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Chapter 1
Linear Programming

1.1 Introduction

A linear programming (LP) problem may be defined as the problem of maxi-
mizing or minimizing a linear function subject to linear constraints. Applica-
tions include optimal production plan in manufacturing, optimal allocation
of resources, optimal routing, engineering design problems, etc.

The technique of linear programming was developed by Leonid Kan-
torovich, George B. Dantzig, and John von Neumann.

George B. Dantzig formulated the general linear programming (LP) prob-
lem and devised the simplex method in 1947. Although several other methods
have been developed over the years for solving LP problems, the simplex
method continues to be the most efficient and popular method for solving
general LP problems, (Rao, 1996).

An example of a linear programming problem is given below:

Example 1.1 Maximize
f(x1, x2) = 2x1 + x2 (1.1)
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Chapter 1. Linear Programming

subject to

x1 + x2 ≤ 6

x1 + 2x2 ≤ 8

−x1 + 3x2 ≤ 6 (1.2)

x1 ≥ 0

x2 ≥ 0

1.2 Formulating linear programming problems

Translating real-life problems into mathematical equations of a linear pro-
gram is the first challenge of this subject. The problem is formulated from a
verbal description as follows:

• Identify the decision variables

• Identify the objective function that is to be optimized. For example it
may be required to maximize a profit or to minimize a cost.

• Formulate the constraints.

• State other implicit constraints such as non-negativity restrictions.

The example below will illustrate the formulation of a linear program-
ming problem.

Example 1.2 A small company manufactures two metal products P1 and P2. It will
take 4 hours to complete one product P1 and 21 hours for P2. The manufacturing
process requires 3 units of metal for P1 and 1 unit for P2. The products are sold and
the profit for the products are 20 for P1 and 50 for P2. A stock of 200 metal units
is available for the current period and the company wishes to produce a number of
products so that it maximizes the profit during 280 hours of work.

The information can be summarized as in the table below:

Product P1 P2 Limits
Resources
Time required 4 21 280
Metal required 3 1 200
Profit 20 50
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1.2. Formulating linear programming problems

Variables The decision variables or the unknowns are, in this case, the number of
products P1 and P2 that have to be manufactured in given conditions. Let:
x1 = the number of products P1
x2 = the number of products P2

Objective function The objective is to maximize profit, which is composed of the
sum of the number of products P1 and P2 times the profit per piece:

P (x, y) = 20x1 + 50x2 (1.3)

Constraints From the statement of the problem we can identify three types of con-
straints:

Time constraints The time spent on production should be less than 280
hours. Ideally, it is equal to 280, but since the number of products is
integer the constraint may not be satisfied.

Generally, choosing an inequality rather than an equality gives us more
flexibility in optimizing the objective. If all the constraints were equality-
type, the problem may be over-constrained. When the number of equali-
ties exceeds the number of variables the problem may have no solution.

Because the time required for the production of P1 is 4 hours, the time
for P2 is 21 hours, and the maximum time of work is 280 hours, the time
constraint is stated as:

4x1 + 21x2 ≤ 280 (1.4)

Material constraint The 200 metal units must be distributed between the
two types of product. We shall write the constraint as an inequality for
the reasons mentioned before:

3x1 + x2 ≤ 200 (1.5)

Non-negativity constraints Although it is not clearly stated in the problem,
the number of products delivered must be non-negative:

x1 ≥ 0

x2 ≥ 0 (1.6)
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Chapter 1. Linear Programming

Constraints of this type are often called implicit because they are implicit
in the definition of the variables.

The complete mathematical description of the linear programming problem is:

Maximize P (x1, x2) = 20x1 + 50x2

subject to (1.7)

4x1 + 21x2 ≤ 280

3x1 + x2 ≤ 200

x1 ≥ 0

x2 ≥ 0

A standard LP maximization problem is stated as:

Find a vector x = [x1, x2 . . . , xn]T to maximize

f(x1, x2, . . . , xn) = c1x1 + c2x2 + . . . + cnxn (1.8)

subject to the constraints:

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

. . . (1.9)

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0 (1.10)

A standard LP minimization problem is stated as:

Find a vector [y1, y2 . . . , ym]T to minimize

f(y1, y2, . . . , yn) = b1y1 + b2y2 + . . . + bmym (1.11)
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1.2. Formulating linear programming problems

subject to the constraints:

a11y1 + a12y2 + . . . + a1mym ≥ c1

a21y1 + a22y2 + . . . + a2mym ≥ c2

. . . (1.12)

am1y1 + am2y2 + . . . + anmym ≥ cn

y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0 (1.13)

• The main constraints are written as ≤ for the standard maximum prob-
lem and ≥ for the standard minimum problem.

