial conditions without requiring boundary redesign, which eliminates the IFC constraint and enables global PPC. Moreover, both Figs. 3 and 4 exhibit varying degrees of overshoot. Currently, the methods used to reduce overshoot in PPC predominantly rely on asymmetric designs [29]–[32]. These designs not only pose an additional obstacle to the implementation of global PPC but also involve a laborious tuning process. As a result, it

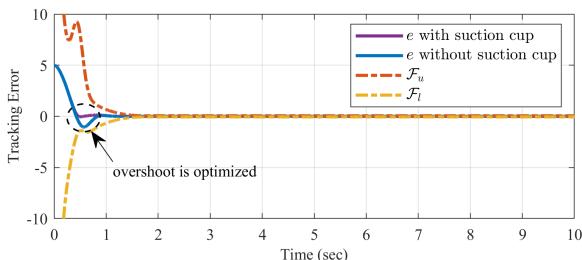
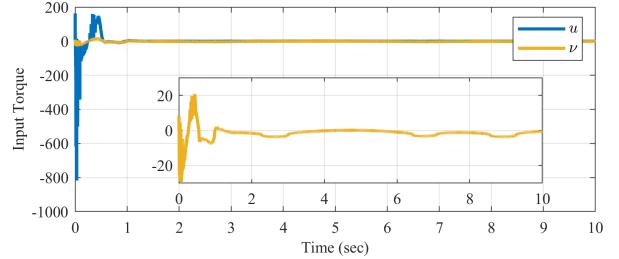
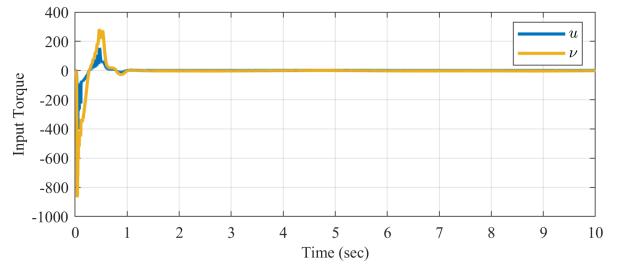


Fig. 5. Tracking error trajectories with/without suction cup.

Fig. 6. Trajectories of u and ν with $p = 3$.Fig. 7. Trajectories of u and ν with $p = 1$.

becomes extremely difficult to achieve complete optimization of the overshoot.

In this paper, we propose the use of suction cup modules to optimize overshoot under symmetrical conditions. The design parameters of the suction cup modules are set as $\jmath_u = 6$, $\jmath_l = 1.5$, $\kappa_u = \kappa_l = 0.45$, and $\sigma_u = \sigma_l = 0.1$. As demonstrated in Fig. 5, the presence of the suction cup modules enables the realization of optimized overshoot under symmetric constraints. Moreover, in the symmetric design, the suction cup-type PPC operates exclusively during the transient phase and eliminates the IFC. This method offers a novel perspective on optimizing transient performance within existing PPC schemes [22]–[43].

Figs. 6 and 7 illustrate the FTC inputs with ($q = 3$) and without ($q = 1$, representing traditional FTC techniques [9]–[20]) considering power effects, where ν is an intermediate control signal and u is the actual control signal applied to the system. From these two figures, it can be observed that since the control objectives are identical, the curves of the actual control input u exhibit similar behavior. However, when power effects are considered, ν must compensate for the cubic nonlinearity, and the fault impact is amplified geometrically. The physical significance lies in the fact that when an actuator fails, the cubic operation ($q = 3$) nonlinearly amplifies the fault characteristics, enabling the controller to detect minor faults earlier and trigger compensation. In contrast, a linear model ($q = 1$) exhibits lower sensitivity to faults and requires a larger ν to achieve the same compensation effect. Moreover, the significantly smaller amplitude of ν for $q = 3$ compared to $q = 1$ indicates that the controller achieves fault suppression with lower control energy. Therefore, the proposed power-considered FTC method has the potential to provide a more precise and nuanced assessment of actuator faults compared to traditional FTC techniques [9]–[20].

V. CONCLUSION

This paper proposes a novel prescribed performance FTC scheme for nonlinear systems. First, the actuator power index q is incorporated into the FTC framework, providing a more comprehensive evaluation of actuator faults. Next, the introduction of the suction cup modules \mathcal{G}_u and \mathcal{G}_l in PPC enables overshoot optimization under the global symmetric condition. Simulation experiments based on a mass-spring-damper system with faults due to the aging spring demonstrate the effectiveness of the proposed scheme.

