
Estimation for control
Laboratory guide

1 Introduction

This laboratory guide is developed to give a better understanding on linear and non-linear state estimation
problems. All the theoretical concepts are presented through a case study, with the main core, a water tank
example. In some cases, to highlight certain aspects other examples are presented. We start by presenting
the nonlinear model of the tank system, which is followed by a linearization around an equilibrium point.
First, a linear state-feedback control is designed for stabilization, under the assumption that all states are
measured. Afterwards, an observer is designed to estimate the unmeasured states and the controller will
use the estimated states.

To develop our results we will use the following notations: w0 means the equilibrium point of vector
w ∈ Rn around which we will do the linearization; wk0 ∈ R is the k-th element in vector w and 0 refers
to the equilibrium point. I and 0 mean the identity and zero matrices of appropriate dimensions. eig(F )
means the eigenvalues of F , and rank(F ) refers to the rank of F . The notation f(x, u) refers to a vector
function of the form f(x, u) = [f1(x, u), f2(x, u) , ..., fn(x, u)]T , where n is the number of states. For
the sake of simplicity we will provide every numerical value with two decimal precision, and the time
dependency of the states is not written, i.e. w(t) is denoted with w.

Tank system

Consider the two tank system shown in Figure 1. Water is pumped from a reservoir into the upper tank.
From this tank, the water flows to the lower tanks and then back to the reservoir. There is another pipe
which pumps directly the water from the reservoir to the lower tank. The system has two control inputs
u1 and u2, which are the voltages applied to the motors of the pumps. It is assumed that the levels in the
tanks (h1 and h2) are measured. The goal is to control the levels in the tanks.

2 Tank model

The equations describing the dynamics are:

δ1Ḟin,1 = −Fin,1 +Qs,1 · u1

ḣ1 =
Fin,1

A1
− s1

√
2gh1
A1

δ2Ḟin,2 = −Fin,2 +Qs,2 · u2

ḣ2 =
s1
√

2gh1
A2

− s2
√

2gh2
A2

+
Fin,2

A2

(1)

The parameter values are presented in Table 1. We denote the state vector with x =
[
x1 x2 x3 x4

]T ,
where x1 = Fin,1, x2 = h1, x3 = Fin,2 and x4 = h2; and the input vector is u = [u1 u2]

T . With these
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Figure 1: Cascaded tanks system.

Table 1: Parameter values used.
Parameter Symbol Value Units
Acceleration g 981 cm/s2

Area of the tanks A1, A2, 25, 16 cm2

Outlet area of tank 1 s1 1 cm2

Outlet area of tank 2 s2 1.5 cm2

Input to flow gains Qs,1, Qs,2 5, 10 cm3/s/V
Motor time constants δ1, δ2 0.5, 1 s

notations the nonlinear state-space model is:

ẋ =



ẋ1

ẋ2

ẋ3

ẋ4


=



− 1
δ1
x1 +

Qs,1

δ1
u1

x1
A1
− s1

√
2gx2
A1

1
δ2
x3 +

Qs,2

δ2
u2

s1
√
2gx2
A2

− s2
√
2gx4
A2

+ x3
A3


=



f1(x1, u1)

f2(x1, x2)

f3(x3, u2)

f4(x2.x3, x4)


= f(x, u) (2)

The dynamics described in (2) is nonlinear. To design a linear controller, we need to linearize the system
around an equilibrium point. In this context the linearization around 0, means that the level in the tanks
are zero, which is not a normal operating point. Instead, we consider the scenario where the levels in the
tanks vary around x20 = h10 = 5 [cm] and x40 = h20 = 3 [cm].

In order to maintain these levels in the tanks we need to provide constant water inputs, otherwise, if the
inputs are 0 for the tanks, the water will flow out, and eventually after a while the tanks will be empty.
So we need to find the constant inputs for which the desired levels are maintained.