• If some of the constraints are equalities they should be removed to ob-
tain a standard problem. If p < m constraints are equalities, they can be
solved for p of the unknowns and the solution replaced into the objec-
tive function and the other constraints. This will reduce the number of
variables to n− p.

• If a variable xj is not restricted to be non-negative, it may be replaced by
the difference of two non-negative variables xj = uj−vj . This adds one
variable and two non-negativity constraints to the problem, (Ferguson,
2004).

Example 1.3 Put the following LP problem into the standard form:

maximize f(x1, x2, x3) = x1 + 2x2 + 3x3 (1.14)

subject to

4x1 + 3x2 + 2x3 ≤ 10 (1.15)

x1 − x3 = 2 (1.16)

x1 + x2 + x3 ≥ 1 (1.17)

x1 ≥ 0, x3 ≥ 0 (1.18)

Because we have a maximization problem, the inequality (1.17) will be re-written.
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The multiplication by −1 will give:

−x1 − x2 − x3 ≤ −1 (1.19)

The relation (1.16) is an equality that has to be removed. We shall replace x3 from
(1.16) into the rest of the problem:

x3 = x1 − 2 (1.20)

f(x1, x2) = x1 + 2x2 + 3(x1 − 2) = 4x1 + 2x2 − 6 (1.21)

Note that the last term obtained in f(x1, x2) may be omitted because the maximum
of a function f plus a constant C is the same as the maximum of f .

The constraints are now:

4x1 + 3x2 + 2(x1 − 2) ≤ 10, or 6x1 + 3x2 ≤ 14 (1.22)

−x1 − x2 − (x1 − 2) ≤ −1, or − 2x1 − x2 ≤ −3 (1.23)

The problem is not in the standard form yet because there is no non-negativity
constraint on x2. Thus, two new variables will be introduced to replace x2:

x2 = x4 − x5, where x4 ≥ 0, x5 ≥ 0 (1.24)

and the standard maximization problem is:

maximize f(x1, x4, x5) = 4x1 + 2x4 − 2x5 (1.25)

subject to

6x1 + 3x4 − 3x5 ≤ 14 (1.26)

−2x1 − x4 + x5 ≤ −3 (1.27)

x1 ≥ 0, x4 ≥ 0, x5 ≥ 0 (1.28)
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1.3. The primal and dual problem

A standard problem can be written in a matrix form if we introduce the
notations:

c =




c1

c2

. . .

cn




, b =




b1

b2

. . .

bm




, A =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . .

am1 am2 . . . amn




(1.29)

and we obtain the standard maximum problem:

maximize cTx (1.30)

subject to
Ax ≤ b, x ≥ 0 (1.31)

Definition 1.1 A vector x is said to be feasible if it satisfies the constraints.

Definition 1.2 The set of feasible vectors is called the constraint set.

Definition 1.3 A linear programming problem is said to be feasible if the con-
straint set is not empty; otherwise it is said to be infeasible.

Definition 1.4 The feasible region is the set of points that make all linear inequal-
ities constraints true simultaneously.

1.3 The primal and dual problem

A linear programming problem, referred to as a primal problem, has a com-
panion problem associated, called the dual.

Definition 1.5 (Ferguson, 2004) The dual of the standard maximum problem

maximize cTx (1.32)

subject to Ax ≤ b, x ≥ 0 (1.33)

is defined to be the standard minimum problem

minimize bTy (1.34)
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subject to ATy ≥ c, y ≥ 0 (1.35)

Here y is used instead of x as variable vector, A is an m × n matrix, x - an
n× 1 vector, y - an m× 1 vector, c - an m× 1 vector and b - an n× 1 vector.