REFERENCES

- [1] T. Gao, T. Li, Y. Liu, S. Tong and F. Sun, "Observer-Based Adaptive Fuzzy Control of Nonstrict Feedback Nonlinear Systems With Function Constraints," *IEEE Transactions on Fuzzy Systems*, vol. 31, no. 8, pp. 2556-2567, Aug. 2023.
- [2] V. P. Tran, M. A. Mabrok, S. G. Anavatti, M. A. Garratt and I. R. Petersen, "Robust Adaptive Fuzzy Control for Second-Order Euler-Lagrange Systems With Uncertainties and Disturbances via Nonlinear Negative-Imaginary Systems Theory," *IEEE Transactions on Cybernetics*, vol. 54, no. 9, pp. 5102-5114, Sep. 2024.
- [3] Y. Xia, J. He, H. K. Lam, L. Rutkowski, and R. E. Precup, "Non-fragile fuzzy control of input-saturated systems with global prescribed performance via an error-triggered mechanism," *Information Sciences*, vol. 711, Sep. 2025, Art. no. 122111.
- [4] W. Ji, H. Zhang and J. Qiu, "Further Results on Asynchronous Fuzzy Observer-Based Output Feedback Control for Networked Nonlinear Systems Using Quantized Measurements," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 54, no. 9, pp. 5556-5566, Sep. 2024.
- [5] Y. Xia, K. Xiao, Y. Yao, Z. Geng and Zs. Lendek, "Fixed-Time Fuzzy Vibration Reduction for Stochastic MEMS Gyroscopes With Low Communication Resources," *IEEE Transactions on Fuzzy Systems*, vol. 32, no. 8, pp. 4220-4233, Aug. 2024.
- [6] Y. Xia, J. Li, and C. Wang, "Fixed-time adaptive fuzzy control for stochastic MEMS gyroscopes with optimized transient behaviors and limited communication resources," *Fuzzy Sets and Systems*, vol. 504, Mar. 2025, Art. no. 109255.
- [7] A. Matyas, Z. Nagy, and Zs. Lendek, "Stabilization of time-delay nonlinear systems using Takagi-Sugeno models," *Fuzzy Sets and Systems*, vol. 480, Mar. 2024, Art. no. 108861.
- [8] Y. Xia, Zs. Lendek, Z. Geng, J. Li and J. Wang, "Adaptive Fuzzy Control for Stochastic Nonlinear Systems With Nonmonotonic Prescribed Performance and Unknown Control Directions," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 55, no. 2, pp. 1102-1115, Feb. 2025.
- [9] K. Xu, C. Wang, W. Zhao, Z. Luan, W. Liang, S. Zhang, and Z. Zhang, "Event-Triggered Adaptive Fuzzy Switching Fault-Tolerant Control of Dual-Motor Steer-by-Wire System Considering Load Fluctuation and Limited Communication Bandwidth," *IEEE Transactions on Fuzzy Systems*, vol. 32, no. 7, pp. 4086-4098, Jul. 2024.
- [10] F. Jia and X. He, "Adaptive Fault-Tolerant Tracking Control for Discrete-Time Nonstrict-Feedback Nonlinear Systems With Stochastic Noises," *IEEE Transactions on Automation Science and Engineering*, vol. 21, no. 3, pp. 3344-3356, Jul. 2024.
- [11] L. Zhao, W. Che, C. Deng and Z. Wu, "Adaptive Fault-Tolerant Control for Nonlinear MAs Under Actuator Faults and DoS Attacks," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 53, no. 9, pp. 5874-5884, Sep. 2023.
- [12] Z. Li, Y. Wang, Y. Ma, X. Xie and D. Yue, "Finite-Time Event-Triggered Adaptive Fault-Tolerant Tracking for Semi-Bounded Non-Affine Systems," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 71, no. 12, pp. 6094-6104, Dec. 2024.
- [13] K. Li, Y. Xia, R. K. Agarwal and I. J. Rudas, "Error-Triggered Flexible Prescribed Performance Control for Free-Flying Space Robot Stochastic Systems With Actuator Faults," *IEEE Transactions on Aerospace and Electronic Systems*, doi: 10.1109/TAES.2025.3580009.
- [14] L. Zhao, F. Zhao, and W. Che, "Distributed adaptive fuzzy fault-tolerant control for multi-agent systems with node faults and denial-of-service attacks," *Information Sciences*, vol. 631, pp. 385-395, Jun. 2023.
- [15] K. Xu, X. Zhou, W. Zhao, C. Wang, Z. Luan, W. Liang, S. Zhang, and J. Liu, "Performance-Guaranteed Adaptive Switching Fault-Tolerant Control of Steer-by-Wire System Considering Actuator Fault and Load Disturbance," *IEEE Transactions on Transportation Electrification*, vol. 10, no. 4, pp. 8513-8527, Dec. 2024.
- [16] Y. Zheng and Y. Xia, "Non-monotonic prescribed performance specifications in tracking control of input-limited nonlinear systems," *Communications in Nonlinear Science and Numerical Simulation*, vol. 150, Nov. 2025, Art. no. 109016.
