Observer design for time-delay TS fuzzy
systems with nonlinear consequents

Amalia Matyas, Zséfia Lendek

Department of Automation, Technical University of Cluj Napoca,
Romania (e—maz'l: {Amalia.Matyas, Zsofia.Lendek}@aut.utcluj.ro.

Abstract: In this paper we consider an observer design method for time-delay Takagi-Sugeno
fuzzy models with nonlinear consequents. We assume that both the input and the membership
functions are affected by the known delay. The nonlinearities in the consequents are handled
by a slope-bounded condition. The observer design conditions are formulated as linear matrix
inequalities. A numerical example illustrates the results.
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1. INTRODUCTION

State estimation is an important problem for real systems.
Where direct measurements are not physically possible or
where the sensors are too expensive, a state observer can
be used that estimates the unmeasured states from the
available measurements, e.g. (Bergsten et al., 2002; Guerra
et al., 2017; Ichalal et al., 2018, 2010; Quintana et al.,
2020).

The dynamic model of a system is usually nonlinear. A
popular method for handling nonlinearities is the Takagi-
Sugeno (TS) fuzzy modelling. TS models are a convex
combination of local, usually linear models. A disadvan-
tage of the fuzzy modelling is that the number of rules
can be prohibitive. In order to reduce the number of local
models, we consider a form where each local model may
be nonlinear. Furthermore, if some nonlinearities depend
on unmeasured states, they can also be included in the
nonlinear local models, thus we separate the measured
and unmeasured-state nonlinearities. In what follows, we
will refer to such fuzzy models as models with nonlinear
consequents.

In the literature nonlinear consequents are usually handled
using a Lipschitz condition (Mazenc et al., 2012; Nguyen
et al., 2017; Van Assche et al., 2011; Zemouche and
Boutayeb, 2011). A less conservative, one-sided Lipschitz
and inner-bounded condition is used by Nguyen et al.
(2021). In this paper we use a different approach, by
assuming that the nonlinearities are slope-bounded instead
of sector bounded, inspired by the work of Arcak and
Kokotovié (1999).

Time-delay is a frequent research subject. It appears in
many applications, where the sensors and actuators are
not co-located, see e.g., Chang and Chen (2010); Laurain
et al. (2017); Ma et al. (2013); Mazenc et al. (2012), etc.
Time-delays are frequently non-negligible factors, thus it
is important to take them into account.

Nonlinear systems with input delays, where the delay is
assumed to be differentiable, were studied by Léchappé
et al. (2018). The problem with the differential conditions

on delays is that they are difficult to verify as the delays
are unknown. Moreover, the unknown delays may present
jumps or discontinuities (Bresch-Pietri et al., 2018).

When designing controllers it is generally assumed that
the maximum delay and the maximum of the derivative
are known (Lian et al., 2020; Lin et al., 2006; Maty4s et al.,
2020). On the other hand, when designing observers, it is
generally assumed that the delay is known (Nguyen et al.,
2017; Van Assche et al., 2011).

Motivated by the aforementioned works, we propose an
observer design for delayed TS fuzzy system with nonlinear
consequents, where the membership functions may depend
on both current and delayed states and where the delay
and derivative of the delay are known. In our previous
work (Matyds et al., 2020) we considered a controller
design method on the same system.

The paper is structured as follows: in Section II we intro-
duce the necessary background, assumptions and the prob-
lem statement. Sufficient conditions for observer design are
presented in Section III. In Section IV we illustrate the
developed conditions on a numerical example and compare
them with another example from the literature. Section V
concludes the paper.

Notations. Let F = FT € R"*" be a real symmetric ma-
trix; F' > 0 and F' < 0 mean that F is positive definite and
negative definite, respectively. I denotes the identity ma-
trix and 0 the zero matrix of appropriate dimensions. The
symbol * in a matrix indicates a transposed quantity in

T
the symmetric position, for instance (i ;) = (Z AP ),

and A + % = A+ AT. The notation diag(fi, ..., f,,), where
fi, - fn € R, stands for the diagonal matrix, whose diag-
onal components are fi,..., fn. ||z||, where x € R"=, is the
Euclidean norm of z. Throughout this paper, the following
shorthand notations are used to represent convex sums of
matrix expressions:

F. = Zqi(z(t))ﬂ, (1)



F. - Zqi<z<t ()P (2)
F,.. Z‘h ZQJ

where ¢;, 1 = 17 ..., S are nonhnear functions called the
membership functions with the property'

Z% =1. (4)

2. PRELIMINARIES AND PROBLEM STATEMENT

t — 7' )Fija (3)
€[0,1],i

The time-delay TS fuzzy model that we consider has the
following special structure:

(t) =A,. x(t) + D, x(t — 7(t)) + G, W(Hx(t)),

a(t) =¢(t), t<7(t), ()

y(t) =Cx(t),
where A,, € R"*"= D,, € RWwX" G,, € R™x"
and C € R"™*" represent the model matrices, i.e.,
D1 o a2()a (2(t — (1)) Agja(t), ete.; x(t) € R™=
is the state vector, y(t) € R™ is the output vector, s is
the number of rules, z(t) € R"* is the premise vector;
7(t) is the varying time-delay, where 7(¢) is differentiable,
7(t) < d, d € [0, 1) is a given constant, 7(¢t) < h, h > 0
is the maximum time-delay; ¢(t) is the initial condition of
the state defined on 0 < ¢ < 7(¢). As can be seen in (5)
the local models have a nonlinear term, therefore in what
follows we will refer to (5) as a fuzzy model with nonlinear
consequents. In what follows for simplicity we omit in the
notation the explicit time dependence of the delay, i.e., we
use 7 instead of 7(t), 7 instead of 7(¢).
Assumption 1. We consider that the premise vector z(t) is
measured, the delayed premise vector z(t — 7) is available
and the varying time-delay 7 is also known.

Note that such assumptions, although unrealistic, are
frequently encountered, see e.g., Van Assche et al. (2011).
Y(Hxz(t)) € R" is an r-dimensional vector where H €
R™*™= and each entry is a function of a linear combination
of the states, i.e.,

= ¢i(Y_ Hijj),
=1

The term 1 (Hz(t)) includes all the nonlinearities that are
not available from the measurements. This is a major issue
for the observer design via convex structures. We assume
that ¢(Hz(t)) satisfies:
Assumption 2. For any i € {1,...,
0 < b; < 00, so that

0< (V) — ¥ (w)

1=1,..,m

r} there exist constants

$i(v)

<b;, Yo,weRv#w. (6

v—w
Note that if the expression (6) is lower bounded not by
0, but a constant, it can still be transformed to satisfy
Assumption 2.

Assumption 2 intuitively bounds the rate of change of
the nonlinearity, and corresponds to a global Lipschitz
property of 1;, when 1); is continuously differentiable. This
assumption is made by Arcak and Kokotovié¢ (1999, 2001);
Chong et al. (2012); Draa et al. (2018).

This means that there exist 6;(t) €
v, w€E€R

[0, b;], so that for any

¥i(v)
We denote §(t)

— i(w) = 6i(t)(v — w). (7)
To develop our results the following lemmas and property
are used.

Lemma 1. (Congruence). Given matrix P = PT and a full
column rank matrix @, it holds that

P>0 = QPQT>o.

Property 1. (Schur complement) Let M = MT =

|:%¥ %12}, with M;; and Mss square matrices of ap-
12 22
propriate dimensions. Then:
M1 <0
<0&
M {MZQ — MlgMﬁlMlz <0 (8)
My < 0
My — Myp Myt M, <0

3. MAIN RESULTS

Our goal is to develop sufficient conditions for observer
design for system (5). The following observer is considered:

2(t) =A,., &(t) + D, @t —7)
+Goz, W(HE() + Lea, (y(1) — 9(8),  (9)
g(t) =Ci(t)
where L., are the observer gains, Z(t) the estimated
states, and §(¢) the estimated output. This observer form
can be used if Assumption 1 holds, i.e., the premise

variables z and the delayed ones z, are known. Based
on (5) and (9), the estimation error dynamic is:

é(t) =i(t) — i(t)

=Asz, (@(t) = 8(1)) + D, (a(t - )—m(t—ﬂ)
zzf( = (1)) + Gas, (P(Ha(t)) — (Hi(t)))
=(Azz, = Lz, O)e(t) + Dz et — )
+GzzT( ( a(t)) — Y(Hi(t))).
(10)
Thanks to Assumption 2 we obtain:
Y(H2() ~ Y(HE() =0(0) (Helt) - H)) |
— §(t)H (a(t) — #(1)) =5(t) He(t),

and for simplification we denote 7 := He(t). This leads to
the following form for (10):

é(t) =(A,., — L., Ce(t)+ D, e(t — 1)
+ G2 6(t)n (12)
n =He(t).

To develop the observer design conditions, we consider the
Lyapunov functional (Fridman, 2014):

V(te.¢) =" ()P <>+/ T (5)Se(s)ds

o f e

[ e

s)dsdf (13)



where P, S, R, and () are symmetric, positive definite
matrices.

The following result can be formulated:

Theorem 1. Consider the error dynamics (12), and assume
that 7 is differentiable, 7 < d, d € [0, 1) is a given constant,
7 < h, h > 0 is the maximum time-delay. If there exist
matrices P = PT >0, R=R7 > 0,5 = ST > 0, S,
Q = QT >0, M = diag(my, ..., m,) > 0 and scalar € > 0,

so that [lj S]}jf] > 0 such that (14) holds, with
Yia=—(1-d)Q —2R+ S1» + ST,
1 (15)

1

then (12) is asymptotically stable.