Based on [1] an equilibrium point for a nonlinear dynamic system of the form ẋ = f(x, u) can be found
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in the point where the dynamic system of equations is 0, i.e. f(x0, u0) = 0. For (2) we have:

−x1 +Qs,1u1 =0 (3)

x1
A1
− s1

√
2gx2
A1

=0 (4)

−x3 +Qs,2u2 =0 (5)

s1
√

2gx2
A2

− s2
√

2gx4
A2

+
x3
A2

=0. (6)

Based on (4), x10 = s1
√

2gx20, from where using (3) we obtain u10 = x10
Qs,1

. Similarly, based on (6)
we have x30 = s2

√
2gx40 − s1

√
2gx20, and using (5) we obtain u20 = x3

Qs,2
. Using the parameter

values from Table 1 and the desired levels, x20 = 5 [cm] and x40 = 3 [cm], we obtain: x10 = 99.04,
u10 = 19.8, x30 = 16.03 and u20 = 1.6.

Based on these notation the equilibrium point around which we do the linearization is:

u0 =
[
19.8 1.6

]T
, x0 =

[
99.05 5 16.03 3

]T (7)

These values need to be considered, when we will compare the non-linear model with the linear model.

2.0.1 Possbile difficulties with dynamic models

• A possible difficulty what you might encounter during your analysis is when the dynamic equation
is not written in the classical form, like in (2). First problem is when the dynamic equation is given
with the second derivative, let us consider the following example:

α̈ = sin(α)− α̇+ u. (8)

Based on [1], any n order differential equation can be transformed into a system of equations with
n first order differential equations. In the case of (8) we can denote the states in the following way:
x1 = α, x2 = α̇; which leads to

ẋ1 = x2

ẋ2 = sin(x1)− x2 + u.
(9)

• Another possible difficulty can happen, when the dynamic equation is expressed in the following
way:

2θ̈ + cos(θ)ψ̈ = sin(θ) + θ̇ + u1

θ̈ + 4ψ̈ = cos(ψ) + ψ̇ + u2.
(10)

In this case we cannot directly express just θ̈ or ψ̈, because they depend on each other, but we can
rewrite the equation in a matrix form:[

2 cos(θ)
1 4

] [
θ̈

ψ̈

]
=

[
sin(θ) + θ̇ + u1
cos(θ) + ψ̇ + u2

]
(11)

The matrix:
[
2 cos(θ)
1 4

]
is non-singular, so it is invertible, and by multiplying from the left with

the inverse the following is obtained:[
θ̈

ψ̈

]
=

[
2 cos(θ)
1 4

]−1 [
sin(θ) + θ̇ + u1
cos(θ) + ψ̇ + u2

]
. (12)
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From this point, (12) is in the same form as (8), so it can be easily transformed into the classical
form, by transforming the second order differential terms into first order terms like in the first
bullet point.

2.1 Linearized model

Recall that the truncated Taylor series approximation for a function of n variables: g = f(x1, x2, ..., xn)
around a point x0 = (x10, x20, ..., xn0):

g = f(x10, x20, ..., xn0) +
∂f

∂x1
|x0(x1 − x10) + ... +

∂f

∂xn
|x0(xn − xn0).

We evaluate the partial derivatives, ∂f
∂xk
|x0 for all k = 1, ..., n, which will lead to a constant, and by

denoting ∆xk = xk − xk0 for all k = 1, ..., n a linear expression is obtained.

In our case we have two nonlinear equations in (2), the second and the forth equation, and we put all the
terms to the left hand side of the equation to obtain:

g2(x1, x2, ẋ2) =
x1
A1
− s1

√
2gx2
A1

− ẋ2

g4(x2, x3, x4, ẋ4) =
s1
√

2gx2
A2

− s2
√

2gx4
A2

+
x3
A2
− ẋ4.

(13)

By applying the first order Taylor series approximation the following is obtained:

g2(x1, x2, ẋ2) =
1

A1
(x1 − x10) +

(
− s1

√
2q

2A1
√
x2

)
|x0(x2 − x20)− ẋ2

=0.04(x1 − x10) + (−0.39)(x2 − x20)− ẋ2
⇒ẋ2 = 0.04∆x1 − 0.39∆x2.