- [17] I. Zare, M. H. Asemani and P. Setoodeh, "Active Adaptive Observer-Based Fault-Tolerant Control Strategy for a Class of T-S Fuzzy Systems With Unmeasurable Premise Variables," *IEEE Transactions on Fuzzy Systems*, vol. 31, no. 10, pp. 3543-3554, Oct. 2023.
- [18] H. Lin, J. Dong and J. H. Park, "An Artificial-Delay-Based Looped Functional for Dynamic Event-Triggered Fault-Tolerant Control of T-S Fuzzy Multi-Agent Systems," *IEEE Transactions on Automation Science and Engineering*, doi: 10.1109/TASE.2024.3436927.
- [19] L. Zhang, H. Zhang, J. Sun and X. Yue, "ADP-Based Fault-Tolerant Control for Multiagent Systems With Semi-Markovian Jump Parameters," *IEEE Transactions on Cybernetics*, vol. 54, no. 10, pp. 5952-5962, Oct. 2024.
- [20] M. A. Estrada, L. Fridman and J. A. Moreno, "Passive Fault-Tolerant Control via Sliding-Mode-Based Lyapunov Redesign," *IEEE Transactions on Automatic Control*, vol. 69, no. 10, pp. 6777-6788, Oct. 2024.
- [21] Y. Man and Y. Liu, "Global adaptive stabilization and practical tracking for nonlinear systems with unknown powers," *Automatica*, vol. 100, pp. 171-181, Feb. 2019.
- [22] X. Li, C. Wen and C. Deng, "Prescribed Performance-Based Adaptive Fractional Backstepping Control of Integer-Order Nonlinear Systems," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 54, no. 7, pp. 4391-4402, July 2024.
- [23] Y. Xia, K. Xiao, J. Cao, H. K. Lam, R. E. Precup, L. Rutkowski, and R. K. Agarwal, "Customized Non-Monotonic Prescribed Performance Control for Stochastic MEMS Gyroscopes With Insufficient Input Capability," *IEEE Transactions on Circuits and Systems I: Regular Papers*, doi: 10.1109/TCSI.2025.3570642.
- [24] Z. Li, Y. Wang, Y. Song and W. Ao, "Global Consensus Tracking Control for High-Order Nonlinear Multiagent Systems With Prescribed Performance," *IEEE Transactions on Cybernetics*, vol. 53, no. 10, pp. 6529-6537, Oct. 2023.
- [25] Y. Xia, J. Li, Y. Song, J. Wang, Y. Han, and K. Xiao, "Prescribed Performance-tangent Barrier Lyapunov Function for Adaptive Neural Backstepping Control of Variable Stiffness Actuator with Input and Output Constraints," *International Journal of Control, Automation and Systems*, vol. 21, pp. 975-992, Feb. 2023.
- [26] B. Dong et al., "Robust Performance-Prescribed Attitude Control of Foldable Wave-Energy Powered AUV Using Optimized Backstepping Technique," *IEEE Transactions on Intelligent Vehicles*, vol. 8, no. 2, pp. 1230-1240, Feb. 2023.
- [27] Q. Yao, Q. Li, J. Huang, and H. Jahanshahi, "PDE-based prescribed performance adaptive attitude and vibration control of flexible spacecraft," *Aerospace Science and Technology*, vol. 141, Oct. 2023, Art. no. 108504.
- [28] C. Zhang, X. Ren, J. Na and D. Zheng, "Safe Dual-Layer Nested Adaptive Prescribed Performance Control of Nonlinear Systems With Discontinuous Reference," *IEEE Transactions on Industrial Electronics*, vol. 71, no. 8, pp. 9128-9138, Aug. 2024.
- [29] Y. Xia, K. Xiao, J. Cao, R. E. Precup, Y. Arya, H. K. Lam, and L. Rutkowski, "Stochastic Neural Network Control for Stochastic Nonlinear Systems With Quadratic Local Asymmetric Prescribed Performance," *IEEE Transactions on Cybernetics*, vol. 55, no. 2, pp. 867-879, Feb. 2025.
- [30] X. Hu, Y. Xia, Zs. Lendek, J. Cao, and R. E. Precup, "A novel dynamic prescribed performance fuzzy-neural backstepping control for PMSM under step load," *Neural Networks*, vol. 190, Oct. 2025, Art. no. 107627.
- [31] K. Li, K. Zhao and Y. Song, "Adaptive Consensus of Uncertain Multi-Agent Systems With Unified Prescribed Performance," *IEEE/CAA Journal of Automatica Sinica*, vol. 11, no. 5, pp. 1310-1312, May 2024.
- [32] Q. Bai, K. Zhao and Y. Song, "Unified Adaptive Performance Control of MIMO Input-Quantized Nonlinear Systems," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 71, no. 7, pp. 3331-3342, Jul. 2024.
- [33] Y. Xia, J. He, K. Li, F. Gao, and R. K. Agarwal, "Anti-saturation prescribed-time control for stochastic systems of free-flying space robots using a self-adapting non-monotonic approach," *Aerospace Science and Technology*, vol. 162, Jul. 2025, Art. no. 110231.

