Lab 1: (Re)introduction to Matlab

Perform the following operations in a Matlab script.
Compute the values of the function:
$z=f(x, y)=\exp (-2|x|)+2 \cos \left(\frac{\pi \cdot y}{2}\right)$
on the domain $[-2,2] \times[-3,3]$, using a grid with a step of 0.1 .
A polynomial $g(x)$ was fitted beforehand to approximate the above function:
$\hat{z}=g(x, y)=0.09276 x^{4}-0.4881 x^{2}+0.08078 y^{4}-0.7813 y^{2}+1.414$
Implement this polynomial in a Matlab function that takes x and y at the input and produces $g(x, y)$ at the output. Use this function to compute approximate values on the same grid as the one used to compute the true function above.

Create a 3D plot comparing z and \hat{z}. If everything goes well you should see something like the following figure:

Compute the mean squared error of the approximation on the same grid:
$\frac{1}{N} \sum_{i=1}^{N}\left(z_{i}-\hat{z}_{i}\right)^{2}$
where N is the number of points on the grid. Do not use a loop for this computation: do it in one line using Matlab vectorization! The correct error that you should obtain is 0.0336 .

The solution so far should be created without any symbolic variables. Create now a symbolic version of the polynomial g, and verify that it computes the same values as your Matlab function on a few example points.

