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Preface
This collection of exercises is used to familiarize students with the numerical methods taught
in the framework of the Optimization course at the Department of Automation, Technical
University of Cluj-Napoca.

As usual, Optimization is quite involved from a mathematical point of view, therefore, in
many cases, it is required that the algorithms are implemented on a computer, using Matlab,
Mathematica or a similar environment. Here, references are made to Matlab. The exercises
go in parallel with the course, from function approximation, through analytical methods, to
numerical methods.

Each chapter is structured as follows: an Introduction to the method, an Example, and
finally the Exercises. The exercises in a given chapter are quite similar to each other and are
solved using the same method.

I hope that this collection will help you better use optimization methods.

Lendek Zsófia
Cluj, 2013
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Chapter 1

Function approximation

1.1 Introduction

Probably the most frequently encountered optimization problem – even though one might not
think about it like optimization – is the approximation of a function. Problems that are in this
category range from system identification to parameter estimation and can be found in almost
every field: control engineering (Khalil, 2002; Narendra and Annaswamy, 1989), mechanical
engineering, (Rao et al., 2011; Beck and de Santana Gomes, 2012), civil engineering (Perez
and Behdinan, 2007; Kitayama et al., 2011), medicine (Amarantini et al., 2010), geology
(Afshari et al., 2011), etc.

Depending on the exact problem formulation and the known part of the problem, e.g.,
the context of the problem, the structure of the function to be approximated, available values,
etc., different methods can be applied. For instance, in system identification frequently used
methods are the least squares or recursive least squares, Box-Jenkins (Eykhoff, 1974; Rao,
1978), etc. If a parameter of a dynamic system needs to be determined, observers such
as Kalman filters, Luenberger observers, Particle filters (Kalman, 1960; Luenberger, 1966;
Arulampalam et al., 2002; Ristic et al., 2004) may represent a solution.

Here, we consider the problem of determining the parameters of a function with a known
structure from measured data. Let us consider a discrete-time time-varying function f(x, k),
where k denotes the time and x = [x1, x2, · · · , xn]T is the vector of unknown parameters,
n being the number of parameters. A number m of measurements – usually not precise – of
the value of the function f(x, ki) are available for different time indices i = 1, 2, . . . , m.
Our objective is to determine the parameters x̂ such that the function values best approximate
the measurements, that is, f(x̂, k) ≈ f(x, k).

First of all, the parameter estimation problem has to be formulated as an optimization
problem. This can be done by defining an error function that has to be minimized. Several
error functions can be used, among which the squared error:

ese(x, x̂) =
m∑

i=1

(f(x, ki)− f(x̂, ki))2 (1.1)
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CHAPTER 1. FUNCTION APPROXIMATION

mean squared error

emse(x, x̂) =
1
m

m∑

i=1

(f(x, ki)− f(x̂, ki))2 (1.2)

absolute error

eae(x, x̂) =
1
m

m∑

i=1

|f(x, ki)− f(x̂, ki)| (1.3)

Depending on the properties of the function, different methods can be used to minimize
the error function. Some of these methods will be discussed in later chapters. Here, we will
use available already implemented methods to minimize an error function and consequently
determine the parameters.

1.2 Example
Consider the function

f(x, k) = x1k
x2 + 3k2 (1.4)

where x1 and x2 are unknown parameters, and the measured values of f are shown in Fig-
ure 1.1.
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Figure 1.1: Measured values of the function f .

Our objective is to determine the unknown parameters x1 and x2. To define the optimiza-
tion problem, we use e.g., the squared error, i.e., the function to be minimized is

ese(x, x̂) =
m∑

i=1

(f(x, ki)− f(x̂, ki))2

Most mathematics-oriented programming languages have several optimization methods
implemented. We use Matlab’s fminunc and fminsearch functions. fminunc is a trust-
region/line-search based method, while fminsearch uses the Nelder-Mead method.These meth-
ods will be presented later on. They are local optimization methods and require defining the
objective function and an initial point around which to search for a solution.
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1.2 EXAMPLE

Starting from the initial parameter values x̂0 = [0 0]T , both Matlab functions obtain
the parameter values x̂0 = [0.5118 − 0.1172]T . The squared error is e = 0.1988. The
comparison of the function values is presented in Figure 1.2.
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Figure 1.2: Measured and approximated values of the function f .

In many cases, the solution that is obtained is not unique. For instance, consider the
function

f(x, k) = sin(x1 + k) + cos(x2 + k) (1.5)

with the measured values shown in Figure 1.3.

0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

k

f(
k)

Figure 1.3: Measured values of the function sin(x1 + k) + cos(x2 + k).

For the initial condition [0 0]T the obtained parameters are x = [0.7272 0.7788]T , for
[3 3]T we obtain [2.3496 5.4396], etc. However, the squared error in all cases is e = 0.0365,
so these solutions are equivalent. The comparison of the function values is shown in Fig-
ure 1.4.
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Figure 1.4: Measured and approximated values of the function sin(x1 + k) + cos(x2 + k).

In general, depending on the initial condition and the method used several solutions can
be obtained.

1.3 Exercises
Consider the following functions:

1. f(x, k) = x1k
x3e−x4k + x2

2. f(x, k) = x1

1+e
− k−x2

x3

+ x4

3. f(x, k) = x1e
−x3k + x2

where x are the unknown parameters, and the measured data from the electronic appendix.
The first index in the name of each data file indicates which function should be considered.
For instance, trace1 25 contains the 25th data set for the first function. Determine the param-
eters of the functions.
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Chapter 2

Analytical methods

2.1 Introduction

Analytical methods are classical optimization methods that are used in general for the opti-
mization of continuous and differentiable functions. Consider the twice differentiable func-
tion f : Rn → R.

Stationary points of this function are those points xs for which the first derivative

∂f

∂x
|xs =

(
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

)
|xs = 0

For a point x∗ to be an extremum (maximum or minimum) of this function, it is necessary
that x∗ is a stationary point. A sufficient condition (Rao, 1978) for x∗ to be a local minimum
(maximum) is that the second order derivative (the Hessian)

∂2f

∂x2
=




∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x1∂x2

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
... . . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n




evaluated in x∗ is positive (negative) definite. If the Hessian is indefinite (it has both positive
and negative eigenvalues) in xi, then xi is a saddle point. If the Hessian is positive or negative
semidefinite, no conclusion can be drawn and higher order tests have to be used.

For functions that are not differentiable in every point, an extremum might be located in
a point where the function is not differentiable.

In many cases, the objective function has to be optimized in the presence of constraints (Rao,
1978; Raica, 2009). Depending on the constraints, one can use direct substitution, Lagrange
multipliers, or, in case of inequality constraints, the Karush-Kuhn-Tucker conditions. Of
these, here we consider Lagrange multipliers for equality constraints.

Consider the twice differentiable function f : Rn → R, with the equality constraints
gi(x) = 0, i = 1, 2, . . . ,m, corresponding to the optimization problem

5



CHAPTER 2. ANALYTICAL METHODS

min(max)f(x)

subject to

gi(x) = 0, i = 1, 2, . . . , m

The Lagrangian associated to this optimization problem is

L(x, λ) = f(x) + λT g(x)

= f(x) +
m∑

i=1

λigi(x)

Similarly to unconstrained optimization, the necessary condition for a point xs to be
the extremum of the function f in the presence of equality constraints is that the first-order
derivative of L wrt. x and λ, evaluated in this point is 0, i.e.,

∂L

∂[xT λT ]T
|xs = 0

The sufficient condition (Hancock, 1960) for a point x∗ to be a local minimum (maxi-
mum) is that the roots zi of the determinant equation

det

(
∂2L
∂x2 − zI ∂g

∂x

T

∂g
∂x 0

)∣∣∣∣∣
x∗

= 0

are all positive (negative). If there are both positive and negative roots, the point is not an
extremum.

2.2 Example

Consider the twice differentiable function f : Rn → R, f(x) = (x1 − 1)2 + (x2 − 2)2. This
function has a minimum in x∗ = [1 2]T , as can be seen in Figure 2.1.

To prove that this is indeed the minimum of the function, let us calculate the derivatives:

∂f

∂x1
= 2(x1 − 1)

∂f

∂x2
= 2(x2 − 2)

and we obtain x1 = 1, x2 = 2. The Hessian is

∂2f

∂x2
=

(
2 0
0 2

)

which is positive definite and thus the point x∗ = [1 2]T is a local minimum.
Consider now the function f(x) = x2

1 − x2
2. The function is illustrated in Figure 2.2. As

can be seen, the point [0 0]T is a saddle point.
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2.2 EXAMPLE
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Figure 2.1: The function (x1 − 1)2 + (x2 − 2)2.
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Figure 2.2: The function x2
1 − x2

2.

The derivatives of the function are

∂f

∂x1
= 2x1

∂f

∂x2
= −2x2

and we obtain x1 = 0, x2 = 0. The Hessian is

∂2f

∂x2
=

(
2 0
0 −2

)

which is indefinite and thus the point x∗ = [0 0]T is a saddle point.
Consider now the following constrained optimization problem:
Maximize f(x) = x2

1x2

7
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subject to x2
1 + x2

2 = 1
The function is represented in Figure 2.2, while the contour plot of the function, together

with the constraint is illustrated in Figure 2.2. The Lagrangian is written as
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(a) The function x2
1x2.

x
1

x 2
−5 0 5

−5

0

5

(b) Contour plot of the function x2
1x2 and the con-

straint x2
1 + x2

2 = 16.

L(x, λ) = x2
1x2 + λ(x2

1 + x2
2 − 1)

The first derivatives are
∂L

∂x1
= 2x1x2 + 2λx1 = 0

∂L

∂x2
= x2

1 + 2λx2 = 0

∂L

∂λ
= x2

1 + x2
2 − 1 = 0

(2.1)

while the second derivatives and the derivatives of the constraint are

∂2L

∂x2
1

= 2x2 + 2λ

∂2L

∂x1∂x2
= 2x1

∂2L

∂x2
2

= 2λ

∂g

∂x1
= 2x1

∂g

∂x2
= 2x2

(2.2)

To determine the maximum of the function subject to the constraint we have to evaluate
for each solution xi of (2.1) the solution of the determinant equation

det




2x2i + 2λi − zi 2x1i 2x1i

2x1i 2λi − zi 2x2i

2x1i 2x2i 0


 = 0 (2.3)
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2.3 EXERCISES: STATIONARY POINTS

The solutions of (2.1), the corresponding z and the types of the points are given in Ta-
ble 2.1. As can be seen, there are in total 6 extrema, out of which 3 are local maxima and 3
are local minima. The maximum value of f is 0.38 and can be obtained either for x1 =

√
6

3

and x2 =
√

3
3 or for x1 = −

√
6

3 and x2 =
√

3
3 .

Table 2.1: Extreme points and their type.
x1 x2o λ z Type f(x)
0 1 0 2 min 0
0 −1 0 −2 max 0√
6

3

√
3

3 −
√

3
3 −2.3 max 0.38√

6
3 −

√
3

3

√
3

3 2.3 min −0.38
−
√

6
3

√
3

3 −
√

3
3 −2.3 max 0.38

−
√

6
3 −

√
3

3

√
3

3 2.3 min −0.38

2.3 Exercises: stationary points
This exercise consists in determining the stationary points and their type for a given function.