[34] R. Ji and S. S. Ge, "Event-Triggered Tunnel Prescribed Control for Nonlinear Systems," *IEEE Transactions on Fuzzy Systems*, vol. 32, no. 1, pp. 90-101, Jan. 2024.

[35] Y. Yao, Y. Kang, Y. Zhao, P. Li and J. Tan, "Flexible Prescribed Performance Output Feedback Control for Nonlinear Systems With Input Saturation," *IEEE Transactions on Fuzzy Systems*, vol. 32, no. 11, pp. 6012-6022, Nov. 2024.

[36] C. Liu, G. Peng, K. Zhao, J. Li and C. Yang, "Neural Learning-Based Adaptive Force Tracking Control for Robots With Finite-Time Prescribed Performance Under Varying Environments," *IEEE Transactions on Industrial Electronics*, vol. 71, no. 12, pp. 16338-16347, Dec. 2024.

[37] Y. Xia, C. Liu, Y. Tuo, and J. Li, "Command filter-based event-triggered control for stochastic MEMS gyroscopes with finite-time prescribed performance," *ISA Transactions*, vol. 148, pp. 212-223, May. 2024.

[38] B. Xin, S. Cheng, Q. Wang, J. Chen and F. Deng, "Fixed-Time Prescribed Performance Consensus Control for Multiagent Systems With Nonaffine Faults," *IEEE Transactions on Fuzzy Systems*, vol. 31, no. 10, pp. 3433-3446, Oct. 2023.

[39] Y. Tuo and Y. Song, "Dynamic event-triggered fixed-time consensus control for coupled multi-permanent magnet synchronous motors stochastic system with prescribed performance," *Engineering Applications of Artificial Intelligence*, vol. 133, Jul. 2024, Art. no. 108534.

[40] H. Wang, M. Tong, X. Zhao, B. Niu and M. Yang, "Predefined-Time Adaptive Neural Tracking Control of Switched Nonlinear Systems," *IEEE Transactions on Cybernetics*, vol. 53, no. 10, pp. 6538-6548, Oct. 2023.

[41] Y. Pan, W. Ji, H. K. Lam and L. Cao, "An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems," *IEEE Transactions on Automation Science and Engineering*, vol. 21, no. 4, pp. 6311-6320, Oct. 2024.

[42] L. Zhang, X. Liu, C. Qian and C. Hua, "Global Prescribed-Time Control for Switched Nonlinear Systems With Parametric Uncertainty and Time-Varying Powers," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 54, no. 7, pp. 4403-4412, Jul. 2024.