(14)

Similarly, with g4 we obtain:

ẋ4 = 0.61∆x2 + 0.06∆x3 − 1.2∆x4. (15)

The linear system is written in terms:

∆x =


∆x1
∆x2
∆x3
∆x4

 =


F1 − F10

h1 − h10
F2 − F20

h2 − h20

 =


F1 − 99.5
h1 − 5

F2 − 16.03
h3 − 3

 , ∆u =

[
∆u1
∆u2

]
=

[
u1 − 19.8
u2 − 1.6

]
. (16)

By using the parameter values in Table 1, we obtain the following linear system:

∆ẋ = A∆x+B∆u, A =


−2 0 0 0
0.04 −0.39 0 0

0 0 −1 0
0 0.62 0.06 −1.2

 , B =


10 0
0 0
0 10
0 0

 . (17)

Based on the eigenvalues of A, eig(A) =
[
−2 −0.39 −1 −1.2

]
, we see that the unforced system is

globally asymptotically stable, since all the eigenvalues are on the left half plane, [1].
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Figure 2: Open loop system, linear and nonlinear

For simulation consider the Simulink model described in Fig. 2. As it can be seen on Fig 2 the linear
model defines the system in form ofDx,Du, which refers to ∆x and ∆u. To compare correctly we need
to add the linearization point, x0. Then the initial condition for the nonlinear model is the linearization
point, x0, plus some deviation from that point, which is denoted with Dx0. The control input for the
nonlinear system is u0 plus Du, and the control input for the linear system is just Du, because in the
linear case we are already at the linearization point.

The nonlinear subsystem in Simulink contains the nonlinear equations described in (2) and an integrator.
This can be seen on Fig. 3. Similar idea is applied for the linear model.

Figure 3: Nonlinear model

On Fig. 4 a simulation can be seen on the nonlinear system, with initial conditions ∆x0 = Dx0 =[
10 5 6 3

]T and the system is unforced, i.e. ∆u = Du = [0 0]T . The difference between the linear
and nonlinear system can be seen on Fig. 5. If we take a closer look on Fig. 5, we can see that the
difference between the linear and nonlinear unforced model is relatively small,furthermore, for states x1
and x3 there is no difference. To explain this, lets look again to (2), from where we can see that both
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Figure 4: Nonlinear model simulation with: ∆x0 = [10 5 6 3]T

ẋ1 = f1(x1, u1) and ẋ3 = f3(x3, u2) are linear, and the dynamics of x1 and x3 are defined only using
themselves and the inputs. So there is no difference in this two states between the linear and the nonlinear
case.

Based on the eigenvalues of the linear model in (17) we saw that the unforced system is stable, so it must
go back to the equilibrium point, which is can also be seen on Fig. 4.

Figure 5: Difference between linear and nonlinear models
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3 State-feedback control

3.1 Theoretical background

Consider the linear system:
ẋ = Ax+Bu,

where x ∈ Rn, u ∈ Rm, and A, B are the system matrices. Consider the state feedback control law,
u = −Kx, which leads to:

ẋ = Ax−BKx = (A−BK)x. (18)

Based on [1] the closed loop system in (18) is stable if the eigenvalues of (A − BK) are negative. But
for this, first we need to check if the pair (A,B) is controllable. If it is not fully state controllable, it
means that there is no possible gain K, for which the system will be stable. We use the controllability
matrix to check the controllability:

Pc =
[
B AB ... An−1B

]
. (19)

If the rank of Pc is equal with the number of states n, then the system is fully state controllable, and the
gain K can be obtained. For a better understanding let us consider the following numerical example:

ẋ = Ax+Bu, A =

[
0 1
2 −1

]
, B =

[
0
3

]
.

We see that the unforced (zero input) system is unstable, since eig(A) = [1, −2].