Proof. Consider (13), where P = PT > 0,
R =R >08 =87 >00 = QT > 0.
The derivative of V' is
V(t,e,é) =eT (t)Pe(t) + eT (t)Pe(t)
t
+ h2eT (t)Reé(t) — h ¢T'(s)Ré(s)ds
t—h
+ el (1)[S + Qle(t) — e (t — h)Se(t — h)

— (1= #(®)e" (t = 7)Qe(t — 1),
(16)

Using the reciprocally convex approach (Park et al.,
2011), (Fridman, 2014)

[ T (s)Re(s)ds < — |7 " [R si) [ (17)
ch - 29 * R | [z
where z1 = e(t) —e(t — 7),20 = e(t — 7) — e(t — h) and
[f 511%2] > 0, for some S1g € R"=X"e,

Using 7 < d and denoting

e(t)h
o= |2 (18)
6(t)n
we obtain
V(t,e,é) <xTAy (19)

where A is defined in (20) and A = A,, — L,, C,
233 = —(1 — d)Q — 2R+ 512 + SE

Next we use Assumption 2 to determine relaxed conditions
for V' < 0. Consider the inequality:

XTAx +xTox <0, (21)
where
el 00 H' M
lx00 o0
0= * %0 0 (22)
x x x (M)
and M = diag(mg, ..., m,) > 0.
Let us now examine x76y:
X Ox =ee(t)Te(t) + 2e(t) HT M (t)n (23)

+(8(t)n) v (M)3(t)n.

Since n = He(t), we have

—"0x =—ee(t)"e(t)—2n" M5 (t)n—(3(t)n)" v (M)6(t)n

1 1

e 60 ) 1
(24)

Since m; > 0 and (1 —9; (t)b1> > 0, the following holds:

(3

= —¢[le(t)[|*—2n" <M5(t)—5(t)TMdiag(

21" <M6(t) - 5(t)TMdiag(bi, bl)é(t)) n>0. (25

1 i
Finally, we obtain

—xTOx < —elle(t)]|*. (26)

Therefore, YT Ax + xT0x < 0 involves V < 0.

Consider the matrix inequality A+6 < 0 in (27). Applying
the Schur complement on (27), we get (14).

Remark 1: Even if sum-relaxations are applied, the
obtained conditions are BMIs due to the multiplication
of decision variables LT P and LT R.

Sufficient LMI conditions are formulated in the following
corollary:

Corollary 1. Consider the error dynamics (12), with 7 <
d,d € [0, 1), 7 < h. If there exist matrices P = PT > 0,
Q=Q">0,5=5T>0M = diag(mi,...,mp) > 0, N;j,
1,7 =1, ..., s scalar € > 0, and

Fi; <0,
where F;; is defined in (29), where
53 =PAy + ALP - N;;C—-C'NE+S+Q—P+el
¥ =—(1-d)Q—2P+ Siy + 5%,

v(M)=- 2Mdiag(%, ey bl)’

(28)

(30)
then the error dynamics (12) is asymptotically stable.
The observer gains can be recovered from L;; = P71Nj,
i, j=1,...,s.

Proof. Consider (14). To obtain LMI conditions, let R =
P and denote N,, = PL,, . In this case, (14) can be
written as (31), where X3} = PAT, +%—N., C—%+S+
Q—P+el, Z%é = —(1—d)Q—2P+S12+S?2.

4. EXAMPLE

To illustrate the conditions developed, first we discuss
them on a numerical example and then compare them to
another result (Lin et al., 2008) from the literature.

4.1 Numerical example

Consider the following nonlinear system:



(Azz, —L...C)'P+x+S+Q—R+el Siz PD.. +R—Si3 PG.. . +H"M h(A.. —L...C)"R
* -R-S R — SL, 0 0
* * »i3 0 hDI. R <0 (14)
* * v(M) hGL, R
* * * * —R
ATP 4+ PA+ W ATRA+S+Q—-R Si» (P+h?ATR)D.. + R— Sy (P+h2ATR)G...
_ * ~-R-S R - ST, 0
A= . . Sa5 + h2DT, RD.,.. WD, RG... (20)
% * WGI, RG..,
ATP+PA+S+Q—-R+el Sio PD.. +R—Sy PB,. G+H™M
* —-R-S R - SL 0
* * 233 *HTM
% % * v(M) (27)
RPATRAO h*ATRD.. h?ATRG...
x 0 0 0 <0
t « % h®DT_RD.. W*DT_RG.. |=
* * * hZGZZTRGZZT
PAj+ ALP—N;;C-C'NE+S+Q—P+el Sz PDy+P—5S1 PGyj+H"M h(ALP - CTN])
* -P-S P-S% 0 0
F; = * * »2 0 hD?
* * v(M) hG;
* * * P
(29)
51 Sz PD.. . +P—S15 PG... +H"M h(PA.. —N...C)"
x —P—8 P st 0 0
- * 3 0 hDI, P <0 (31)
* * * v(M) hGL, P
* * * * —P
B —0.5 T _ (22 22
[ ] - { —3—cos(x1)] [mz] C=00, Du= [0.5 2] » Dz = {0.5 4} ’ (35)
2 z1(t —7) Do — |22 Doy — |22
O75—|—025cos(m1) 3+ cos(zi(t —7))| |z2(t —7) A1 2p 27014
0 and membership functions:
—0.675 — 0 125 cos(z1) —0.675 — 0.125 cos(z1) () 1 — cos(z) (2) =1 (2)
2) = ———= z)=1-— 2), 2 =x.
( (1) + ag(@)) q1 B q2 q1 1
=

(32)
where a1 (1) and ag(z2) are two nonlinear functions which
satisfy Assumption 2. For the simulations we consider

a1(v) = ag(v) = cos?(v) + v, (33)
and the constants that satisfy Assumption 2 are by = by =

2, but the obtained results are valid for any other nonlinear
functions which satisfy Assumption 2 with b; and bs.

For the rest of the nonlinearities we use the sector non-
linearity approach (Ohtake et al., 2001) and obtain a TS
model of form (5) with the local matrices:

-3 —-0.5 -3 —-0.5
A11=A12=[ }, A21=A22=[

0 -2 0 —4

0 0 0 0 10
G = {—0.55 —0.55} G2 = [—0.8 —().8] H = [o 1} :
(

34)

The delay we consider is 7(¢) = 0.1 + 0.1 cos(t). Applying
Corollary 1, the obtained matrices for 7(¢) < h = 0.2 and
7(t) < d = 0.2 are:

Nyp = [2.17 0.13], Nyp = [1.31 0.62],

Nop = [2.52 0.22], Nap = [1.75 0.51]
0.65 —0.25
p= [—0.25 0.16 }

Next, we simulate the system. The initial points for the
state vector and estimated state vector are zy = [1 2]T
=11 O}T, respectively. It can be seen in Fig. 1 that the

estimation error converges to zero. The individual states
and their estimates are illustrated in Fig. 2 and Fig. 3.

and

Note that although for the simulations we used the non-
linearity (33), the conditions are satisfied for any known
nonlinearity with bound b < 2.
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Fig. 1. Convergence of the estimation error
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Fig. 2. True and estimated values of z

On the other hand, the larger the slope b is, the conditions
become harder to satisfy. The maximum slope for which
our approach gives feasible solution is b = 19.

4.2 Comparison with (Lin et al., 2008)

Next, we compare our approach to that of Lin et al. (2008),
specifically Condition T1. This condition in (Lin et al.,
2008) depends only on the derivative of the delay, while we
use the bounds on both the delay and its derivative. On the
other hand (Lin et al., 2008) considers a classic T'S model,
with linear consequents. For a fair comparison in designing
the observer we use a reduced Lyapunov functional that

takes into account only the bound on the delay. Consider
the following nonlinear system:

25
t[s]

Fig. 3. True and estimated values of x5

B= 10 v 2]
{0.75 + 0;5 cos(z1) 3+ Cos(jl (t— T))]

g ot

Y=

+

(36)
where a(z2) = cos?(x2) + z2. The constant that satisfies
Assumption 2 is b = 2.

If a classic TS representation, i.e., without nonlinear con-
sequents is considered, system (36) can be represented by
an affine T'S model, with one of the premise variables being
T2, that has to be estimated. One way to handle the model-
observer mismatch is to assume that this mismatch is
Lipschitz continuous, with p being the Lipschitz constant.

Another condition involving p is also included next to the
condition of Lin et al. (2008), similar to (Bergsten, 2001).

We test the approaches on the time-delayed T'S model (5),
with the local matrices (34)-(35) and

-3 —0.5 -3 —0.5
All = A12 = |: 0 —16:| ) A21 = A22 = |: 0 —36:| )
0

H=[01, G= [_0_6].

The approach in (Lin et al., 2008) is infeasible, while in

our approach the maximum value for d, for which it gives
feasible solution is d = 0.359.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented an observer design method to
estimate the unknown states, using time-delay TS fuzzy
models with nonlinear consequents. We assumed that the
delay and its derivative are known and may be used in
the observer. The design conditions were illustrated on

a numerical example and in a comparison with another
result from the literature.



It should be noted that the assumption that the delays are
measured is extremely restrictive. In our future work we
consider the case when the delay also has to be estimated.
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