[43] Y. Song, Y. Tuo, and X. Lin, "A Novel Event-triggered Practical Prescribed-Time Control for four Complex coupled Duffing-type MEMS resonators with Prescribed Performance," *Neural Networks*, vol. 182, Feb. 2025, Art. no. 106935.

[44] Q. Shen, P. Shi and C. P. Lim, "Fuzzy Adaptive Fault-Tolerant Stability Control Against Novel Actuator Faults and Its Application to Mechanical Systems," *IEEE Transactions on Fuzzy Systems*, vol. 32, no. 4, pp. 2331-2340, Apr. 2024.

[45] Y. Xia, K. Xiao, and Z. Geng, "Event-based adaptive fuzzy control for stochastic nonlinear systems with prescribed performance," *Chaos, Solitons & Fractals*, vol. 180, Mar. 2024, Art. no. 114501.

[46] Y. Yao, J. Tan, J. Wu and X. Zhang, "A Unified Fuzzy Control Approach for Stochastic High-Order Nonlinear Systems With or Without State Constraints," *IEEE Transactions on Fuzzy Systems*, vol. 30, no. 10, pp. 4530-4540, Oct. 2022.

[47] K. Xu, W. Zhao, C. Wang, Z. Zhang and Z. Luan, "Event-Triggered NN Dynamic Surface Consistency Tracking Control of Dual-Motor Steer-by-Wire Vehicles Under CAN Network Communication," *IEEE Transactions on Industrial Informatics*, doi: 10.1109/TII.2025.3575117.

[48] K. Xu, W. Liang, W. Zhao, C. Wang, S. Zou and X. Zhou, "Vehicle Stability and Synchronization Control of Dual-Motor Steer-by-Wire System Considering Multiple Uncertainties," *IEEE Transactions on Transportation Electrification*, vol. 10, no. 2, pp. 3092-3104, Jun. 2024.

[49] C. Rui, M. Reyhanoglu, I. Kolmanovsky, S. Cho, and N. H. McClamroch, "Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system," in *Proceedings of the 36th IEEE Conference on Decision And Control*, 1997, pp. 3998-4003.

[50] C. Chen, C. Qian, X. Lin, Z. Sun, and Y. Liang, "Smooth output feedback stabilization for a class of nonlinear systems with time-varying powers," *International Journal of Robust and Nonlinear Control*, vol. 27, no. 18, pp. 5113-5128, 2017.

[51] Z. Su, C. Qian and J. Shen, "Interval Homogeneity-Based Control for a Class of Nonlinear Systems With Unknown Power Drifts," *IEEE Transactions on Automatic Control*, vol. 62, no. 3, pp. 1445-1450, Mar. 2017.

[52] M. Wang, Y. Liu and Y. Man, "Switching Adaptive Controller for the Nonlinear Systems With Uncertainties From Unknown Powers," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 50, no. 7, pp. 2375-2385, Jul. 2020.

[53] Z. Ma, C. Li, W. Zhang, S. Wang, J. Li, H. Zhao, and L. Ren, "Modified Coffin-Manson equation to predict the fatigue life of structural materials subjected to mechanical-thermal coupling non-coaxial loading," *Journal of Materials Science & Technology*, vol. 160, pp. 118-127, Oct. 2023.

[54] W. Tian and C. Hu, "Arrhenius model-based analysis of high-temperature properties and temperature sensitivity of SBS/CR modified asphalt," *Construction and Building Materials*, vol. 476, May 2025, Art. no. 141298.

[55] J. Liu, S. Yan, D. Zeng, Y. Hu, and Y. Lv, "A dynamic model used for controller design of a coal fired once-through boiler-turbine unit," *Energy*, vol. 93, pp. 2069-2078, Dec. 2015.

Yu Xia (Member IEEE) received his Ph.D. degree in mechanical engineering from Chongqing University, Chongqing, China, in 2024. He is currently an Assistant Research Fellow in the State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China. His research interests include prescribed performance control, fault-tolerant control, and intelligent control, with particular applications in mechatronic systems.

Zsófia Lendek (Member IEEE) received the M.Sc. degree in control engineering from the Technical University of Cluj-Napoca, Romania, in 2003, the Ph.D. degree from the Delft University of Technology, the Netherlands, in 2009, and her habilitation degree from the Technical University of Cluj-Napoca, Romania, in 2019. She is currently a Full Professor at the Technical University of Cluj-Napoca, Romania. She has previously held research positions in the Netherlands and in France. Her research interests include observer and controller design for nonlinear systems, in particular Takagi-Sugeno fuzzy systems, which adapt the advantages of linear time-invariant system-based design to nonlinear systems, with applications in several fields.