It can happen that the unforced system is stable, i.e. all the eigenvalues are negative, but we want to
change some of the performances of the system, for instance to reduce the settling time or to reduce the
overshoot, in these cases we can also use the state-feedback control law, with poles for which the desired
performances are achieved.

The controllability matrix is Pc = [BAB] =

[
0 3
3 −3

]
, and rank(Pc) = 2, so the system is fully state

controllable. We consider K = [k1 k2], so

A−BK =

[
0 1

2− 3k1 −3 ∗ k2 − 1

]
.

To find the eigenvalues, we have characteristic equation:

det(λI −A+BK) = λ2 + (3k2 + 1)λ+ 3k1 − 2 = 0. (20)

We impose that the desired closed loop eigenvalues are λ1,2 = [−1, −2], so the desired characteristic
equation is λ2+3λ+2 = 0. From the desired characteristic equation and (20), we obtain that 3k2+1 = 3
and 3k1 − 2 = 2, which leads to k1 = 1.33, k2 = 0.66.

Note that for higher order systems the calculation of the gain is not straight forward. Matlab can be used
for these cases with function place, in the following form: K = place(A,B,[eigdesired]).
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3.2 Tank system with control

We saw in the simulation that, the system described by (17) is stable, so it will go back to the equilibrium
point. On Fig. 4 we can see that x1 and x3 are stabilizing relatively fast, within 3 seconds, but states
x2 and x4 needs more time to stabilize. On Fig. 6 we zoom in to see more clearly what happens with
x2 and x4. As it can be seen it requires about 15 seconds to stabilize. We would like to obtain a faster
stabilization, i.e. we want to reduce the settling time, that is why we design a state-feedback control.
The eigenvalues of the A matrix are actually the poles of the system, and based on [2] we know that the
system response is faster if the poles are further away in the negative direction from the imaginary axis.
The controlled design techniques can be further explored from [2], but this is not the main focus of this
laboratory guide.

Figure 6: Nonlinear model x2 and x4 with: ∆x0 = [10 5 6 3]T

The system (17) is fully state controllable since the rank of the controllability matrix is 4. We want a 3
times faster settling-time for the states x2 and x4 in (17), so we change the closed loop eigenvalues in
these positions: eigdes(A − BK) =

[
−2 −1.2 −1 −3.6

]
. Since the states are depending on each

other the obtained result might not necessarily be 3 times faster. We consider the state feedback control
law:

∆u = −K∆x, (21)

where K is the state-feedback gain. By using place function in Matlab, we obtain:

K =

[
0.1681 4.1941 0.0613 −0.0063
0.1007 1.8614 0.1524 −0.0053

]
. (22)

The linear closed-loop model, with control law (21) represented in Simulink can be seen on Fig. 7. As
it was described in (21) in the control law the ∆x is used and the obtained control input is ∆u. Similar
model can be obtained for the nonlinear model, but we need to pay attention, since the control law in
(21) is defined with ∆x, so from the output we need to subtract x0. On the other hand, the computed
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Figure 7: Linear closed-loop system

input is ∆u and we need to add the equilibrium input u0. The Simulink model can be seen on Fig 8. In
both of the cases the same state feedback gain was used from (22). The obtained results for the linear

Figure 8: Nonlinear closed-loop system

system can be seen on Fig. 9; we used the same initial condition for ∆x as in Fig. 4. We can see that the
settling time for x2 and x4 are reduced, it is around 5 seconds now. A similar result is obtained with the
same control law, but for the nonlinear model; we show only the two x2 and x4, this can be seen on Fig.
10.

Based on the obtained results we obtained the desired performance, i.e. we reduced the settling time, and
the results are acceptable on both linear and nonlinear models.
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Figure 9: Closed loop linear model, with ∆x0 = [10 5 6 3]T

Figure 10: Closed loop nonlinear model, x2 and x4 with ∆x0 = [10 5 6 3]T

4 Observer design

4.1 Theoretical background

Until this point it was assumed that all the states are measurable and available for control. In this section
we consider the case where some of the states are unavailable and we need to estimate them, so we can
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use them for control. Consider the linear system:

ẋ =Ax+Bu

y =Cx,
(23)

where x ∈ Rn, u ∈ Rm, y ∈ Rr, A, B are the system matrices, and C is the output matrix. This means
that what we can actually measure is the output y, and we have no access to the other states.