Consider the following functions f : Rn → R:

1. f(x1, x2) = x2
1 + 2x1x2 + x2

2

2. f(x1, x2) = 3x2
1 + 2x1 − x2 + x2

2 + 1

3. f(x1, x2) = (x1 − x2)2 + (2x1 + x2)2

4. f(x1, x2) = ex2
1 + x2

2 − 3 + 2x2

5. f(x1, x2) = 2x2
1 + 3x1x2 + x2 + x2

2 − 1

6. f(x1, x2) = (x2
1 − 1)2 + x2

2 − 3x2 + 1

7. f(x1, x2) = x2
1e

x1 + 51x2 + x4
2 + 3

8. f(x1, x2) = x4
1 + 2x2

1x2 + x2
2 + 3

9. f(x1, x2) = ex2
1−3 + x2

2 − 3x2

10. f(x1, x2) = x1x
3
2 + 2x2

1 + 2x4
2 − 5

11. f(x1, x2) = x2
1x2 + 6x2

2 − 3x1x2 + 4x4
1 + 3x2

1

12. f(x1, x2, x3) = 2x2
1 + 3x2

2 + x2x3 + 6x2
3

13. f(x1, x2) = x6
1 + 3x1x2 + x2

2

14. f(x1, x2) = 18x2
1 + 20x2 + x1x2 + x2

2

15. f(x1, x2) = 5x4
1 + x2

1x2 + x2
2 − 3x2 + 1

9



CHAPTER 2. ANALYTICAL METHODS

16. f(x1, x2) = (cos(2π))x1 + x1x2 + x2
2 + x2

1

17. f(x1, x2) = 32x1x
2
2 + 9x2

2 + 18x2
1 + 3

18. f(x1, x2) = x3
1 + 3x4

1 + 31x1x2 + x2
2

19. f(x1, x2) = 6x2
1x

2
2 + 3x1x2 − 1

20. f(x1, x2) = 4x3
1 + 6x4

1 + 3x1x
2
2 + x4

2

21. f(x1, x2) = x4
1 + 2x2

1x2 + x6
2 + 6x1x

2
2 + 3

22. f(x1, x2) = x1x2 + x2
2 + x4

2 + 3x2
1 − 1

23. f(x1, x2) = 2x2
1x2 + 31x4

1 + 18x2
2 + 3

24. f(x1, x2) = 11x1 + 22x2
1x2 + x2

2 + 31x2
1

25. f(x1, x2) = x2
1x2 + 5x3

2 + x4
2 + 3x2

1

26. f(x1, x2) = x1x2 + 3x2
2 + 4x4

2 + x2
1

27. f(x1, x2) = x2
1 + x2 + 3x1 + 6

28. f(x1, x2) = 64x2
1 + 64x2

2 + 128x1x2 − 16

29. f(x1, x2) = 10x2
1 + 6x2

2 + 8x4
1x

4
2 + 24

30. f(x1, x2) = 81x2
1 + 27x1x2 + 18x2

2 + x4
2 − 9

31. f(x1, x2) = x1x
3
2 + 9x2

1 − 3x2
2 + 8

32. f(x1, x2) = x2
1 − x2

2 + 8x1x2 − x4
2 + 1

33. f(x1, x2) = −x2
1 − x2

2 + 18x1x2 − 3

34. f(x1, x2) = 1024x1 − 512x1x2 + 2x2
2 + 2x1

35. f(x1, x2) = 5x2
1 + 3x1x2 − x2

2 + x4
2

36. f(x1, x2) = x3
1 + 6x4

1 − 3x2
2 + 2x6

2

37. f(x1, x2) = x2
2 + x2

3 + 3x1x2 − x3

38. f(x1, x2) = (x1 + 43x2)3 + 3x2
1 − 5

39. f(x1, x2, x3) = (x1 + x2 + x3)2 − (x1 + x2)2

40. f(x1, x2, x3) = 33x2
1 + (x2 − x3)2 + x1x2

41. f(x1, x2, x3) = x1x3 + 3x2 + x2
3 + x2

1 + x2
2

42. f(x1, x2, x3) = x1x2x3 + x2
1x

2
2 + 5x2

3 + 1

43. f(x2, x4) = x2
2 + x3

4 + x6
2x

2
4

44. f(x1, x2) = ex2
1 + 3x2

1 + 1

10



2.4 EXERCISES: LAGRANGE MULTIPLIERS

45. f(x1, x2) = 2x2
2 + 3x4

2 + 5x2
1 + 3

46. f(x1, x2) = −x3
1 + x4

1 + x2 + x2
2

47. f(x1, x2) = x2
1x

2
2 + 113x1x2 − 1

48. f(x1, x2) = x3
1 + 6x4

1 + x2
2 + x4

2

49. f(x1, x2) = x4
1 + 2 + x6

2 + x1x2 − 10

50. f(x1, x2) = −10x2 + x2
2 + x4

2 + 3x2
1 − 1

51. f(x1, x2) = x2
1x2 + 11x4

1 + 18x2
2 − 15

52. f(x1, x2) = x1 + 2x2
1x2 + 2x2

2 + 4x2
1

2.4 Exercises: Lagrange multipliers
Consider now the functions from Section 2.4 and the following equality constraints. Deter-
mine the minima or maxima of the functions subject to the constraint(s).

1. x1 + x2 = 1

2. x2
1 + x2 = 1

3. 2x1 − 3x2 = 2

4. x1 = 5x2

5. ex
1 = 1

6. x1 + 2x2 = 3

7. x1 + 3x2 = 2

8. x1 − 2x2 = 5

9. x1 + x2
2 = 3

10. 2x1 − 3x2 = 5

11. x1 − 2x2 = 0

12. 2x1 − x2
1 = −5

13. x2
1 + x2

2 = 0

14. x1x2 + 3x2
2 + 1 = 0

15. x1 + 5x2 = 2

16. 5x1 + 3x2 = 10

17. 6x1 + 4x2 = 12

11
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18. 21x1 − 3x2 = 5

19. x1 + 10x2 = 1

20. x1 + 8x2 = 0

21. 3x1 + 5x2 = 3

22. 8x1 + 15x2 − x3 = 0

23. x2
1 = x2

24. x2
2 = x1

25. x1 − x2 + 1 = 0

26. x1x2 + x2 = 0

27. x1 + 15x2 = 3

28. x2
1 + x2

2 = 1

29. (x1 − 1)2 + (x2 − 1)2 = 1

30. 64x2
1 + 16x1 + 1 = 0

31. 4x1 + 3x2 = 1

32. x1 + 6x2 = 15

33. x1 + 6x2 = 10

34. 15x1 − x2 = 1

35. 6x1 − 7x2 = 8

36. 5x1 − 25x2 = 1

37. 4x1 + 7x2 = 11

38. x2
1 + 2x2

2 = 3

39. 11x1 + 19x2 = 23

40. 3x1 + 9x2 = 13

41. 3x1 + 5x2 = 1

42. 50x1 + 125x2 = 25

43. x1 + 10x2 = 11

44. 7x1 − x2 = 3

45. 8x1 − 4x2 = 1

46. x1 + 6x2 = −5

12
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47. 25x1 − x2 + 3 = 0

48. x1 + 16x2 = 1

49. x1 + 3x2 = 100

50. 31x1 + 19x2 = 2

51. 2x1 + 8x2 = 16x3

52. 3x1 + x2 + x3 = 0

53. 118x1 + 59x2 = 236

54. x1 + 5x2 − x3 = 1

55. x1 + x2 + x3 + x4 = 5

56. x2 + x3 = −x1

57. x1 − 2x2 = 3x3

58. x1 − x2 + 3x3 = 6

59. 10x1 + 5x2 + x3 = 1

60. 3x2 + 5x3 = 0

13
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Chapter 3

Optimization of single variable
functions: elimination methods

3.1 Introduction

Although analytical methods are able to provide an exact minimum or maximum, their use
can be cumbersome, in particular for nonlinear functions and constraints. This is why numer-
ical methods are widely used. In this chapter, let us consider the simplest case of numerical
optimization, when the function to be optimized depends on a single variable and is unimodal,
i.e., it has a unique extremum on a given interval. Our goal is to find this unique extremum.

Consider the function f : [a, b] → R. Without loss of generality, let us assume that the
function f has a unique minimum on [a, b] (see e.g., Figure 3.1). The following methods find
this minimum with a tolerance ε by eliminating parts of the interval in several steps.

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

f(
x)

Figure 3.1: A function with a unique minimum on the interval [−2, 1].

For the elimination, one has to define two, partly overlapping intervals. The function
is evaluated in the endpoints of this interval. Since there is a unique minimum, one of the
intervals contains a point with smaller function value. This interval is retained, while the
remaining part is eliminated.
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For instance, for the function in Figure 3.1, if one chooses the points x1 = −1.5 and
x2 = 0.5, corresponding to the intervals [−2, 0.5] and [−1.5, 1] the values of the function
in these points are f(x1) = 2.25 and f(x2) = 0.25. Since f(x2) < f(x1), the interval
[−1.5, 1] is retained, and the part [−2, −1.5] is eliminated.

Two methods for choosing the intervals (or points) are summarized in the Algorithms 3.1
and 3.2. Algorithm 3.1 is based on the “golden ratio”, while Algorithm 3.2 uses the Fibonacci
numbers to determine the points where the function should be evaluated.

Algorithm 3.1 Golden section
Input: Objective function f(x), boundaries a and b, and tolerance ε

d = b− a
while b− a ≥ ε do

d ← 0.618× d
x1 ← b− d
x2 ← a + d
if f(x1) ≤ f(x2) then

b ← x2

else
a ← x1

end if
end while

Output: Reduced interval [a, b]

Algorithm 3.2 Fibonacci search
Input: Objective function f(x), boundaries a and b, and tolerance ε

F1 = 2 F2 = 3
n = 2
while b− a ≥ ε do

d = b− a
x1 ← b− dFn−1

Fn

x2 ← a + dFn−1
Fn

if f(x1) ≤ f(x2) then
b ← x2

else
a ← x1

end if
n = n + 1
Fn = Fn−1 + Fn−2

end while
Output: Reduced interval [a, b]

Remarks: Elimination methods cannot be used if there are several minima or maxima.
These methods do not find an exact value of the extremum, only an interval in which the
extremum lies.
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3.2 Example

Consider the function f : [−2, 1] → R, f(x) = x2, represented in Figure 3.1. As can be
seen, this function has a unique minimum on the interval [−2, 1]. Our goal is to find this
minimum with a tolerance ε = 0.3. For this, we will use Algorithm 3.1. Algorithm 3.2 can
be similarly employed.

1. Inputs: f(x) = x2, a = −2, b = 1, ε = 0.3. It follows that d = 1− (−2) = 3

2. Step 1:
d = (1− (−2))0.618 = 1.8540

x1 = 1− 1.8540 = −0.8540

x2 = −2 + 1.8540 = −0.1460
f(x1) = 0.7293

f(x2) = 0.0213

Since f(x2) < f(x1), the retained interval is [−0.8540, 1] (see Figure 3.2) and a
and b are modified accordingly: a = −0.8540, b = 1. The remaining part has been
eliminated.
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Figure 3.2: After Step 1.

3. Step 2:
d = 0.618d = 1.1458

x1 = b− d = −0.1458

x2 = a + d = 0.2918

f(x1) = 0.0212

f(x2) = 0.0851

Since f(x1) < f(x2), the retained interval is [−0.8540, 0.2918] (see Figure 3.3) and
a and b are modified accordingly: a = −0.8540, b = 0.2958. The remaining part has
been eliminated.

17



CHAPTER 3. OPTIMIZATION OF SINGLE VARIABLE FUNCTIONS: ELIMINATION
METHODS
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Figure 3.3: After Step 2.

4. Step 3:

d = 0.618d = 0.7081

x1 = b− d = −0.4163

x2 = a + d = −0.1459

f(x1) = 0.1733

f(x2) = 0.0212

Since f(x2) < f(x1), the retained interval is [−0.4163, 0.2918] (see Figure 3.4) and
a and b are modified accordingly: a = −0.4163, b = 0.2958. The remaining part has
been eliminated.
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Figure 3.4: After Step 3.
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5. Step 4:
d = 0.618d = 0.4376

x1 = b− d = −0.1458

x2 = a + d = 0.0213
f(x1) = 0.0213

f(x2) = 4.510−4

Since f(x2) < f(x1), the retained interval is [−0.1458, 0.2918] (see Figure 3.5) and
a and b are modified accordingly: a = −0.1458, b = 0.2958. The remaining part has
been eliminated.
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Figure 3.5: After Step 4.

6. Step 5:
d = 0.618d = 0.2704
x1 = b− d = 0.0213

x2 = a + d = 0.1246

f(x1) = 4.510−4

f(x2) = 0.0155

Since f(x1) < f(x2), the retained interval is [−0.1458, 0.1246] (see Figure 3.6)
and a and b are modified accordingly: a = −0.1458, b = 0.1246. The remaining
part has been eliminated. The length of the remaining interval is less than the toler-
ance ε = 0.3, therefore the algorithm stops here. Any point taken from the interval
[−0.1458, 0.1246] can be considered the minimum of the function f with tolerance ε.

3.3 Exercises
Consider the following single variables functions f : [a, b] → R. Verify whether they have
a unique minimum or a maximum on the given interval. Implement the Fibonacci and the
Golden Section method and find that unique extremum.

1. f(x) = x2 − 2x− 5, a = 0, b = 2
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Figure 3.6: After Step 5.