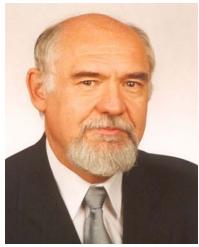
Dr. Lendek is an Associate Editor for *IEEE TRANSACTIONS ON FUZZY SYSTEMS* and *Engineering Applications of Artificial Intelligence* and an Editorial Board Member of *Fuzzy Sets and Systems*.

Radu-Emil Precup (Fellow, IEEE) received the Dipl.Ing. (with honors) degree in automation and computers from the "Traian Vuia" Polytechnic Institute of Timisoara, Timisoara, Romania, the Dipl. degree in mathematics from the West University of Timisoara, Timisoara, and the Ph.D. degree in automatic systems from the Politehnica University of Timisoara (UPT), Timisoara, Romania, in 1987, 1993, and 1996, respectively. He is currently with UPT, Timisoara, Romania, where he became a Professor with the Department of Automation and Applied Informatics in 2000. From 2022, he is also a senior researcher (CS I) and the head of the Data Science and Engineering Laboratory of the Center for Fundamental and Advanced Technical Research, Romanian Academy – Timisoara Branch, Romania. From 2016 to 2022, he was an Adjunct Professor within the School of Engineering, Edith Cowan University, Joondalup, WA, Australia. He is the author or co-author of more than 300 papers. His current research interests include intelligent and data-driven control systems.

Prof. Precup is a corresponding member of the Romanian Academy, and a member of the Technical Committees on Data-Driven Control and Monitoring, and Control, Robotics and Mechatronics of the IEEE Industrial Electronics Society. He is the Editor-in-Chief of *Romanian Journal of Information Science and Technology*, a Senior Editor of *IEEE Open Journal of the Computer Society*, and an Associate Editor of *IEEE TRANSACTIONS ON CYBERNETICS* and *IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS*.

Ramesh K. Agarwal (Life Fellow, IEEE) received the Ph.D. degree in aerospace engineering from Stanford University, Stanford, CA, USA, in 1975. He is currently the William Palm Professor of engineering and the Director of the Aerospace Research and Education Center, Washington University in St. Louis, St. Louis, MO, USA. He has authored or coauthored more than 500 journal and refereed conference articles. His research interests include basic control system theory, fuzzy logic and neural networks, and applications of nonlinear H_∞ control

to flight and flow control. He was on the editorial board for more than 20 journals. He was the recipient of the SAE Aerospace Engineering Leadership Award in 2013, the SAE Excellence in Engineering Education Award, the SAE International Medal of Honor, and the AIAA Reed Aeronautics Award in 2015. He is a Fellow of AAAS, AIAA, APS, ASME, and IET.



Imre J. Rudas (Life Fellow, IEEE) received the bachelor's degree in mechanical engineering from Bánki Donát Polytechnic College, Budapest, Hungary, in 1971. He received the master's degree in mathematics from Eötvös Loránd University, Budapest, Hungary, in 1977, the Ph.D. degree in robotics and the Doctor of Science degree in computer science from the Hungarian Academy of Sciences, Budapest, in 1987 and 2004, respectively, and the Doctor Honoris Causa degrees in computer science from the Technical University of Košice, Košice, Slovakia, in 2001; the Politehnica University of Timișoara, Timișoara, Romania, in 2005; Óbuda University, Budapest, Hungary, in 2014; and the Slovak University of Technology in Bratislava, Bratislava, Slovakia, in 2016.

He is a Rudolf Kalman Distinguished Professor, a Rector Emeritus, and a Professor Emeritus with Óbuda University, Budapest. He has edited and/or published 22 books, published more than 890 papers in international scientific journals, conference proceedings, and book chapters, and received more than 8000 citations. His present areas of research activities are Computational Cybernetics, Cyber Physical Control, Robotics, and Systems of Systems.

Dr. Rudas was awarded the Honorary Professor Title in 2013 and the Ambassador Title by the Wrocław University of Science and Technology. He is the Senior Past President of the IEEE Systems, Man, and Cybernetics Society. He is a Fellow of the International Fuzzy Systems Association.