Let us consider the following observer:

˙̂x =Ax̂+Bu+ L(y − ŷ)

ŷ =Cx̂,
(24)

where x̂ is the estimate of x, and L is the observer gain. We denote e = x − x̂, the difference between
the true value and the estimated state vector. The observer is working well if this e, the error dynamics,
is converging to 0, which means that the estimated state vector is converging to the true state vector. We
can write the error dynamics:

ė = ẋ− ˙̂x =
(
Ax+Bu

)
−
(
Ax̂+Bu+ L(y − ŷ)

)
= A(x− x̂)− L(y − ŷ)

= Ae− L(Cx− Cx̂) = (A− LC)e.
(25)

At this point, based on [1] we can say that the estimation error e is globally asymptotically stable, i.e. is
converging to 0, if the matrix (A − LC) has negative eigenvalues. As a matter of notations the matrix
which has negative eigenvalues is called a Hurwitz matrix.

In order to design the observer first we need to verify if the system is fully state observable. For this
reason the observability matrix need to be calculated:

Po =



C
CA
.
.
.

CAn−1

 . (26)

If the rank of the observability matrix is equal with the number of states, then the system is fully state
observable, and an observer gain L can be calculated. Similarly as it is done in the state-feedback control
design, we can use the place function in Matlab in the following way:

LT = place (AT, CT,[eigdesired]).

4.2 Tank system with observer

For the example described in (2) we assume that the levels in the tanks are available: x2, x4; and we
want to estimate the flow rates: x1, x3. This idea makes sense also equipment wise, since the in the case
of a real system we can easily measure the level in the tanks with some resistance based level sensors,
but to measure flow rate, more sophisticated sensors are needed, which increase the price of the overall
equipment. To avoid this, a linear observer can be used. Let us consider again the linear model (17)
extended with the output matrix C:

∆ẋ =A∆x+B∆u

∆y =C∆x,
(27)
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and in order to consider just the levels the following output matrix is used:

C =

[
0 1 0 0
0 0 0 1

]
. (28)

It is important to mention that the output of the linear model is defined with ∆y so it will give us the
relative output from the linearization point: ∆y = y − y0, where y0 = Cx0.

The following linear observer is considered:

∆ ˙̂x =A∆x̂+B∆u+ L(∆y −∆ŷ)

∆ŷ =C∆x̂,
(29)

where ∆x̂ is the estimate of ∆x, L is the observer gain.

For the linear tank system in (17) the rank of the observability matrix is 4, so the linear model is fully state
observable. We want a fast observation, or at least faster then the controller, otherwise because of a slow
observer the overall system can become unstable, when we use the estimated states for the control. For
this reason we consider the following desired eigenvalues: eigdes(A−LC) =

[
−2 −1.2 −1 −3.6

]
.

The obtained observer gain is the following:

L =


0.0192 0.0184
6.2007 0.9542
47.5293 82.5393
2.3811 4.8044

 . (30)

In the following figures we show step by step how can we add the observer to the model. On Fig. 11
we can see the open loop linear model with and the observer. The notations have the following meaning:

Figure 11: Open-loop model with linear observer

Dxh = ∆x̂, Dxh0 = ∆x̂0, Cc = C, and Dey = ∆y −∆ŷ. On Fig. 12 the closed loop model can be
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Figure 12: Closed-loop linear model with linear observer

seen together with the observer. Since now we do not have direct access to the true states of the system,
∆x, we consider the estimated states, ∆x̂, to calculate the control input. We considered the following
initial conditions Dx0 = [10 5 6 3]T and Dxh0 = [0 0 0 0]T . As it can be seen on Fig. 13 the error
dynamics e = Dx − Dxh is converging to 0. It is important to mention that, the obtained results on

Figure 13: Estimation error with ∆x0 = [10 5 6 3]T and ∆x̂0 = [0 0 0 0]T

Fig. 12 are for ∆x and ∆x̂, and in order to find the true values we need to add the equilibrium point:
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xlinear = x0 + ∆x.