2. f(x) = 3x + x3 + 5, a = −4, b = 4

3. f(x) = sin(x) + 3x2, a = −2, b = 2

4. f(x) = ex2
+ 3x, a = −1, b = 1

5. f(x) = x3 − 3x, a = −3, b = 0

6. f(x) = x3 − 3x, a = 0, b = 3

7. f(x) = sin(x), a = 0, b = π

8. f(x) = sin(2x), a = 0, b = 2

9. f(x) = cos(x), a = π/2, b = 3π/2

10. f(x) = tan2(x), a = −π/4, b = π/4

11. f(x) = ex sin(x), a = 0, b = π

12. f(x) = x4 − 3x2, a = −4, b = 0

13. f(x) = x4 − 3x2, a = 0, b = 4

14. f(x) = x5 − 5x3, a = −4, b = 0

15. f(x) = x5 − 5x3, a = 0, b = 4

16. f(x) = x6 + 5x2, a = −1, b = 1

17. f(x) = x3 − 9x, a = −3, b = 0

18. f(x) = x3 − 9x, a = 0, b = 3

19. f(x) = x3 + 9x, a = −1, b = 1

20. f(x) = 3x4 − 6x2, a = −3, b = 0

21. f(x) = 3x4 − 6x2, a = 0, b = 3
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22. f(x) = ex + e−x, a = −2, b = 2

23. f(x) = ex − e−x, a = −2, b = 2

24. f(x) =

{
sin(x)

x , if x 6= 0
1, otherwise

, a = −π/2, b = π/2

25. f(x) = sin2(x), a = −π/2, b = π/2

26. f(x) = ex−e−x

ex+e−x , a = −1, b = 1

27. f(x) = 6x2 − 12x, a = −4, b = 0

28. f(x) = 6x2 − 12x, a = 0, b = 4

29. f(x) = sin(x)(6x2 − 12x), a = −4, b = −1

30. f(x) = sin(x)(6x2 − 12x), a = 0, b = 2

31. f(x) = cos(x)(x2 − 5), a = −3, b = −1

32. f(x) = cos(x)(x2 − 5), a = −1, b = 1

33. f(x) = cos(x) + sin(x), a = −1, b = 3

34. f(x) = |x|, a = −1, b = 1

35. f(x) = sign(x)(x2 − 3x), a = −4, b = 1

36. f(x) = |x|(x2 − 3x), a = −1, b = 4

37. f(x) = x4 − 3x2 − 2, a = −2, b = 0

38. f(x) = (x6 − 2x2) sin(x), a = −2, b = 0

39. f(x) = (6x3 − 3x) cos(x), a = 0.5, b = 2

40. f(x) = (35x3 − x)sign(x), a = −1, b = 0

41. f(x) = (35x3 − x)sign(x), a = 0, b = 2

42. f(x) = x4 − 2x3, a = 0, b = 2

43. f(x) = (6x7 − 42x) sin(x), a = 0, b = 2

44. f(x) = (3x5 − 16x)sign(x), a = −1, b = 1

45. f(x) = x4 − 3x2 + 5, a = 0, b = 2

46. f(x) = 6x8 + 9x2 − 1, a = −2, b = 2

47. f(x) = 12x2 − 8x, a = −2, b = 2

48. f(x) = 5x6 − 3x, a = 0, b = 2

49. f(x) = (5x6 − 8x) sin(x), a = 0, b = 2

50. f(x) = (3x4 − 12x) cos(x), a = −2, b = 0

51. f(x) = (3x2 + 2x)atan(x), a = −0.5, b = 2
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Chapter 4

Newton and gradient methods

4.1 Introduction
Let us consider now unconstrained optimization of multivariable functions, i.e., optimization
problems of the form

min
x∈Rn

f(x)

Newton and gradient methods are widely used for solving this minimization problem when
the gradient and/or the Hessian can be computed relatively easy. Newton methods are based
on the quadratic approximation of the objective function, while gradient methods rely on
determining the best direction and a step-size for finding the minimum, i.e., on a linear ap-
proximation.

Since these are iterative methods, it is important to define suitable stopping conditions.
Among others, some conditions generally used are:

• Variation in successive points: ‖xk+1 − xk‖ < ε

• Variation in the value of the function: |f(xk+1)− f(xk)| < ε

• Gradient: ‖ ∂f
∂x (xk)‖ < ε

• Number of steps: k > kmax

where ε represents the desired tolerance, and kmax the maximum number of iterations.
The Newton method is summarized in Algorithm 4.1. As already mentioned, this method

relies on a second-order approximation of the objective function, and necessitates the com-
putation of both the gradient and the Hessian of the function in each iteration. When it is
computationally expensive to invert (or even compute) the Hessian in each step, but con-
vergence speed is not an issue, the modified Newton method can be used. The modified
Newton method uses the inverse of the Hessian in the initial point in every step, i.e., instead
of H−1(xk), H−1(x0) is used throughout the algorithm (see Algorithm 4.2).

It has to be noted that the Newton method stops in stationary points, not necessarily
minima. Once the algorithm stops, the type of the point has to be determined by evaluating
the eigenvalues of the Hessian in the point found, as explained in Chapter 2.

23



CHAPTER 4. NEWTON AND GRADIENT METHODS

Algorithm 4.1 Newton method

Input: Objective function f(x), gradient ∂f
∂x , Hessian H(x) = ∂2f

∂x2

Input: Initial point x0, tolerance ε
Set k = 0
while Stopping criterion is not satisfied do

Compute a new point xk+1 = xk −H−1(xk) ∂f
∂x (xk)T

Set k ← k + 1
end while

Output: Minimum x∗ with tolerance ε

Algorithm 4.2 Modified Newton method

Input: Objective function f(x), gradient ∂f
∂x , Hessian H(x) = ∂2f

∂x2

Input: Initial point x0, tolerance ε
Set k = 0
while Stopping criterion is not satisfied do

Compute a new point xk+1 = xk −H−1(x0) ∂f
∂x (xk)T

Set k ← k + 1
end while

Output: Minimum x∗ with tolerance ε

A possible problem in the implementation of the Newton method is represented by the
Hessian becoming singular, or, in case of the modified Newton method, the initial Hessian
having the same problem. A solution for this problem is the Levenberg-Marquardt algorithm
(see Algorithm 4.3), which, instead of the Hessian H(xk), uses λI + H(xk), where λ is a
suitable chosen parameter. If λ is much smaller than the eigenvalues of the Hessian, then the
Hessian dominates, well illustrating the nice properties of the Newton method. On the other
hand, if λ is much larger than the eigenvalues of the Hessian, the latter can be neglected,
leading in effect to a gradient method, as described below.

Algorithm 4.3 Levenberg-Marquardt algorithm

Input: Objective function f(x), gradient ∂f
∂x , Hessian H(x) = ∂2f

∂x2

Input: Initial point x0, tolerance ε, constant λ
Set k = 0
while Stopping criterion is not satisfied do

Compute a new point xk+1 = xk − (λI + H(xk))−1 ∂f
∂x (xk)T

Set k ← k + 1
end while

Output: Minimum x∗ with tolerance ε

Gradient methods (see Algorithm 4.4) only use the gradient of the objective function,
and search for the extremum of the function along a direction given by this gradient. If
one searches for maxima, the direction is the gradient (the steepest ascent method), while if
one searches for minima, the direction is the negative of the gradient (the steepest descent
method). For both cases, a step size has to be chosen or computed. If a constant step-size is
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chosen, a possible problem that has to be overcome is oscillation around the minimum. When
oscillation is detected, the step-size can be reduced, or the algorithm stopped. The step size
can also be computed using an elimination method. Once the direction is determined, one
can, for instance, implement either the golden section or the Fibonacci method and minimize
the objective function as a function of the step-size with the current gradient. It must be kept
in mind that the step size has to be positive in order to not to change the direction.

Algorithm 4.4 Steepest descent

Input: Objective function f(x), gradient ∂f
∂x

Input: Initial point x0, tolerance ε
Set k = 0
repeat

Find the step length sk > 0 by minimizing

f

(
xk − sk

∂f
∂x (xk)T

‖ ∂f
∂x (xk)‖

)

Compute new point:

xk+1 = xk − sk

∂f
∂x (xk)T

‖ ∂f
∂x (xk)‖

Set k ← k + 1
until Stopping criterion is satisfied

Output: Minimum x∗ with tolerance ε

The convergence of the steepest descent method can be quite slow, if the problem is
poorly scaled, but it can be greatly improved if one uses conjugate gradient methods. These
use a “conjugate direction” instead of the gradient of the function. The search direction in
each step is given by

dk+1 = −∂f

∂x
(xk+1)T + βkdk

where dk is the current direction and βk is computed in each step using either

• Fletcher-Reeves formula

βk =
‖ ∂f

∂x (xk+1)‖2
‖ ∂f

∂x (xk)‖2 (4.1)

• Polak-Ribière formula:

βk =
∂f
∂x (xk+1)

(
∂f
∂x (xk+1)− ∂f

∂x (xk)
)T

∂f
∂x (xk) ∂f

∂x (xk)T
(4.2)

• Hestenes-Stiefel formula:

βk =
∂f
∂x (xk+1)

(
∂f
∂x (xk+1)− ∂f

∂x (xk)
)T

dT
k

(
∂f
∂x (xk+1)− ∂f

∂x (xk)
)T

(4.3)
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The steps of the conjugate gradient method are given in Algorithm 4.5.

Algorithm 4.5 Conjugate gradient method for minimization

Input: Objective function f(x), gradient ∂f
∂x

Input: Initial point x0, tolerance ε
First direction d0 = − ∂f

∂x (x0)T

repeat
Perform a one-dimensional line search in the direction dk, i.e.

min
sk

F (sk) = min
sk

f(xk + skdk)

Compute
xk+1 = xk + skdk

Compute βk using (4.1), (4.2) or (4.3).
Compute the new direction

dk+1 = −∂f

∂x
(xk+1)T + βkdk

Set k ← k + 1
until Stopping criterion is satisfied.

Output: Minimum x∗ with tolerance ε

A shortcoming of conjugate gradient methods is that if the step size computed in each
iteration is not precise, the errors accumulate. To overcome this, the method may be restarted
after every n steps, n being the number of variables, i.e., after n steps again the gradient is
used.

Even more efficient than conjugate gradient methods are the so-called quasi-Newton
methods. These can be regarded as approximations of the Newton method, as they use only
the information of the gradient to approximate the second order derivative. However, they
also compute a step-size as gradient methods do. The general algorithm is described in Al-
gorithm 4.6.

The Davidon-Fletcher-Powell (DFP) formula is given by:

Bk+1 = Bk +
∆xk∆xT

k

∆xT
k ∆GT

k

− Bk∆GT
k (Bk∆GT

k )T

∆GkBk∆GT
k

(4.4)

while the Broyden-Fletcher-Goldfarb-Shanno (BFGS) relation is

Bk+1 = Bk +
∆GT

k ∆Gk

∆Gk∆xk
− Bk∆xk(Bk∆xk)T

∆xT
k Bk∆xk

(4.5)

where Bk is the approximation of the inverse of the Hessian in the kth step, ∆xk = xk+1 −
xk, and ∆Gk = ∂f

∂x (xk+1)− ∂f
∂x (xk).
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Algorithm 4.6 Quasi-Newton method for minimization

Input: Objective function f(x), gradient ∂f
∂x

Input: Initial point x0, tolerance ε
Set k = 0 and B0 = I
repeat

Compute the search direction:

dk = −Bk
∂f

∂x
(xk)T

Find the step length by minimizing f(xk + skdk)
Compute a new point xk+1 = xk + skdk

Compute the differences:
∆xk = xk+1 − xk

∆Gk =
∂f

∂x
(xk+1)− ∂f

∂x
(xk)

Update Bk+1 using DFP (4.4) or BFGS (4.5).
Set k ← k + 1

until Stopping criterion is satisfied.
Output: Minimum x∗ with tolerance ε

4.2 Example

Consider the function f : R2 → R, f(x) = x4
1 + 2x2

1x2 + 2x2
2 − x2 + 3, represented

in Figure 5.1. This function has a unique minimum in
(
0 1

4

)T
, verifiable using analytic

methods. Here, we attempt to find this minimum using the numerical methods described
above, with the stopping criterion being ‖ ∂f

∂x (xk)‖ < 0.001. In all cases, we start the search

from the initial point
(
2 2

)T
.

Figure 4.1: Graphical representation of the function f(x) = x4
1 + 2x2

1x2 + 2x2
2 − x2 + 3.
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The gradient of the function is

∂f

∂x
= (4x3

1 + 4x1x2 2x2
1 + 4x2 − 1)

and the Hessian is
∂2f

∂x2
=

(
12x2

1 + 4x2 4x1

4x1 4)

)

The trajectories given by the successive points found by the Newton and modified Newton
method are presented in Figure 4.2. As can be seen, both methods converge to the same point,
the local minimizer of the function. However, while the Newton method requires only 9
steps, the modified Newton method takes 352 steps. The computation time is 0.01sec for the
Newton method and 0.40sec for the modified Newton method. This is because, although the
Hessian does not have to be evaluated after the first step, the number of iterations increases
by almost two orders of magnitude.
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Figure 4.2: Trajectories obtained using the Newton and modified Newton methods.

Let us now exemplify the steepest descent methods with constant and computed step-size,
using un-normalized gradients. The trajectories given by the successive points found by the
two methods are presented in Figure 4.3. Both methods converge to the same point. For this
specific example, the steepest descent with variable step requires 9 steps, 0.015747sec, and
with fixed step size s = 0.05, 97 steps are made in 0.058913sec. For computing the step size,
the golden section method has been implemented, and a step-size smaller than 2 has been
searched for with tolerance ε = 0.001.

Consider now the conjugate gradient method using the Fletcher-Rieves formula. The
trajectory is shown in Figure 4.4. The method required 11 steps and the elapsed time was
0.02sec.

Finally, let us see the quasi-Newton method with the Davidon-Fletcher-Powell formula.
The trajectory is shown in Figure 4.5. The method required 6 steps and the elapsed time was
0.01sec.