Each maximization problem in LP has its dual, which is a minimizing
problem; similarly, each minimizing problem has its corresponding dual, a
maximization problem.

Example 1.4 (Kennedy, 2005)
Primal : maximize 3x1 + 2x2 Dual: minimize 4y1 + 6y2

subject to: 2x1 + x2 ≤ 4 subject to: 2y1 + 2y2 ≥ 3
2x1 + 3x2 ≤ 6 y1 + 3y2 ≥ 2
x1, x2 ≥ 0 y1, y2 ≥ 0

Example 1.5 We shall determine the dual problem for Example 1.2 and give an
interpretation.

The primal LP problem is stated as:

Maximize P (x1, x2) = 20x1 + 50x2

subject to (1.36)

4x1 + 21x2 ≤ 280

3x1 + x2 ≤ 200

x1 ≥ 0

x2 ≥ 0

According to the definition, the dual problem is:

Minimize R(y1, y2) = 280y1 + 200y2

subject to (1.37)

4y1 + 3y2 ≥ 20

21y1 + y2 ≥ 50

y1 ≥ 0

y2 ≥ 0

Both the primal and the dual problem can be represented in the table below:
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1.4. Geometrical interpretation

Product P1 (x1) P2 (x2) Limits
Resources
Time required (y1) 4 21 ≤ 280
Metal required (y2) 3 1 ≤ 200
Profit ≥ 20 ≥ 50

The dual variables may be interpreted as the cost of the resources that are to be
involved in the manufacturing process: the cost associated with a unit of time (an
hour of work), y1, and the cost of the material resources (one metal unit), y2.

The objective would be to minimize the total cost of production during 280 hours
of work and using 200 units of metal, and is described by R(y1, y2).

The constraints are expressed now in terms of economic values. For example the
first constraint may be translated into: the cost of a piece of P1 should be not less
than the cost of 4 hours of work plus the cost of 3 metal units. The non-negativity
constraints are natural since prices cannot be negative.

An optimal solution to the dual problem provides a shadow price of the resources
allocated.

1.4 Geometrical interpretation

A geometrical interpretation may lead also to a method of solution of a LP
problem. The discussion below will concern only problems where the num-
ber of unknowns is two for a simple visual representation.

If ax1 + bx2 ≤ c is a constraint, it can be graphically represented by a
half-plane bounded by the line ax1 + bx2 = c. The intersection of all regions
bounded by the constraints will give the feasible region of the LP problem.
The feasible region is always a convex set, for a LP problem.

The feasible region in any linear program is called a polytope if it is
bounded. In a 2D space it is a polygon, in a 3D space, a polyhedron.

According to the fundamental theorem of linear programming, if the feasible
region to any LP problem has at least one point and is convex and if the
objective function has a maximum (or minimum) value within the feasible
region, then the maximum (or minimum) will always occur at a corner point
in that region.

This statement is represented graphically in Figure 1.1.
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Figure 1.1: Feasible region and the contour lines of f a) One solution, b) Mul-
tiple solutions

The contours of the objective function f(x1, x2) are straight lines in the
x1 − x2 plane. They are obtained as level curves for f(x1, x2) = a, where the
constant a can take any real value. As a increases, the line will move and the
last point where the function line intersects the feasible region is the solution
of the problem. Thus, if there is a solution of the problem, it will occur at a
vertex.

If the contour lines of f are parallel with one of the constraints line, it is
possible to obtain an infinite number of solutions (Figure 1.1 b)) consisting of
all the points located on the last edge of intersection with the feasible region,
including the two endpoints of the segment.

Example 1.6 Determine graphically the solution of the following LP problem:

Maximize f(x1, x2) = 3x1 + 4x2

subject to (1.38)

x1 + x2 ≤ 6

x1 + 2x2 ≤ 8

−x1 + 3x2 ≤ 6

x1 ≥ 0

x2 ≥ 0

The feasible region (Figure 1.2) has been obtained as the intersection of the half-
planes bounded by the lines x1 + x2 = 6, x1 + 2x2 = 8, −x1 + 3x2 = 6 and for
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1.4. Geometrical interpretation

non-negative values of the variables.