The observer can be used also for the nonlinear model, but we need to take into consideration the equi-
librium point; the Simulink model corresponding to this is represented on Fig. 14.

Figure 14: Closed-loop nonlinear model with linear observer

4.2.1 Possible improvements

In most of the cases the linear observer is working well if we are close to the linearization point, but a
detailed stability analysis is needed in order to define the exact range until which the linear observer is
working. A possible improvement to this problem is to use the nonlinear dynamics also in the observer.
Let us consider the following observer:

˙̂x = f(x̂, u) + L(y − ŷ) (31)

Even in some cases we can examine more the nonlinearities and we can separate them into two: one
which depends only on the output and the other one contains nonlinearities depending on the unmeasured
states. If we take a closer look to (2), we can see that the nonlineraties are appearing in f2(x1, x2) and
f4(x2, x3, x4), and they depend only on x2 and x4, which corresponds to the levels in the tanks, and they
are the measured outputs. We can rewrite (2) in the following form:

ẋ =Alinx+ fnl(y) +Blinu

y =Cx,
(32)
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where

fnl(y) =


0

s1
√
2g y1
A1

0
s1
√
2g y1
A2

− s2
√
2g y2
A2

 . (33)

We consider the following observer:

˙̂x =Alinx̂+ fnl(y) +Blinu+ L(y − ŷ)

ŷ =Cx̂.
(34)

Using this observer we can see that the error dynamics is linear and the error dynamics will be globally
asymptotically stable.
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5 Discrete-time modelling, control and estimation

In many real-life application a digital controller and observer is used, and for this reason in this section
we convert all the previously explained elements in their discrete-time version.

5.1 Discrete-time modelling

There are many ways to obtain a discrete-time model, from which we highlight the Euler discretization.
The basic idea is coming from the approximation of the derivation in the following way:

ẋ ' x(k + 1)− x(k)

Ts
. (35)

It means that the derivative can be approximated with the difference between the state values at point
k+1 and k, divided by the sampling time, Ts. If the sampling time is small enough, then we have a good
approximation. Lets see what happens with the linear model, if we use this approximation:

ẋ(t) = Ax(t) +Bu(t) ⇒ x(k + 1)− x(k)

Ts
= Ax(k) +Bu(k). (36)

Basically the continuous-time is converted into a discrete-time model. In addition to this we can further
simplify the model and express just x(k + 1):

x(k + 1)− x(k) = TsAx(k) + TsBu(k) ⇒ x(k + 1) = (I − TsA)x(k) + TsBu(k). (37)

We can define the new discrete-time state matrices as Ad = I + TsA, and Bd = TsB; we have the
following model:

x(k + 1) = Adx(k) +Bdu(k) (38)

The nonlinear model can be converted using the same idea:

ẋ(t) = f(x(t), u(t)) ⇒ x(k + 1)− x(k)

Ts
= f(x(k), u(k))

⇒ x(k + 1) = x(k) + Ts f(x(k), u(k))

(39)

5.2 Discrete-time Tank model

In the discrete-time case we do need to use a differential equation solver, since both (38) and (39) defines
the states in the next time step. For this reason we define the iterations in a pseudo-code instead of a
Simulink model.

The discrete-time linear model is based on (17), and has the following form:

∆x(k + 1) = Ad∆x(k) +Bd∆u(k), (40)

where

Ad = I + Ts


−2 0 0 0
0.04 −0.39 0 0

0 0 −1 0
0 0.62 0.06 −1.2

 , Bd = Ts


10 0
0 0
0 10
0 0

 . (41)
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