For this particular example all the methods perform is a similar way, the performance
differences being very small. This is because there is only one minimum point. For other
objective functions, with several minima, different methods may converge to different points,
or even diverge. This also holds if different stopping criteria or if other line search methods
– whenever needed – are used.
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Figure 4.3: Trajectories obtained by the steepest descent method with fixed and variables
step-sizes.
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Figure 4.4: Trajectory obtained by a conjugate gradient method.

4.3 Exercises
Consider the following functions f : Rn → R. Implement and compare the Newton, mod-
ified Newton, fixed-step gradient, variable-step gradient methods, conjugate gradient and
quasi-Newton methods for finding a local minima. Use the golden section or the Fibonacci
method to determine the step-size at each step.

1. f(x1, x2) = x6
1 + 3x1x2 + x2

2

2. f(x1, x2) = 18x2
1 + 20x4

2 + x1x2 + x2
2

3. f(x1, x2) = 5x4
1 + x2

1x2 + x2
2 − 3x2 + 1

4. f(x1, x2) = (cos(2π))x1 + x1x2 + x2
2 + x2

1

5. f(x1, x2) = 32x1x
2
2 + 9x2

2 + 18x2
1 + 3

6. f(x1, x2) = x3
1 + 3x4

1 + 31x1x2 + x2
2
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Figure 4.5: Trajectory obtained by a quasi-Newton method.

7. f(x1, x2) = 10x2
1 + 6x2

2 + 8x4
1x

4
2 + 24

8. f(x1, x2) = 81x2
1 + 27x1x2 + 18x2

2 + x4
2 − 9

9. f(x1, x2) = x1x
3
2 + 9x2

1 − 3x2
2 + 8

10. f(x1, x2) = x2
1 − x2

2 + 8x1x2 − x4
2 + 1

11. f(x1, x2) = −x2
1 − x2

2 + 18x1x
3
2 − 3

12. f(x1, x2) = 5x2
1 + 3x1x2 − x2

2 + x4
2

13. f(x1, x2) = x3
1 + 6x4

1 − 3x2
2 + 2x6

2

14. f(x1, x2) = (x1 + 43x2)3 + 3x2
1 − 5

15. f(x1, x2) = (x1 + x2)4 − (x1 + x2)2

16. f(x1, x2) = 33x2
1 + (x2 − x1)2 + x1x2

17. f(x1, x2) = x1x2 + 3x2 + x2
1 + x2

1 + x2
2

18. f(x1, x2) = x1x2 + x2
1x

2
2 + 5x2

1 + 1

19. f(x2, x4) = x2
2 + x3

4 + x6
2x

2
4

20. f(x1, x2) = x2
1 + 2x1x

3
2 + x2

2

21. f(x1, x2) = 3x2
1 + 2x4

1 − x2 + x2
2 + 1

22. f(x1, x2) = (x1 − x2)3 + (2x1 + x2)2

23. f(x1, x2) = x4
1 + 2x2

1x2 + x6
2 + 6x1x

2
2 + 3

24. f(x1, x2) = x1x2 + x2
2 + x4

2 + 3x4
1 − 1

25. f(x1, x2) = 2x2
1x2 + 31x4

1 + 18x2
2 + 3
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26. f(x1, x2) = 11x1 + 22x2
1x2 + x2

2 + 31x2
1

27. f(x1, x2) = 2x2
2 + 3x4

2 + 5x2
1 + 3

28. f(x1, x2) = −x3
1 + x4

1 + x2 + x2
2

29. f(x1, x2) = x2
1x

2
2 + 113x1x2 − 1

30. f(x1, x2) = x3
1 + 6x4

1 + x2
2 + x4

2

31. f(x1, x2) = x4
1 + x6

2 + x1x2 − 8

32. f(x1, x2) = −10x2 + x2
2 + x4

2 + 3x2
1 − 1

33. f(x1, x2) = x2
1x2 + 11x4

1 + 18x2
2 − 15

34. f(x1, x2) = x1 + 2x2
1x2 + 2x2

2 + 4x2
1

35. f(x1, x2) = x2
1x2 + 5x3

2 + x4
2 + 3x2

1

36. f(x1, x2) = x1x2 + 3x2
2 + 4x4

2 + x2
1

37. f(x1, x2) = ex2
1 + x2

2 − 3 + 2x2

38. f(x1, x2) = 2x2
1 + 3x1x2 + x3

2 + x2
2 − 1

39. f(x1, x2) = (x2
1 − 1)2 + x2

2 − 3x2 + 1

40. f(x1, x2) = x2
1e

x1 + 51x2 + x4
2 + 3

41. f(x1, x2) = 6x2
1x

2
2 + 3x1x2 − 1

42. f(x1, x2) = 4x3
1 + x4

1 + x1x
2
2 + x4

2

43. f(x1, x2) = x4
1 + x2 + 3x1 + 6

44. f(x1, x2) = x4
1 + 2x2

1x2 + x2
2 + 3

45. f(x1, x2) = ex2
1−3 + x2

2 − 3x2

46. f(x1, x2) = x1x
3
2 + 2x2

1 + 2x4
2 − 5

47. f(x1, x2) = x2
1x2 + 6x2

2 − 3x1x2 + 4x4
1 + 3x2

1

48. f(x1, x2, x3) = 2x2
1 + 3x2

2 + x2x3 + 6x2
3

49. f(x1, x2) = −2x2
1 + x1x

3
2 − x2

2

50. f(x1, x2) = 3x2
1 − x4

1 + x2 + x2
2 + 1

51. f(x1, x2) = (x1 − x2)2 + (x1 + x2)2

52. f(x1, x2) = x2
1 + 2x2

1x2 + x1
26 + 6x1x

2
2 + 3

53. f(x1, x2) = x1x2 + x2
2 − x4

2 + 3x4
1 + 21

54. f(x1, x2) = 2x2
1x2 + 25x4

1 + 9x2
2 + 13

31



32



Chapter 5

Derivative-free methods

5.1 Introduction

The methods presented in Chapter 4 are first and second order methods, i.e., they make use of
the gradient and the Hessian of the objective function. In many cases, the objective function
may not be differentiable in the vicinity or in the minimum we are looking for. In these cases,
a zero-order or derivative-free method has to be used. Two such methods are the Nelder-Mead
and the Rosenbrock methods.

The Nelder-Mead (also called simplex or amoeba) method, developed by Nelder and
Mead in 1965 (see (Rao, 1978)), is based on the iterative modification of a simplex. A
simplex is a geometric figure formed by a set of n+1 points in the n-dimensional space. For
instance, in 2 dimensions, a simplex is a triangle, while in the 3-dimensional space, a simplex
is a tetrahedron. The method replaces one point of the simplex in each iteration, such that the
new simplex is gradually moved towards the optimum point. The movement of the simplex
is achieved by using four operations: reflection, expansion, contraction, and shrinking. The
algorithm stops when all edges of the simplex become smaller than a predefined tolerance
or when the simplex degenerates (e.g., in 2 dimensions, the vertices of the triangle become
co-linear).

For the two-dimensional case, the details are given in Algorithm 5.1.

It has been recently proven that for the 2-dimensional case, the Nelder-Mead method
converges to a local optimum. For higher-dimensions, no convergence results exist yet.

Another derivative-free method, whose convergence to a local optimum has been proven,
is the Rosenbrock. The Rosenbrock method (also called the method of rotating coordinates) is
based on rotating the coordinates such that the first one is oriented towards a locally estimated
minimum while the rest are orthogonal to it and are normalized. To rotate the coordinates,
the so-called Gramm-Schmidt ortho-normalization procedure is used.

The Rosenbrock method is summarized in Algorithm 5.2.

It should be noted that the Gramm-Schmidt ortho-normalization procedure is numerically
unstable and if the new coordinates are not orthogonal, the errors accumulate and the method
may diverge.
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Algorithm 5.1 Nelder-Mead method for 2 variables
Input: Objective function f(x, y), tolerance ε, initial vertices V1, V2, V3

while stop criterion not satisfied do
Compute f(V1), f(V2), f(V3) and set the labels B, G, W
Compute M = (B + G)/2 and R = 2M −W
if f(R) < f(W ) then

Compute E = 2R−M , f(E)
if f(E) < f(R) then

Replace W with E
else

Replace W with R
end if

else
Compute C1 = (M + W )/2
Compute C2 = (M + R)/2
Choose C = argminC1,C2

(f(C1), f(C2))
if f(C) < f(W ) then

Replace W with C
else

Compute S = (B + W )/2
Replace W with S
Replace G with M

end if
end if
Set V1 = B
Set V2 = G
Set V3 = W

end while
Output: Minimum with tolerance ε
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Algorithm 5.2 Rosenbrock method
Input: Objective function f(x), initial point x0, n orthogonal directions d10, d20, ..., dn0

Input: Initial step lengths s = [s10 s20 . . . sn0]T , α > 1 and −1 < β < 0, tolerance ε
Set k = 1
while stop criterion not satisfied do

Initialize the vector of successful steps for all directions c = [0 0 . . . 0]
Initialize flag for oscillation: oscillation = false
Initialize a vector to store successes on each direction: success = [0 0 . . . 0]
Initialize a vector to store failures on each direction: fail = [0 0 . . . 0]
while oscillation = false do

for all directions i = 1, 2, . . . , n do
if f(xk + sidi) ≤ f(xk) then

Compute xk+1 = xk + sidi

Set k ← k + 1
Mark a success on direction di. Set success(i) = 1
Add the step length to ci. Set ci ← ci + si

Increase the step length. Set si ← si · α
else

Mark a failure on direction di. Set fail(i) = 1
Decrease the step length. Set si ← si · β

end if
end for
if all sucess(i) = 1 and all fail(i) = 1 then

Set oscillation = true
end if

end while
a1 = c1d1 + c2d2 + · · ·+ cndn

a2 = c2d2 + · · ·+ cndn

. . .
an = cndn

Compute the new directions using the Gramm-Schmidt procedure from a
b1 = a1, d1 = b1

‖b1‖
b2 = a2 − aT

2 b1
‖b1‖2 b1, d2 = b2

‖b2‖
b3 = a3 − aT

3 b1
‖b1‖2 b1 − aT

3 b2
‖b2‖2 b2, d2 = b3

‖b3‖
...
bn = an −

∑n−1
i=1

aT
n bi

‖bi‖2 bi, dn = bn

‖bn‖
end while

Output: Minimum with tolerance ε
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5.2 Example

Consider the function f : R2 → R, f(x) = x4
1 + 2x2

1x2 + 2x2
2 − x2 + 3, represented

in Figure 5.1. This function has a unique minimum in
(
0 1

4

)T
, verifiable using analytical

methods. Here, we attempt to find this minimum using the Nelder-Mead and Rosenbrock
methods described above.

Figure 5.1: Graphical representation of the function f(x) = x4
1 + 2x2

1x2 + 2x2
2 − x2 + 3.

Let us use the Nelder-Mead method first. The initial points are taken as [0, 0]T , [0, 1]T ,
[1, 0]T (represented in Figure 5.2), and the tolerance is chosen as ε = 0.0001.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

Figure 5.2: Original simplex for the Nelder-Mead method.

After the first step, this simplex is contracted, see Figure 5.3, the vertices becoming
[0, 0]T , [0, 1]T , [0.5, 0.25]T .

The simplex obtained after 10 steps in presented in Figure 5.4, the vertices becoming
[0.002, 0.194]T , [0.037, 0.307]T , [−0.057, 0.233]T .

After 37 steps, the lengths of the edges of the simplex become less than the chosen toler-
ance ε, the vertices being 0.1210−4, 0.25]T , [−0.6510−4, 0.25]T , [0.310−4, 0.25]T , which
can be well approximated by [0, 0.25], see Figure 5.5.
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0 0.2 0.4 0.6 0.8 1
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Figure 5.3: Simplex after the first step using the Nelder-Mead method.
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Figure 5.4: Simplex after 10 steps using the Nelder-Mead method.

Let us now see the Rosenbrock method. To compare it with the Nelder-Mead method,
we choose the initial point [0, 0]T (one of the vertices used by the Nelder-Mead method) and
the same tolerance ε = 0.0001 on the distance between two consecutive points.The initial
stepsize is [0.5, 0.5]T , α = 3, and β = −0.8. The resulting trajectory is shown in figure
5.6, and the final value is [−0.00, 0.25]T . The Gramm-Schmidt orthonormalization has been
performed only once, and 8 successful steps were taken.

For the initial point [2, 2]T , tolerance ε = 10−5, initial stepsize [0.5, 0.5]T , α = 3,
β = −0.8, the same result of [0.00, 0.25]T is obtained, but in this case after 51 successful
steps and performing 23 times the Gramm-Schmidt orthonormalization. The trajectory is
presented in Figure 5.7.

It has to be noted that although for this particular example both methods found the local
minimum, for other objective functions, with several minima, they may converge to different
points, or even diverge.
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Figure 5.5: Simplex after 37 steps using the Nelder-Mead method.
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Figure 5.6: Trajectory from [0, 0]T using the Rosenbrock method.

5.3 Exercises
Consider the following functions f : Rn → R. Find their minima using the Nelder-Mead
and Rosenbrock methods.