Figure 1.2: Feasible region Figure 1.3: Various contour lines of f

The solution of the problem will occur at a vertex of the feasible set, therefore in
this case it is enough if we determine all the extreme points of the shaded polygon in
Figure 1.2 and choose the one for which f has its maximum value. This approach is
not viable if the size of the problem is large (many constraints and many variables).

The points O, A and D can be read directly from the plot, but B and C will be
calculated from the intersection of the constraint lines. The point B is the solution of
the linear system: {

x1 + x2 = 6
x1 + 2x2 = 8

, x1 = 4, x2 = 2 (1.39)

and the point C is the solution of

{
−x1 + 3x2 = 6
x1 + 2x2 = 8

, x1 =
12
5

, x2 =
14
5

(1.40)

All vertices of the feasible region are now determined: O(0, 0), A(6, 0), B(4, 2),
C(12/5, 14/5) and D(0, 2) and the function takes the values:

f(0, 0) = 0, f(6, 0) = 18, f(4, 2) = 20, f(
12
5

,
14
5

) =
92
5

, f(0, 2) = 8
(1.41)

The maximum occurs at vertex B(4,2) and this is the solution of the problem.

A plot of various contour lines of the objective function is shown in Figure 1.3.
The line has such a slope that the last point of intersection with the feasible region is
B, the solution of this problem.
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1.5 The Simplex algorithm for standard maximization
problem

The simplex algorithm of George Dantzig is a popular technique for numeri-
cal solution of the LP problems. Although similar in name, it is not related to
the downhill simplex method or the Nelder-Mead method.

The method will be described as it is applied to linear programming max-
imization problems in standard form.

The first step will be to convert inequalities from the constraints into
equalities by adding slack variables.

Example 1.7 If 2x1 + x2 ≤ 4, a non-negative slack variable x3 will be added and
we obtain: 2x1 + x2 + x3 = 0, where x3 ≥ 0.

In general, a vector of non-negative slack variables xn+j , j = 1,m will be
added to the constraints so that the inequalities are written as equalities and
the constraints are written in the form:

Ax = b, x ≥ 0 (1.42)

where the augmented decision variable vector is:

x = [x1 x2 . . . xn xn+1 . . . xn+m]T (1.43)

The size of vector b is m× 1, thus m is the number of constraints. In vector x,
the variables xj , j = 1,m are the newly introduced slack variables.

A detailed expression of system (1.42) is:

a11x1 + a12x2 + . . . + a1nxn + xn+1 = b1

a21x1 + a22x2 + . . . + a2nxn + xn+2 = b2 (1.44)

. . .

am1x1 + am2x2 + . . . + amnxn + xn+m = bm
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1.5. The Simplex algorithm for standard maximization problem

and the matrix A is:

A =




a11 a12 . . . a1n 1 0 . . . 0
a21 a22 . . . a2n 0 1 . . . 0
. . .

am1 am2 . . . amn 0 0 . . . 1




(1.45)

Definition 1.6 (Ferguson, 2004)
A basic solution x of the system of equations Ax = b is the solution for which

at least n−m entries of x are zero.

Definition 1.7 (Ferguson, 2004)
A basic feasible solution (bfs), x of the linear programming problem in stan-

dard form is a basic solution of the equations Ax = b for which x ≥ 0

A bfs may be obtained by setting n − m components of x equal to zero
and solving for the remaining m variables. The n −m variables set equal to
zero are the non-basic variables of the basic solution, the remaining variables
are the basic variables.

The algorithm will be illustrated by considering a simple example:

Example 1.8

maximize f(x1, x2) = 3x1 + 2x2 (1.46)

subject to: 2x1 + x2 ≤ 4 (1.47)

x1 + 2x2 ≤ 4 (1.48)

x1, x2 ≥ 0 (1.49)

The solution using the simplex method is obtained by the following steps:

Step 1. Introduce slack variables to convert inequality-type constraints into equali-
ties.

The non-negative variables x3 and x4 will be added to the constraints, and the
standard matrix form of the problem is now:

maximize f(x1, x2) = 3x1 + 2x2 (1.50)
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2x1 + x2 + x3 = 4 (1.51)

x1 + 2x2 + x4 = 4 (1.52)

x1, x2, x3, x4 ≥ 0 (1.53)

In the feasible region of the LP problem, the slack variables will be either posi-
tive or zero.