1. f(x1, x2) = x2
1 + x2

2 − 4x1 − 4x2

2. f(x1, x2) = 3x2
1 + 2x4

1 − x2 + x2
2 + 1

3. f(x1, x2) = ex2
1 + x2

2 − 3 + 2x2

4. f(x1, x2) = (x2
1 − 1)2 + x2

2 − 3x2 + 1

5. f(x1, x2) = x2
1e

x1 + 51x2 + x4
2 + 3

6. f(x1, x2) = x4
1 + 2x2

1x2 + x2
2 + 3

7. f(x1, x2) = ex2
1−3 + x2

2 − 3x2

8. f(x1, x2) = x1x
3
2 + 2x2

1 + 2x4
2 − 5
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Figure 5.7: Trajectory from [2, 2]T using the Rosenbrock method.

9. f(x1, x2) = x2
1x2 + 6x2

2 − 3x1x2 + 4x4
1 + 3x2

1

10. f(x1, x2) = x6
1 + 3x1x2 + x2

2

11. f(x1, x2) = 18x2
1 + 20x4

2 + x1x2 + x2
2

12. f(x1, x2) = 5x4
1 + x2

1x2 + x2
2 − 3x2 + 1

13. f(x1, x2) = (cos(2π))x1 + x1x2 + x2
2 + x2

1

14. f(x1, x2) = x3
1 + 3x4

1 + 31x1x2 + x2
2

15. f(x1, x2) = 6x2
1x

2
2 + 3x1x2 − 1

16. f(x1, x2) = 4x3
1 + 6x4

1 + 3x1x
2
2 + x4

2

17. f(x1, x2) = x4
1 + 2x2

1x2 + x6
2 + 6x1x

2
2 + 3

18. f(x1, x2) = x1x2 + x2
2 + x4

2 + 3x4
1 − 1

19. f(x1, x2) = 2x2
1x2 + 31x4

1 + 18x2
2 + 3

20. f(x1, x2) = x1x2 + 3x2
2 + 4x4

2 + x2
1

21. f(x1, x2) = x4
1 + x2

2 + 3x1 + 6

22. f(x1, x2) = 10x2
1 + 6x2

2 + 8x4
1x

4
2 + 24

23. f(x1, x2) = 81x2
1 + 27x1x2 + 18x2

2 + x4
2 − 9

24. f(x1, x2) = 5x2
1 + 3x1x2 − x2

2 + x4
2

25. f(x1, x2) = x3
1 + 6x4

1 − 3x2
2 + 2x6

2

26. f(x1, x2) = 33x2
1 + (x2 − x1)2 + x1x2

27. f(x1, x2) = ex2
1 + 3x2

1 + 1
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28. f(x1, x2) = x4
1 + 3x2

1x
2
2 + 5x4

2 + 15

29. f(x1, x2) = x6
1 + x4

1 + x2
1x

2
2 + x4

2 − 3

30. f(x1, x2) = x2
1x

2
2 + 6x1x

2
2 + 15x2

2 − 1

31. f(x1, x2) = x1x2 + 18x2
1 + 20x2

2 + x4
2

32. f(x1, x2) = x2
1 + 38x1x2 + 1024x2

2 + 45x6
2

33. f(x1, x2) = x1x
3
2 + 3x2

1 + 64x2
2 + 128x4

2

34. f(x1, x2) = x2
1x

2
2 + 6x1x

2
2 − 2x2

1x2 − 10x1x2 + 9x2
2 − 12x2 + x2

1 + 4x1 + 4

35. f(x1, x2) = x2
1 − 2x2

1x2 + 4x1 + x2
1x

2
2 − 4x1x2 + 4

36. f(x1, x2) = 1− 2x1x2 + 2x2 + x2
1x

2
2 − 2x1x

2
2 + x2

2

37. f(x1, x2) = x2
1x

2
2 − 2x1x

2
2 + x2

2

38. f(x1, x2) = 9− 18x1x2 + 6x2 + 9x2
1x

2
2 − 6x1x

2
2 + x2

2

39. f(x1, x2) = 9− 18x2 + 6x1 + 9x2
2 − 6x1x2 + x2

1

40. f(x1, x2) = 25− 10x2 + 10x2
1 + x2

2 − 2x2x
2
1 + x4

1

41. f(x1, x2) = x4
1 − x3

1 + x2
2 − 3x1

42. f(x1, x2) = 5x2
1 + 2x2

2 + 8x4
1x

4
2

43. f(x1, x2) = 8x2
1 − 2x1x2 + 18x2

2 + x4
2 − 9

44. f(x1, x2) = x2
1 + 13x1x2 − 2x2

2 + x4
2

45. f(x1, x2) = x1 + x4
1 − 3x2

2 + 2x6
2

46. f(x1, x2) = 3x2
1 + (2x2 − x1)2 + x1x2

47. f(x1, x2) = x4
1 + 3x2

1 + 1 + x4
2

48. f(x1, x2) = x6
1 + x2

1x
2
2 + 5x4

2 + 15

49. f(x1, x2) = x6
1 + x4

1 − x2
1x

2
2 + x4

2 − 3

50. f(x1, x2) = x2
1x

4
2 + 6x1x

2
2 + 15x2

2 − 1 + x2
1

51. f(x1, x2) = x1x2 + 8x2
1 + 14x2

2 + x4
2

52. f(x1, x2) = x2
1 + 2x1x2 + 10x2

2 + 45x6
2

53. f(x1, x2, x3) = 29− 10x2 + 10x1 + x2
2 − 2x2x1 + x2

1 + x2
3 − 4x3

54. f(x1, x2, x3) = x2
2 + 2x2x1 + x2

1 + x2
3 − 4x3 + 4

55. f(x1, x2, x3) = x2
2 − 2x2x1 + x2

1 + x2
3 − 4x3 + 4

56. f(x1, x2, x3) = x2
2 − 2x2x1 − 2x2 + x2

1 + 2x1 + 5 + x2
3 − 4x3
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57. f(x1, x2, x3) = x2
2 − 2x2x1 + 2x2 + x2

1 − 2x1 + 2 + x2
3 − 2x3

58. f(x1, x2, x3) = x2
2 − 6x2x1 + 2x2 + 9x2

1 − 6x1 + 2 + x2
3 − 2x3

59. f(x1, x2, x3) = x2
2 − 6x2x1 + 4x2 − 2x2x3 + 9x2

1 − 12x1 + 6x1x3 + 4− 4x3 + x2
3

60. f(x1, x2, x3) = x2
2 − 2x2x1 + 4x2 − 2x2x3 + x2

1 − 4x1 + 2x1x3 + 4− 4x3 + x2
3

61. f(x1, x2, x3) = x2
2− 2x2x1 + 12x2− 2x2x3 + x2

1− 12x1 + 2x1x3 + 36− 12x3 + x2
3

62. f(x1, x2, x3) = x2
2x

2
1−2x2x

2
1+12x2x1−2x2x1x3+x2

1−12x1+2x1x3+36−12x3+x2
3
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Chapter 6

Linear programming – the
simplex method

6.1 Introduction
A linear programming problem is defined as the optimization of a linear function subject to
linear constraints, i.e.,

max f(x) = cT x subject to

Ax 4 b

x < 0

(6.1)

or
min f(y) = bT y subject to

AT y < c

y < 0

(6.2)

where < (4) means that each element of the vector on the left hand side is larger (smaller)
than the corresponding element of the vector on the right-hand side. The form (6.1) is called
the standard maximization form, while (6.2) is the standard minimization form (Raica, 2009;
Rao, 1978).

The linear programming problem has first been recognized by economists in the 1930s
while developing methods for the optimal allocation of resources. A solution to a linear
programming problem can be found by the simplex method, developed by G. Dantzig in 1947
(Rao, 1978). the method is being used in a large number of applications, such as petroleum
refineries, optimal production planning, food processing, metal working industries, etc.

Once a linear programming problem is in the standard maximization form, the simplex
method can be applied as follows (Raica, 2009):

1. Inequality constraints (except for those that state that the variables are positive) are
converted into equalities by adding non-negative slack variables.

2. An initial basic feasible solution is chosen. A basic feasible solution is one that satisfies
all the constraints using a minimum number of non-zero variables.
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3. The initial table is written, as follows:
xb1 x1 x2 ... xn+m

xb2 a11 a12 ... a1,n+m b1

... ... ... ... ... ...
xbm am1 am2 ... am,n+m bm

objective c1 c2 ... cn+m −f

The entries on the left column indicate the basic variables, ai,j , bi, ci are elements of
the matrix A and the vectors b and c, and f is the value of the function for the chosen
basic feasible solution.

4. Select the pivot column by choosing the largest positive number from the objective
row, excluding −f . This step will identify the non-basic variable to enter the basis.

If all the numbers (excluding−f ) in the last row are negative or zero the basic solution
is the optimal one and the algorithm will stop here.

5. Select the pivot row. This corresponds to the basic variable to leave the basis. The
intersection of the pivot row and the pivot column is the pivot element or simply the
pivot. It must always be a positive number.

The pivot element is the one that minimizes the ratio bk/akj over those rows for which
aij > 0.

If all elements in the pivot column are negative or zero (akj ≤ 0, k = 1,m) then the
problem is unbounded above (the maximum of the problem is infinity).

6. Perform the pivot operation, when the pivot element is aij :

• Divide the pivot row i by the pivot aij

• Add −akj/aij × row(i) to row k for each k 6= i (including the objective row).
Each element in the rows (non-pivot) will be added by the element in the same
row and pivot column divided by the pivot and multiplied by the element in the
same column and pivot row.

7. Repeat the operations above until the basic feasible solution is optimal. The algorithm
will stop when all the elements in the last row (objective) are negative or zero. The
bottom right entry, which is −f will not be included in this test.

8. The optimal value of the objective function is obtained as minus the bottom-right entry
of the table, and is expressed in terms of the basic variables.

6.2 Examples
Consider the following linear programming problem:

max f(x1, x2) = 3x1 + 3x2, subject to

9x1 + 2x2 ≤ 196 (C1)

8x1 + 10x2 ≤ 105 (C2)

x1 ≥ 0

x2 ≥ 0

(6.3)
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The constraints and the feasible set are presented in Figure 6.1.
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Figure 6.1: Constraints and feasible set for (6.3).

It is quite clear from Figure 6.1 that the constraint C1 is unnecessary. However, let us pro-
ceed with solving the linear programming problem. The problem is in standard maximization
form. We will follow the steps described in Section 6.1.

1. The constraints (C1) and (C2) are converted to equalities by introducing the slack vari-
ables x3 and x4. Consequently, the constraints become

9x1 + 2x2 + x3 = 196

8x1 + 10x2 + x4 = 105

2. We choose the initial basic feasible solution x3 = 196 and x4 = 105.

3. The initial table is:
x1 x2 x3 x4

x∗3 9 2 1 0 196
x∗4 8 10 0 1 105

3 3 0 0 0

4. Select the pivot column: in the last line of the table, both the first and the second
columns have the value 3, so any of them can be selected. Here, we select the first
column. This means that the variable that will enter the basis is x1.

5. Select the pivot row. For this, we first divide the last column of the table with the pivot
column:

x1 x2 x3 x4

x∗3 9 2 1 0 196 196
9

x∗4 8 10 0 1 105 105
8

3 3 0 0 0

Since 105
8 < 196

9 , the pivot row is the second one, and x∗4 leaves the basis. The pivot
element is 8.
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6. Pivot operation: the pivot row is divided by the pivot element, and for the other ele-
ments on the pivot column zeros are introduced, by adding −akj/aij × row(i) to row
k for each k 6= i (including objective row). The new table is:

x1 x2 x3 x4

x∗3 0 -9.2500 1 -1.1250 77.8750
x∗1 1.0000 1.2500 0 0.1250 13.1250

0 -0.7500 0 -0.3750 -39.3750

7. All the elements in the last row are 0 or negative, thus the algorithm stops. We read the
results in terms of the basic variables from the table above:

x3 = 77.8750

x1 = 13.125

max
x1,x2

f(x1, x1) = 39.3750

As can be seen, the maximum of the function is obtained only in terms of x1 and x3.
If we verify the constraints, we obtain: x2 = 0 and x4 = 0.

Consider now the following linear programming problem:
min f(y1, y2) = 173x1 + 182x2, subject to

3y1 + 2y2 ≥ 5

3y1 + 8y2 ≥ 2

y1 ≥ 0

y2 ≥ 0

The problem above is in standard minimization form, thus we first rewrite it in standard
maximization form:

max f(x1, x2) = 5x1 + 2x2, subject to

3x1 + 3x2 ≤ 173 (C1)
2x1 + 8x2 ≤ 182 (C2)

x1 ≥ 0

x2 ≥ 0

(6.4)

The constraints and the feasible set is presented in Figure 6.2.
Let us proceed with solving the linear programming problem.

1. The constraints (C1) and (C2) are converted to equalities by introducing the slack vari-
ables x3 and x4. Consequently, the constraints become

3x1 + 3x2 + x3 = 173
2x1 + 8x2 + x4 = 182

2. We choose the initial basic feasible solution x3 = 173 and x4 = 182.

46



6.2 EXAMPLES

0 10 20 30 40 50 60
0

10

20

30

40

50

60

x
1

x
2 C1

C2

Figure 6.2: Constraints and feasible set for (6.4).

3. The initial table is:
x1 x2 x3 x4

x∗3 3 3 1 0 173
x∗4 2 8 0 1 182

5 2 0 0 0

4. Select the pivot column: in the last line of the table, the largest value corresponds to
the first column. Thus, the first column is the pivot column, and the variable that will
enter the basis is x1.

5. Select the pivot row. For this, we first divide the last column of the table with the pivot
column:

x1 x2 x3 x4

x∗3 3 3 1 0 173 173
3

x∗4 2 8 0 1 182 91
5 2 0 0 0

Since 173
3 < 91, the pivot row is the first one, and x∗3 leaves the basis. The pivot

element is the 3.

6. Pivot operation. The new table is:

x1 x2 x3 x4

x∗1 1.0000 1.0000 0.3333 0 57.6667
x∗4 0 6.0000 -0.6667 1.0000 66.6667

0 -3.0000 -1.6667 0 -288.3333

7. All the elements in the last row are 0 or negative, thus the algorithm stops. We read the
results in terms of the basic variables from the table above:

x1 = 57.6667

x4 = 66.6667

max
x1,x2

f(x1, x1) = 288.33
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As can be seen, the maximum of the function is obtained only in terms of x1 and x4.
If we verify the constraints, we obtain: x2 = 0 and x3 = 0.

6.3 Exercises
Consider the following linear programming problems and solve them using the simplex
method.

1. max f(x1, x2) = x1 + x2 + x3, subject to

x3 + x2 ≤ 1

14x1 + x3 ≤ 4

x1 + x2 − 2x3 = 0

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

2. max f(x1, x2) = x1 + x3, subject to

4x2 + x3 ≤ 50

4x1 + x3 ≤ 10

x1 + x2 − x3 = 0

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

3. max f(x1, x2) = 2x1 + x2, subject to

x1 + 4x2 ≤ 20

5x1 + x2 ≤ 10

x1 ≥ 0

x2 ≥ 0

4. max f(x1, x2) = 4x1 + 3x2, subject to

x1 + 4x2 ≤ 10

5x1 + 3x2 ≤ 10

x1 ≥ 0
x2 ≥ 0

5. max f(x1, x2) = 6x1 + 3x2, subject to

10x1 + 4x2 ≤ 10

5x1 + 10x2 ≤ 10

x1 ≥ 0

x2 ≥ 0
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6. max f(x1, x2) = 5x1 + 3x2, subject to

6x1 + 12x2 ≤ 50

5x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

7. max f(x1, x2) = 4x1 + 3x2, subject to

x1 + 15x2 ≤ 100
5x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

8. max f(x1, x2) = 4x1 + 3x2, subject to

3x1 + 15x2 ≤ 70

5x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

9. max f(x1, x2) = 4x1 + 3x2, subject to

5x1 + 15x2 ≤ 100

5x1 + 2x2 ≤ 20

x1 ≥ 0
x2 ≥ 0

10. max f(x1, x2) = 4x1 + 5x2, subject to

10x1 + 15x2 ≤ 150

6x1 + 2x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

11. max f(x1, x2) = 2x1 + 3x2, subject to

10x1 + 20x2 ≤ 200

3x1 + x2 ≤ 10

x1 ≥ 0

x2 ≥ 0
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12. max f(x1, x2) = 4x1 + 3x2, subject to

3x1 + 20x2 ≤ 100

4x1 + 2x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

13. max f(x1, x2) = 2x1 + 3x2, subject to

33x1 + 50x2 ≤ 300
4x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

14. max f(x1, x2) = 3x1 + 3x2, subject to

18x1 + 40x2 ≤ 250

2x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

15. max f(x1, x2) = 2x1 + 2x2, subject to

20x1 + 30x2 ≤ 300

4x1 + 3x2 ≤ 30

x1 ≥ 0
x2 ≥ 0

16. max f(x1, x2) = 4x1 + 3x2, subject to

13x1 + 20x2 ≤ 150

40x1 + 20x2 ≤ 200

x1 ≥ 0

x2 ≥ 0

17. max f(x1, x2) = x1 + x2, subject to

17x1 + 31x2 ≤ 300

2x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0
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18. max f(x1, x2) = 2x1 + 2x2, subject to

23x1 + 31x2 ≤ 300

2x1 + x2 ≤ 15

x1 ≥ 0

x2 ≥ 0

19. max f(x1, x2) = 4x1 + 3x2, subject to

19x1 + 27x2 ≤ 150
33x1 + 18x2 ≤ 200

x1 ≥ 0

x2 ≥ 0

20. max f(x1, x2) = x1 + x2, subject to

42x1 + 51x2 ≤ 500

2x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

21. min f(x1, x2) = 500x1 + 20x2, subject to

42x1 + 2x2 ≥ 1

51x1 + x2 ≥ 1

x1 ≥ 0
x2 ≥ 0

22. min f(x1, x2) = 150x1 + 200x2, subject to

19x1 + 33x2 ≥ 4

27x1 + 18x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

23. min f(x1, x2) = 300x1 + 15x2, subject to

23x1 + 2x2 ≥ 2

31x1 + x2 ≥ 2

x1 ≥ 0

x2 ≥ 0
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24. min f(x1, x2) = 300x1 + 20x2, subject to

17x1 + 2x2 ≥ 1

31x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

25. min f(x1, x2) = 150x1 + 200x2, subject to

13x1 + 40x2 ≥ 4
20x1 + 20x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

26. min f(x1, x2) = 300x1 + 30x2, subject to

20x1 + 4x2 ≥ 2

30x1 + 3x2 ≥ 2

x1 ≥ 0

x2 ≥ 0

27. min f(x1, x2) = 250x1 + 20x2, subject to

18x1 + 2x2 ≥ 3

40x1 + x2 ≥ 3

x1 ≥ 0
x2 ≥ 0

28. min f(x1, x2) = 300x1 + 20x2, subject to

33x1 + 4x2 ≥ 2

50x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

29. min f(x1, x2) = 100x1 + 20x2, subject to

3x1 + 4x2 ≥ 4

20x1 + 2x2 ≥ 3

x1 ≥ 0

x2 ≥ 0
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30. min f(x1, x2) = 200x1 + 10x2, subject to

10x1 + 3x2 ≥ 2

20x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

31. min f(x1, x2) = 150x1 + 20x2, subject to

10x1 + 6x2 ≥ 4
15x1 + 2x2 ≥ 5

x1 ≥ 0

x2 ≥ 0

32. min f(x1, x2) = 100x1 + 20x2, subject to

5x1 + 5x2 ≥ 4

15x1 + 2x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

33. min f(x1, x2) = 70x1 + 20x2, subject to

3x1 + 5x2 ≥ 5

15x1 + x2 ≥ 3

x1 ≥ 0
x2 ≥ 0

34. min f(x1, x2) = 100x1 + 20x2, subject to

x1 + 5x2 ≥ 4

15x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

35. min f(x1, x2) = 50x1 + 20x2, subject to

6x1 + 5x2 ≥ 5

12x1 + 1x2 ≥ 3

x1 ≥ 0

x2 ≥ 0
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36. min f(x1, x2) = 10x1 + 10x2, subject to

10x1 + 5x2 ≥ 6

4x1 + 10x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

37. min f(x1, x2) = 10x1 + 10x2, subject to

x1 + 5x2 ≥ 4
4x1 + 3x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

38. min f(x1, x2) = 20x1 + 10x2, subject to

x1 + 5x2 ≥ 2

4x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

39. min f(x1, x2) = 50x1 + 10x2, subject to

2x1 + 5x2 ≥ 2

6x1 + x2 ≥ 1

x1 ≥ 0
x2 ≥ 0

40. min f(x1, x2) = x1 + 2x2, subject to

2x1 + 8x2 ≥ 1

3x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

41. max f(x1, x2) = 175x1 + 78x2, subject to

202x1 + 143x2 ≤ 243

393x1 + 137x2 ≤ 442

x1 ≥ 0

x2 ≥ 0

54



6.3 EXERCISES

42. max f(x1, x2) = 494x1 + 68x2, subject to

180x1 + 7x2 ≤ 21

81x1 + 216x2 ≤ 176

x1 ≥ 0

x2 ≥ 0

43. max f(x1, x2) = 116x1 + 192x2, subject to

45x1 + 183x2 ≤ 146
100x1 + 8x2 ≤ 151

x1 ≥ 0

x2 ≥ 0

44. max f(x1, x2) = 59x1 + 30x2, subject to

76x1 + 187x2 ≤ 166

104x1 + 27x2 ≤ 187

x1 ≥ 0

x2 ≥ 0

45. max f(x1, x2) = 94x1 + 150x2, subject to

41x1 + 145x2 ≤ 18

147x1 + 28x2 ≤ 4

x1 ≥ 0
x2 ≥ 0

46. max f(x1, x2) = 85x1 + 166x2, subject to

63x1 + 8x2 ≤ 11

20x1 + 46x2 ≤ 11

x1 ≥ 0

x2 ≥ 0

47. max f(x1, x2) = 174x1 + 73x2, subject to

116x1 + 22x2 ≤ 32

92x1 + 186x2 ≤ 141

x1 ≥ 0

x2 ≥ 0
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48. max f(x1, x2) = 117x1 + 151x2, subject to

35x1 + 129x2 ≤ 96

100x1 + 50x2 ≤ 196

x1 ≥ 0

x2 ≥ 0

49. max f(x1, x2) = 148x1 + 188x2, subject to

18x1 + 131x2 ≤ 87
102x1 + 108x2 ≤ 124

x1 ≥ 0

x2 ≥ 0

50. max f(x1, x2) = 84x1 + 121x2, subject to

143x1 + 136x2 ≤ 145

18x1 + 82x2 ≤ 83

x1 ≥ 0

x2 ≥ 0

51. max f(x1, x2) = 30x1 + 17x2, subject to

22x1 + 149x2 ≤ 138

97x1 + 5x2 ≤ 43

x1 ≥ 0
x2 ≥ 0

52. max f(x1, x2) = 99x1 + 13x2, subject to

64x1 + 4x2 ≤ 158

41x1 + 110x2 ≤ 164

x1 ≥ 0

x2 ≥ 0

53. max f(x1, x2) = 95x1 + 87x2, subject to

46x1 + 26x2 ≤ 98

3x1 + 52x2 ≤ 160

x1 ≥ 0

x2 ≥ 0
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54. max f(x1, x2) = 192x1 + 188x2, subject to

97x1 + 186x2 ≤ 88

195x1 + 134x2 ≤ 81

x1 ≥ 0

x2 ≥ 0
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Chapter 7

Quadratic programming – the
active set method

7.1 Introduction

A quadratic programming problem is an optimization problem where the objective function
is quadratic and the constraints are linear:

min f(x) =
1
2
xT Qx + cT x

A1x = b1

A2x 4 b2

where f : Rn → R, Q ∈ Rn×n, c ∈ Rn.

Here we assume that Q = QT ≥ 0 (positive semi-definite), so that the problem to be
solved is a convex quadratic problem. We have m equality constraints corresponding to
A1x = b1 and p inequality constraints, corresponding to A2x 4 b2. To solve the above
problem, the method of Lagrange multipliers can be used. Recall that the Lagrangean of the
problem can be written as

L(x, λ) =
1
2
xT Qx + cT x +

m∑

i=1

λi(aix− bi) +
m+p∑

j=m+1

λj(ajx− bj) (7.1)

where ai (aj) denotes the ith (j − mth) row of the matrix A1 (A2)and λ is the vector of
m + p Lagrange multipliers.

59



CHAPTER 7. QUADRATIC PROGRAMMING – THE ACTIVE SET METHOD

We can write the Karush-Kuhn-Tucker (KKT) conditions for this problem:

∂L

∂x
= 0 (7.2)

aT
i x = bi, i = 1, . . . , m (7.3)

aT
j x ≤ bj , j = m + 1, . . . , m + p (7.4)

λj(aT
j x− bj) = 0, j = m + 1, . . . , m + p (7.5)

λj ≥ 0, j = m + 1, . . . , m + p (7.6)

λi , i = 1, . . . , m unrestricted in sign (7.7)

Since the objective function is convex and the constraints are linear, the KKT conditions are
both necessary and sufficient for a point x∗ to be an optimum.

One method to solve a convex quadratic problem is the active set method. An active set
is the set of constraints that are active (i.e., they are satisfied as equalities) at a certain point.
Let us assume now that there are no equality constraints, i.e., the constraints are Āx 4 b̄. The
algorithm for the active set method is described in Algorithm 7.1.