The constraints (1.51), (1.51)are re-written as:

x3 = 4− 2x1 − x2 (1.54)

x4 = 4− x1 − 2x2 (1.55)

Step 2. Choose an initial basic feasible solution.

For this example we may choose the original variables to be zero and the slack
x3 and x4 are determined from the constraints (1.54), (1.55):

x1 = 0, x2 = 0, x3 = 4, x4 = 4 (1.56)

The value of the objective function is f = 3x1 + 2x2 = 0.

This bfs is not optimal because a small increase in either the value of x1 or
x2, so that the non-negativity condition for (1.54), (1.55) still holds will in-
crease the value of the objective function. The simplex algorithm is an iterative
method that searches through the basic feasible solutions (bfs) and moves, at
each iteration, to a better one in the sense that it has a larger objective function
value (for a maximization problem).

Step 3. Write the initial tableau.

In general, if the objective function is written as f = c1x1 + c2x2 + . . . +
cn+mxn+m, the tableau is:

x1 x2 ... xn+m

a11 a12 ... a1,n+m b1

... ... ... ... ...
am1 am2 ... am,n+m bm

objective c1 c2 ... cn+m −f

For this example the tableau is:
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1.5. The Simplex algorithm for standard maximization problem

x1 x2 x3∗ x4∗
x3 2 1 1 0 4
x4 1 2 0 1 4

objective 3 2 0 0 0

The ∗ and the entries x3 and x4 on the left indicate the basic variables.

Step 4. Select the pivot column. This step will identify the non-basic variable to
enter the basis.

The objective function is: f = 3x1 +2x2 = 0 for the current bfs. Any increase
of x1 or x2 such that the variables in the basis are non-negative will increase
the value of f . Because the coefficient of x1 is greater that the one of x2, it will
bring a larger increase of the objective. Thus, we shall choose x1 to enter the
basis.

In the simplex tableau, choose the largest positive number from the last row
(objective). If there are more with the same value, choose either one.

If all the numbers in the last row are negative or zero the basic solution is the
optimal one and the algorithm will stop here.

x1 x2 x3∗ x4∗
x3 2 1 1 0 4
x4 1 2 0 1 6

objective 3 2 0 0 0
↑

Step 5. Select the pivot row. This step will identify the basic variable to leave the
basis. The intersection of pivot row and pivot column is the pivot element or
simply the pivot. It must always be a positive number.

If we keep x2 = 0 and increase x1, the basic variables are: x3 = 4 − 2x1,
x4 = 4− x1. The variable x3 becomes negative as x1 passes through 2 and x4

becomes negative when x1 increases more than 4. Thus, the largest value x1

can take so the solution is still feasible is x1 = 2.

In the simplex tableau the reasoning above is translated as: in the pivot column
j, the pivot will be the element which minimizes the ratio bk/akj over those
rows for which aij > 0.
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If all elements in the pivot column are negative or zero (akj ≤ 0, k = 1,m)
then the problem is unbounded above (the maximum of the problem is infinity).

x1 x2 x3∗ x4∗
x3 2 1 1 0 4 (b1/a11 = 4/2 = 2→ minimum)
x4 1 2 0 1 4 (b2/a21 = 4/1 = 4)

objective 3 2 0 0 0
↑

The pivot is boxed in the tableau above. The variable x1 enters the basis and
the variable x3 leaves the basis.

Step 6. Perform the pivot operation, when the pivot element is aij . This is the pro-
cess of rewriting the problem in terms of the new basic variables.

The description of this operation in equations is as follows:

• The first basic variables were x3 and x4:

x3 = 4− 2x1 − x2 (1.57)

x4 = 4− x1 − 2x2 (1.58)

f = 3x1 + 2x2 (1.59)

• Divide (1.57) by 2 (the coefficient of x1) and rearrange to get x1, then
substitute x1 in (1.58) and (1.59):

x1 = 2− 1
2
x2 − 1

2
x3 (1.60)

x4 = 4− (2− 1
2
x2 − 1

2
x3)− 2x2 = 2− 3

2
x2 +

1
2
x3 (1.61)

f = 3(2− 1
2
x2 − 1

2
x3) + 2x2 = 6 +

1
2
x2 − 3

2
x3 (1.62)

The corresponding procedure in the simplex tableau is to:

• Divide the pivot row i by the pivot aij

• add−akj/aij×row(i) to row k for each k 6= i (including objective row).
Each element in the rows (non-pivot) will be added by the element in the
same row and pivot column divided by the pivot and multiplied by the
element in the same column and pivot row.
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1.5. The Simplex algorithm for standard maximization problem

x1∗ x2 x3 x4∗
x1 1 1

2
1
2 0 2

x4 1− 1
2 · 2 2− 1

2 · 1 0− 1
2 · 1 1− 1

2 · 0 4− 1
2 · 4

objective 3− 3
2 · 2 2− 3

2 · 1 0− 3
2 · 1 0− 3

2 · 0 0− 3
2 · 4

or:

x1∗ x2 x3 x4∗
x1 1 1

2
1
2 0 2

x4 0 3
2 −1

2 1 2
objective 0 1

2 −3
2 0 -6

Step 7. Go to Step 4 until the basic feasible solution is optimal. The algorithm will
stop when all the elements in the last row (objective) are negative or zero. The
bottom right entry, which is −f will not be included in this test.

For the given example the stop criterion is not fulfilled thus we return at step
4 and identify the pivot column and row. The only positive element on the last
row is 1/2 so the second column is the pivot column.

x1∗ x2 x3 x4∗
x1 1 1

2
1
2 0 2 (2/1

2 = 4)

x4 0 3
2 −1

2 1 2 (2/3
2 = 4/3→ minimum)

objective 0 1
2 −3

2 0 -6
↑

The current bfs is not optimal, x2 will enter the basis and x4 will leave. The
pivot operation gives:

x1∗ x2∗ x3 x4

x1 1 0 2
3 −1

2
4
3

x2 0 1 −1
3

2
3

4
3

objective 0 0 −4
3 −1

3 −20
3

Since the elements in the last row are all non-positive, the optimal solution is:

x1 =
4
3
, x2 =

4
3
, x3 = x4 = 0 (1.63)

The optimal value of the objective function is 20/3, obtained as minus the
bottom-right entry of the tableau.
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1.6 Exercises

1. Formulate mathematically the following LP problem:

A plant processes two chemicals A and B. It takes 6 days and 3 kilo-
grams of raw material to make one kilogram of product A and 3 days
and 2 kilograms of raw material to make one kilogram of B. The com-
pany can sell the product A for $20/kg and the product B for $15/kg.
Which is the optimal quantity of each product the company would pro-
cess in three months (90 days) in order to maximize the profit?

2. Formulate mathematically the following LP problem, (Page, 2007):

A plant makes aluminum and copper wire. Each pound of aluminum
wire requires 5 kwh of electricity and 1/4 hr of labor. Each pound of
copper wire requires 2 kwh of electricity and 1/2 hr of labor. Production
of copper wire is restricted by the fact that raw materials are available to
produce at most 60 lbs/day. Electricity is limited to 500 kwh/day and
labor to 40 personhrs/day. If the profit from aluminum wire is $0.25/lb
and the profit from copper is $0.40/lb., how much of each should be
produced to maximize profit and what is the maximum profit?

3. Consider the problem:

Maximize 3x1 + 2x2 + x3 (1.64)

subject to
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (1.65)

and

x1 − x2 + x3 ≤ 4

2x1 + x2 + 3x3 ≤ 6 (1.66)

−x1 + 2x3 ≤ 3

x1 + x2 + x3 ≤ 8

State the dual minimum problem

4. Solve graphically the problem from Example 1.8.
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1.6. Exercises

5. Solve the following LP problem by inspecting the vertices of the feasible
region:

Maximize
f(x, y) = 143x + 60y (1.67)

subject to the constraints:

x + y ≤ 100

120x + 210y ≤ 15000 (1.68)

110x + 30y ≤ 4000

x, y ≥ 0

6. Minimize
f(x, y) = 60x + 30y (1.69)

subject to the constraints:

2x + 3y ≥ 120

2x + y ≥ 80 (1.70)

x, y ≥ 0

Check the vertices to find that the minimum value is 2400 at (0,80) and
(30,20).
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