7.2 Example
Consider the following convex quadratic programming problem:

min f(x1, x2) =
1
2

(
x1

x2

)T (
8 5.5

5.5 13

)(
x1

x2

)
+

(−7 2
)(

x1

x2

)

subject to
x1 + 10x2 ≤ 25

x1 − x2 ≤ 3

−x1 + 3x2 ≤ 4

−x1 − 3x2 ≤ −6

(7.13)

The constraints (7.13) and the resulting feasible set, together with the contour plot of the
objective function are illustrated in Figure 7.1.

As can be seen, the unconstrained minimum of the objective function is outside the fea-
sible set. Let us proceed with the active set method, as described by Algorithm 7.1.

A feasible initial point can be chosen e.g., as the intersection of C1 and C3, x10 = 35
13 ,

x20 = 29
13 . The corresponding working set is W0 = {1, 3}, as C1 and C3 are active at this

point. The gradient at this point is1
(

26.8
45.8

)
, and the linear matrix equation




8 5.5 1 −1
5.5 13 10 3
1 10 0 0
−1 3 0 0




(
d1

λ

)
=




−26.80
−45.80

0
0




1Values are truncated to two decimal places.
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Algorithm 7.1 Active set method
Input: Parameters of the quadratic objective function: Q and c
Input: Constraints: Ā and b̄, initial feasible point x0, initial working set W0

Compute the gradient at the current point: g0 = Qx0 + c
Compute the matrix A having the rows ai, i ∈ Wk

Solve the linear system (
Q AT

A 0

)(
d0

λ

)
=

(−g0

0

)
(7.8)

Set k = 0
while (not all λi ≥ 0, i ∈ Wk ∩ {1, 2, ..., m}) or (dk 6= 0) do

if dk = 0 then
Check optimality:
if λi ≥ 0, i ∈ Wk ∩ {1, 2, ..., m} then

Stop and return the current point xk

else
Find j = argmin(λj)
Remove constraint j from the working set Wk

Keep the same point for the next step: xk+1 = xk

end if
else

Compute the step length αk from:

αk = min
i/∈Wk, aT

i dk>0

(
1,

bi − aT
i xk

aT
i dk

)
(7.9)

Compute the new point: xk+1 = xk + αkdk

if αk < 1 then
Find the blocking constraint with index

ib = argmini/∈Wk, aT
i dk>0

(
1,

bi − aT
i xk

aT
i dk

)
(7.10)

Add the constraint to the working set Wk

end if
end if
Set k ← k + 1
Compute the gradient of the objective function at the current point:

gk = Qxk + c (7.11)

Compute the matrix A having the rows ai, i ∈ Wk

Solve the linear system (
Q AT

A 0

)(
dk

λ

)
=

(−gk

0

)
(7.12)

end while
Output: Minimum point
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Figure 7.1: The constraints (7.13) and the feasible set.

has to be solved. Since there are 2 active constraints, 2 Lagrange multipliers have to be
computed. The solution is

d1 =
(

0
0

)

λ =
(−9.71

17.10

)

As can be seen, the new directions are 0, but one of the Lagrange multipliers is negative.
Thus, the corresponding constraint (C1) is removed from the working set, which becomes
W (1) = {3}. The new point is the same as the previous.

The new linear matrix equation to be solved is:



8 5.5 1
5.5 13 3
−1 3 0




(
d2

λ

)
=

(−26.80
−45.80

)

with only one active constraint. The solution is

d2 =
(−3.20
−1.07

)

λ =
(−4.75

)

The direction is no longer 0, therefore we move along the new direction. We compute the
stepsize αk as

αk = min
i/∈Wk, aT

i dk>0

(
1,

bi − aT
i xk

aT
i dk

)

The last constraint (C4) blocks the direction, with a α = 0.52. Therefore, the new point is

x1 = x0 + αd2 =
(

1
1.66

)
and the new working set becomes W = {3, 4}. The new matrix

equation is 


8 5.5 −1 −1
5.5 13 3 −3
−1 3 0 0
−1 −3 0 0




(
d3

λ

)
=




−10.16
−29.16

0
0



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where g1 =
(−10.16
−29.16

)
is the gradient of the function in the new point. The solution of the

matrix equation above is

d3 =
(

0
0

)

λ =
(

0.22
9.94

)

The directions are 0 and both λs are positive, thus the algorithm stops. The minimum

point is x∗ =
(

1
1.66

)
. The function’s value in this point is f(x) = 27.55.

7.3 Exercises
Solve the following quadratic programming problems:

min f(x) = 1
2xT Qx + cT x subject to

Ax ¹ b
with Q, c, A, and b given as

1.

Q =
(

1 0
1 6

)
c =

(−1
−2

)
A =




1 2
−4 −1
−1 0
0 −1


 b =




2
−2
0
0




2.

Q =
(

1 4
1 6

)
c =

(−1
2

)
A =




1 2
−3 −0.5
−1 0
0 −1


 b =




2
−2
0
0




3.

Q =
(

1 2
1 6

)
c =

(−1
−2

)
A =




1 2
−2 −0.5
−1 0
0 −1


 b =




2
−2
0
0




4.

Q =
(

1 2
1 6

)
c =

(−1
−2

)
A =




1 −2
−2 .5
1 2
2 1


 b =




2
2
1
1




5.

Q =
(

1 1
1 4

)
c =

(−1
−2

)
A =




1 −2
−4 .5
1 3
2 1


 b =




2
2
1
1



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6.

Q =
(

1 3
1 6

)
c =

(−1
−2

)
A =




1 −1
−4 5
1 3
−2 −1


 b =




2
2
1
−1




7.

Q =
(

1 3
1 6

)
c =

(
4
−4

)
A =




1 −1
−4 5
1 3
−2 −1


 b =




2
2
1
−1




8.

Q =
(

1 3
1 6

)
c =

(−4
−6

)
A =




1 −1
−4 5
1 3
−2 −1


 b =




2
2
1
−1




9.

Q =
(

1 0
1 6

)
c =

(−4
−2

)
A =




1 −1
−2 3
1 3
−2 −1


 b =




2
2
1
−1




10.

Q =
(

1 0
1 4

)
c =

(−6
−6

)
A =




1 −5
−2 3
1 3
−2 1


 b =




2
2
2
1




11.

Q =
(

2 0
3 10

)
c =

(−6
−6

)
A =




1 −5
−2 3
1 3
−2 1


 b =




2
2
2
2




12.

Q =
(

1 2
3 7

)
c =

(−2
−3

)
A =




1 −0.66
1 2
−1 0.66
−1 −2


 b =




1.33
4

1.33
4




13.

Q =
(

1 2
3 7

)
c =

(−2
−3

)
A =




1 −1
1 2
−1 0.5
−1 −1


 b =




1
4
1
4



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14.

Q =
(

1 2
3 7

)
c =

(−2
−3

)
A =




1 −0.41
1 2
−1 0.5
−1 −1


 b =




1.58
4
1
4




15.

Q =
(

1 2
3 7

)
c =

(−2
−3

)
A =




1 −0.62
1 0.16
−1 0.28
−1 −0.16


 b =




1.37
2.16
1
1




16.

Q =
(

1 0
4 8

)
c =

(−5
−3

)
A =




1 −0.35
1 0.16
−1 0.33
−1 −0.07


 b =




11.64
2.16
1.33
0.92




17.

Q =
(

1 3
0 8

)
c =

(−5
−3

)
A =




1 −0.35
1 0.16
−1 0.33
−1 −0.07


 b =




11.64
2.16
1.33
0.92




18.

Q =
(

1 3
0 8

)
c =

(−5
3

)
A =




1 −0.5
1 0.33
−1 2
−1 −0.07


 b =




2.5
1.66
3

0.92




19.

Q =
(

2 3
0 5

)
c =

(
5
3

)
A =




1 −1.25
1 0.5
−1 2
−1 −0.16


 b =




2
2
3

0.83




20.

Q =
(

2 3
0 5

)
c =

(
5
3

)
A =




1 −1
1 0.12
−1 0.6
−1 −0.4


 b =




2
2

3.8
0.8



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21.

Q =
(

2 1
0 5

)
c =

(−2
−3

)
A =




1 −0.16
1 0.16
−1 0.42
−1 −0.18


 b =




1.66
2.33
2.42
1.81




22.

Q =
(

2 0
3 5

)
c =

(−2
3

)
A =




1 −0.22
1 0.14
−1 0.42
−1 −0.22


 b =




1.77
2.14
2.42
1.77




23.

Q =
(

1 −1
−3 5

)
c =

(
2
4

)
A =




1 −0.2
1 0.16
−1 0.42
−1 −0.22


 b =




1.6
2.33
2.42
1.77




24.

Q =
(

1 −2
−3 7

)
c =

(
2
4

)
A =




1 −0.18
1 1
−1 0.42
−1 −0.4


 b =




0.72
9

2.42
1.6




25.

Q =
(

1 −2
−3 7

)
c =

(
2
4

)
A =




1 −0.28
1 0.33
−1 0.6
−1 −0.4


 b =




0.57
3.66
3.8
0.8




26.

Q =
(

1 2
−3 7

)
c =

(
2
4

)
A =




1 −0.13
1 0.2
−1 0.6
−1 −0.13


 b =




1.6
2.6
3.8
1.6




27.

Q =
(

1 2
−3 7

)
c =

(
2
−1

)
A =




1 −0.13
1 0.2
−1 0.6
−1 −0.13


 b =




1.6
2.6
3.8
1.6



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28.

Q =
(

1 1
−3 5

)
c =

(
2
−1

)
A =




1 −0.13
1 0.2
−1 0.6
−1 −0.13


 b =




1.6
2.6
3.8
1.6




29.

Q =
(

1 4
3 15

)
c =

(−5
−1

)
A =




1 −0.13
1 0.2
−1 0.6
−1 −0.13


 b =




1.6
2.6
3.8
1.6




30.

Q =
(

1 4
3 15

)
c =

(−5
−1

)
A =




1 −0.26
1 0.2
−1 0.8
−1 −0.06


 b =




2.2
3.6
4.4
1.8




31.

Q =
(

1 4
3 15

)
c =

(−5
−1

)
A =




1 −0.5
1 0.2
−1 0.8
−1 −0.75


 b =




1.5
3.6
4.4
−0.25




32.

Q =
(

1 4
3 15

)
c =

(−5
−1

)
A =




1 −1
1 0.6
−1 1
−1 −0.6


 b =




2
6.8
6

−0.4




33.

Q =
(

1 4
1 15

)
c =

(−5
−1

)
A =




1 −0.4
1 0.25
−1 1
−1 −0.6


 b =




1.4
4
6

−0.4




34.

Q =
(

1 4
1 15

)
c =

(
5
−1

)
A =




1 −0.28
1 0.25
−1 1
−1 −0.42


 b =




1.85
4
6

0.28



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35.

Q =
(

1 4
1 15

)
c =

(
25
−1

)
A =




1 −0.28
1 0.25
−1 1
−1 −0.42


 b =




1.85
4
6

0.28




36.

Q =
(

1 −4
−1 15

)
c =

(
3
−1

)
A =




1 −0.25
1 0.66
−1 0.75
−1 −0.42


 b =




1.75
6.33
5

0.28




37.

Q =
(

1 −4
−1 15

)
c =

(−3
−1

)
A =




1 −0.4
1 0.66
−1 0.75
−1 −0.11


 b =




1
6.33
5

1.55




38.

Q =
(

1 −4
−1 15

)
c =

(−15
−1

)
A =




1 −0.3636
1 1
−1 1
−1 −0.1


 b =




0.81
9
7

1.5




39.

Q =
(

1 −4
−1 15

)
c =

(−15
−1

)
A =




1 −0.28
1 1
−1 4
−1 −0.5


 b =




1.28
9
31
−0.5




40.

Q =
(

1 −4
−1 15

)
c =

(−10
−1

)
A =




1 −0.25
1 3
−1 3
−1 −0.5


 b =




1.25
24
24
−0.5




41.

Q =
(

8 5
6 13

)
c =

(−1
−8

)
A =




1 10
−1 1.33
1 −3
−1 −3


 b =




82
−2.66
−4
−26



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42.

Q =
(

6 10
9 19

)
c =

( −5
−17

)
A =




1 −12
1 0.45
−1 0
1 −1.4


 b =




−23
14.36
−8
−1.8




43.

Q =
(

10 1
7 18

)
c =

(
0
−8

)
A =




−1 2
1 −0.57
−1 −5
1 2.25


 b =




20
1.42
−46
26.75




44.

Q =
(

14 6
0 12

)
c =

(−3
1

)
A =




1 0.36
1 3.66
−1 1.3
−1 −2


 b =




5
41.33
−1.75
−5




45.

Q =
(

8 5
4 17

)
c =

(
12
8

)
A =




1 2
−1 0.66
−1 0.09
1 0.84


 b =




17
−1
−2.72
15.85




46.

Q =
(

6 0
5 20

)
c =

(−2
−6

)
A =




1 2
1 0.33
1 −0.3750
1 0


 b =




26
9.33

8.6250
12




47.

Q =
(

13 2
3 20

)
c =

(
10
0

)
A =




1 −3
1 0.57
−1 −2
−1 1


 b =




−39
11
−21
9




48.

Q =
(

14 5
1 15

)
c =

(
3
−8

)
A =




−1 0.75
1 1.33
−1 −0.2
−1 4


 b =




1.25
21.66
−5.8
11



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49.

Q =
(

14 7
6 17

)
c =

(−7
2

)
A =




−1 0.25
−1 −1.33
1 1.5
−1 0


 b =




−8.75
1
33
−12




50.

Q =
(

12 6
7 13

)
c =

(−17
8

)
A =




1 7
−1 −1.1
1 0.2
−1 2


 b =




86
−15.2
13.4
13



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Appendix A

Introduction to MATLAB

A.1 Introduction
MatLab (The Mathworks Inc.) is a commercial “Matrix Laboratory” package which operates
as an interactive programming environment for scientific and engineering calculations.

Matlab is a command-driven, interactive language, aimed at solving mathematical prob-
lems involving vectors and matrices. The only data structure which Matlab uses is a non-
dimensional matrix (or array), the dimensions being adjusted automatically by Matlab as
required.

A.2 Statements and variables
Statements have the form:

>> variable = expression

Equality ”=” implies the assignment of the expression to the variable. The command prompt
is represented by two right arrows ”À”.

The assignment of value 1 to the variable a is executed after the enter key is pressed.

>> a = 1
a =

1

The value of the variable is automatically displayed after the statement is executed. If the
statement is followed by a semicolon (;) the output is suppressed.

>> a = 1;

The usual mathematical operators can be used in expressions. The common operators are
“+”(addition), “-”(subtraction), “\” (division), “*” (multiplication), “ˆ” (power). The order
of arithmetic operations can be altered by using parentheses.

Matlab can be used in “calculator mode”. When the variable name and “=” are omitted
from an expression, the result is assigned to the generic variable ans.
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>> 3.7*3
ans =

11.1000

A.3 Entering vectors and matrices
A row (line) vector can be created by entering each element (separated by space or comma)
between brackets.

>> a = [1 2 3 4 5 6 9 8 7]

Matlab returns:

a =
1 2 3 4 5 6 9 8 7

A vector with elements evenly spaced between 0 and 20 in increments of 2 (this method is
frequently used to create a time or index vector) can be created as follows:

>> t = 0:2:20
t =

0 2 4 6 8 10 12 14 16 18 20

Individual items within the vector can be referenced. To change the fifth element in the t
vector:

>> t(5) = 23
t =

0 2 4 6 23 10 12 14 16 18 20

Suppose that we want to add 2 to each of the elements in vector a:

>> b = a + 2
b =

3 4 5 6 7 8 11 10 9

Adding two vectors of the same length:

>> c = a + b
c =

4 6 8 10 12 14 20 18 16

Subtraction of vectors of the same length works exactly the same way.
Entering matrices into Matlab is done by entering each row separated by a semicolon

(;)or a return:

>> B = [1 2 3 4;5 6 7 8;9 10 11 12]
B =

1 2 3 4
5 6 7 8
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9 10 11 12

>> B = [ 1 2 3 4
5 6 7 8
9 10 11 12]

B =
1 2 3 4
5 6 7 8
9 10 11 12

Matrices in Matlab can be manipulated in many ways. The transpose of a matrix is
obtained by using the apostrophe key:

>> C = B’
C =

1 5 9
2 6 10
3 7 11
4 8 12

It should be noted that if C is complex, the apostrophe results in the complex conjugate
transpose. To obtain the transpose, use “.’” (the two commands are the same if the matrix
is not complex). Now we might multiply the two matrices B and C. Remember that order
matters when multiplying matrices.

>> D = B * C
D =

30 70 110
70 174 278

110 278 446
>> D = C * B

D =
107 122 137 152
122 140 158 176
137 158 179 200
152 176 200 224

Element-wise multiplication is obtained using the “.*” operator (for matrices of the same
sizes).

>> E = [1 2;3 4], F = [2 3;4 5], G = E .* F
E =

1 2
3 4

F =
2 3
4 5
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G =
2 6
12 20

Square matrices can also be raised to a given integer power.

>> Eˆ3
ans =

37 54
81 118

Element-wise power is obtained by using “.ˆ”

>> E.ˆ3
ans =

1 8
27 64

A.4 Matlab functions
Matlab includes many standard functions. Each function is a block of code that accomplishes
a specific task. Commonly used constants such as ‘pi’ (π), and ‘i’ or ‘j’ for the square root
of −1, are also incorporated into Matlab. e (the base of natural logarithm) is not included, to
obtain e one should use exp(1) (exponent of 1).

Matlab has available most trigonometric and elementary math functions as shown in Ta-
ble A.1.

Table A.1: Trigonometric and elementary math functions
sin(x) Sine of the elements of x
cos(x) Cosine of the elements of x
asin(x) Arcsine of the elements of x
acos(x) Arccosine of the elements of x
tan(x) Tangent of the elements of x
atan(x) Arctangent of the elements of x
abs(x) Absolute value of the elements of x
sqrt(x) Square root of x
imag(x) Imaginary part of x
real(x) Real part of x
conj(x) Complex conjugate of x
log(x) Natural logarithm of the elements of x
log10(x) Logarithm base 10 of the elements of x
exp(x) Exponential of the elements of x
sign(x) Sign of x

Some functions for matrix properties and manipulation are given in Table A.2. To see
how a function should be used, type help function name at the Matlab command window.
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Table A.2: Matrix manipulation
inv(x) Inverse of a matrix x
eig(x) Eigenvalues of the matrix x
det(x) Determinant of matrix x
rank(x) Rank of matrix x
eye, ones, zeros, diag Array building functions

A.5 Polynomials

A polynomial is represented by a vector. To create a polynomial in Matlab, the coefficients
of the polynomial should be entered in descending order. For instance, to enter the following
polynomial:

p(s) = s4 + 3s3 − 15s2 − 2s + 9

enter it as a vector in the following manner:

>> p = [1 3 -15 -2 9]

Matlab can interpret a vector of length n + 1 as an nth order polynomial. Thus, also zero
coefficients must be entered in the proper places. For instance

p(s) = s4 + 1

would be represented in Matlab as:

>> p = [1 0 0 0 1];

Some functions to be used for polynomials are given in Table A.3:

Table A.3: Functions for polynomials
roots(p) Roots of polynomial p
polyval(p,value) Value of polynomial p at value
conv(p,q) Polynomial multiplication
deconv(p,q) Divide two polynomials

A.6 Loops and logical statements

Matlab provides loops and logical statements for programming, like for, while, and if state-
ments. The general forms are:
for variable = expression, statement, ..., statement end;
while variable, statement, ..., statement, end
if variable, statements, end
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Table A.4: Plotting
plot(x,y) Plots vector y versus vector x.
semilogx(x,y) Plots vector y versus vector x. The y-axis is log10, the

x-axis is linear.
semilogy(x,y) Plots vector y versus vector x. The x-axis is log10, the

y-axis is linear.
loglogx,y) Plots vector x versus vector y. Both axes are logarith-

mic.
mesh(x,y,z) Creates a 3-D mesh surface.
contour(x,y,z) Plots the countour of a function (2D).

A.7 Plotting

The simple plot(x,y) function will plot the vector y versus the vector x.
Let us plot a sine wave as a function of time. First define the time vector and then compute

the sin value at each time index.

>> t=0:0.25:7; y = sin(t); plot(t,y)

The result is shown in Figure A.1.

0 1 2 3 4 5 6 7
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0

0.5

1

Figure A.1: Plot of sin(t).

Basic plotting is very easy in Matlab, and the plot command has extensive add-on capa-
bilities. These capabilities include many functions such as those presented in Table A.5.

Table A.5: Plotting accessories
grid Toggles a grid on and off in the current figure.
axis Controls axis scaling and appearance
title(‘text’) Adds ‘text’ at the top of the current axis
xlabel(‘text’) Labels the x-axis with ‘text’
ylabel(‘text’) Labels the y-axis with ‘text’
subplot Creates axes in tiled positions
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Let us now see 3D plotting. Consider the function f : R → R, f(x, y) = x2 + y2.
To graphically represent this function, first the values of x and y have to be defined using
meshgrid.

>> [x,y]=meshgrid(-1:.01:1);

Different grids can also be defined for x and y, as follows:

>> [x,y]=meshgrid(-1:.01:1,-2:.01:2);

Then, the graphic (see Figure A.2) is obtained by using mesh :

>> mesh(x,y,x.ˆ2+y.ˆ2)

This in effect means that the value of the function is computed for each point on the grid
generated by ‘meshgrid’. In many cases more conclusions can be drawn if, instead of the 3D

Figure A.2: Graphical representation of x2 + y2.

representation, one inspects the projection of the representation on the x-y plane, specifically
the contour plot, see Figure A.3:

>> contour(x,y,x.ˆ2+y.ˆ2)
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Figure A.3: Contour plot of x2 + y2.
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A.8 Toolboxes and m-files
The functions in Matlab are in general grouped in toolboxes. For instance, the Control sys-
tems Toolbox contains functions of direct use in control engineering. It provides commands
for Bode plots, time responses, control-design and so on. There are many other toolboxes
available for MATLAB, e.g: Optimization, Symbolic Math, Identification, Image Process-
ing, Neural Networks, Spline Functions, Robust Control, Adaptive Control, etc.

The toolboxes are actually written in MATLAB (that is, they use the statements and com-
mands of the MATLAB language). They consist of collections of files, called m-files (because
they have the filename extension .m). An m-file is an ASCII file created using any text editor,
and containing a sequence of MATLAB commands, typed exactly as they would be from the
keyboard when using MATLAB.

Example. Create an m-file called garbage.m containing nothing but the following lines:

a=[1 2 3; 2 84; 1 7 9];
inv(a)
eig(a)

and simply enter the filename (without the .m extension) in response to the MATLAB prompt.
This will execute the commands in the file.

>> garbage

would have exactly the same result as entering the original commands. The file garbage.m
has effectively become a new MATLAB command. Such files are called script files.

Another type of m-file is a function file. In contrast with the script files the function files
have a name following the word “function” at the beginning of the file. The filename has to
be the same as the function name, and it must not start with numbers or contain mathematical
operations. The function statement syntax is:

function [output arguments] = function name(input arguments)
The input arguments are variables passed to the function. The output arguments are re-

turned.

Example. Create a m-file called myfunc.m which contains the following lines:

function [sum, product] = myfunc(x,y)
sum = x+y;
product = x*y;

The function will return the sum and product of two numbers and it can be called in the
following way:

>> a=10;
>> b=25.9;
>> [alpha,beta]=myfunc(a,b)
or simply
>> [alpha,beta]=myfunc(10, 25.9)

The variable alpha will have the value of the sum of a and b and beta the value of the product.

78



APPENDIX

A.9 Symbolic math
The Symbolic Math toolbox allows one to work with symbolic variables. A symbolic variable
x is defined as

>> syms x

Standard Matlab operations and functions can be used on symbolic variables, and the returned
result will be symbolic, i.e., generic variables that can be used without values.

>> syms x y z
>> f=x+y
f =
x+y
>> g=2*y+z
g =
2*y+z
>> h=f*g
h =
(x+y)*(2*y+z)
>> f=[x yˆ2 z]
f =
[ x, yˆ2, z]

To evaluate a symbolic variable at a given value, one can either use subs (for one variable)

subs(f,x,1)
ans =
[ 1, yˆ2, z]

or eval, after specifying the values

>> x=1; y=2; z=3;
>> eval(f)
ans =

1 4 3

Symbolic functions can be differentiated or integrated, using diff or int. In general, sym-
bolic operations must be performed before one evaluates the variables.

The symbolic function h defined above can be differentiated wrt. one variable as

diff(h,x)
ans =
2*y+z
diff(diff(h,x),y)
ans =
2

or wrt. all the variables as
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g=jacobian(h)
g =
[ 2*y+z, 4*y+z+2*x, x+y]

the result being the vector of partial derivatives. Differentiation of a vector function wrt. all
the variables results in a symbolic matrix (function):

jacobian(g)
ans =
[ 0, 2, 1]
[ 2, 4, 1]
[ 1, 1, 0]

One can also solve symbolic equations

>> syms x
>> sol=solve(’xˆ2+3*x=2’)
sol =
-3/2+1/2*17ˆ(1/2)
-3/2-1/2*17ˆ(1/2)

or systems of equations

>> syms x y
>> sol=solve(’xˆ2+3*x=2’,’x+y=3’)
sol =

x: [2x1 sym]
y: [2x1 sym]

>> sol.x
ans =
-3/2+1/2*17ˆ(1/2)
-3/2-1/2*17ˆ(1/2)

>> sol.y
ans =
9/2-1/2*17ˆ(1/2)
9/2+1/2*17ˆ(1/2)

The results are treated as symbolic variables. To obtain the exact value, they must be
evaluated:

>> eval(sol.x)
ans =

0.5616
-3.5616

>> eval(sol.y)
ans =

2.4384
6.5616
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