
Appendix A

Introduction to MATLAB

A.1 Introduction
MatLab (The Mathworks Inc.) is a commercial “Matrix Laboratory” package which operates
as an interactive programming environment for scientific and engineering calculations.

Matlab is a command-driven, interactive language, aimed at solving mathematical prob-
lems involving vectors and matrices. The only data structure which Matlab uses is a non-
dimensional matrix (or array), the dimensions being adjusted automatically by Matlab as
required.

A.2 Statements and variables
Statements have the form:

>> variable = expression

Equality ”=” implies the assignment of the expression to the variable. The command prompt
is represented by two right arrows ”À”.

The assignment of value 1 to the variable a is executed after the enter key is pressed.

>> a = 1
a =

1

The value of the variable is automatically displayed after the statement is executed. If the
statement is followed by a semicolon (;) the output is suppressed.

>> a = 1;

The usual mathematical operators can be used in expressions. The common operators are
“+”(addition), “-”(subtraction), “\” (division), “*” (multiplication), “ˆ” (power). The order
of arithmetic operations can be altered by using parentheses.

Matlab can be used in “calculator mode”. When the variable name and “=” are omitted
from an expression, the result is assigned to the generic variable ans.

71

APPENDIX

>> 3.7*3
ans =

11.1000

A.3 Entering vectors and matrices
A row (line) vector can be created by entering each element (separated by space or comma)
between brackets.

>> a = [1 2 3 4 5 6 9 8 7]

Matlab returns:

a =
1 2 3 4 5 6 9 8 7

A vector with elements evenly spaced between 0 and 20 in increments of 2 (this method is
frequently used to create a time or index vector) can be created as follows:

>> t = 0:2:20
t =

0 2 4 6 8 10 12 14 16 18 20

Individual items within the vector can be referenced. To change the fifth element in the t
vector:

>> t(5) = 23
t =

0 2 4 6 23 10 12 14 16 18 20

Suppose that we want to add 2 to each of the elements in vector a:

>> b = a + 2
b =

3 4 5 6 7 8 11 10 9

Adding two vectors of the same length:

>> c = a + b
c =

4 6 8 10 12 14 20 18 16

Subtraction of vectors of the same length works exactly the same way.
Entering matrices into Matlab is done by entering each row separated by a semicolon

(;)or a return:

>> B = [1 2 3 4;5 6 7 8;9 10 11 12]
B =

1 2 3 4
5 6 7 8

72

APPENDIX

9 10 11 12

>> B = [1 2 3 4
5 6 7 8
9 10 11 12]

B =
1 2 3 4
5 6 7 8
9 10 11 12

Matrices in Matlab can be manipulated in many ways. The transpose of a matrix is
obtained by using the apostrophe key:

>> C = B’
C =

1 5 9
2 6 10
3 7 11
4 8 12

It should be noted that if C is complex, the apostrophe results in the complex conjugate
transpose. To obtain the transpose, use “.’” (the two commands are the same if the matrix
is not complex). Now we might multiply the two matrices B and C. Remember that order
matters when multiplying matrices.

>> D = B * C
D =

30 70 110
70 174 278

110 278 446
>> D = C * B

D =
107 122 137 152
122 140 158 176
137 158 179 200
152 176 200 224

Element-wise multiplication is obtained using the “.*” operator (for matrices of the same
sizes).

>> E = [1 2;3 4], F = [2 3;4 5], G = E .* F
E =

1 2
3 4

F =
2 3
4 5

73

APPENDIX

G =
2 6
12 20

Square matrices can also be raised to a given integer power.

>> Eˆ3
ans =

37 54
81 118

Element-wise power is obtained by using “.ˆ”

>> E.ˆ3
ans =

1 8
27 64

A.4 Matlab functions
Matlab includes many standard functions. Each function is a block of code that accomplishes
a specific task. Commonly used constants such as ‘pi’ (π), and ‘i’ or ‘j’ for the square root
of −1, are also incorporated into Matlab. e (the base of natural logarithm) is not included, to
obtain e one should use exp(1) (exponent of 1).

Matlab has available most trigonometric and elementary math functions as shown in Ta-
ble A.1.

Table A.1: Trigonometric and elementary math functions
sin(x) Sine of the elements of x
cos(x) Cosine of the elements of x
asin(x) Arcsine of the elements of x
acos(x) Arccosine of the elements of x
tan(x) Tangent of the elements of x
atan(x) Arctangent of the elements of x
abs(x) Absolute value of the elements of x
sqrt(x) Square root of x
imag(x) Imaginary part of x
real(x) Real part of x
conj(x) Complex conjugate of x
log(x) Natural logarithm of the elements of x
log10(x) Logarithm base 10 of the elements of x
exp(x) Exponential of the elements of x
sign(x) Sign of x

Some functions for matrix properties and manipulation are given in Table A.2. To see
how a function should be used, type help function name at the Matlab command window.

74

APPENDIX

Table A.2: Matrix manipulation
inv(x) Inverse of a matrix x
eig(x) Eigenvalues of the matrix x
det(x) Determinant of matrix x
rank(x) Rank of matrix x
eye, ones, zeros, diag Array building functions

A.5 Polynomials

A polynomial is represented by a vector. To create a polynomial in Matlab, the coefficients
of the polynomial should be entered in descending order. For instance, to enter the following
polynomial:

p(s) = s4 + 3s3 − 15s2 − 2s + 9

enter it as a vector in the following manner:

>> p = [1 3 -15 -2 9]

Matlab can interpret a vector of length n + 1 as an nth order polynomial. Thus, also zero
coefficients must be entered in the proper places. For instance

p(s) = s4 + 1

would be represented in Matlab as:

>> p = [1 0 0 0 1];

Some functions to be used for polynomials are given in Table A.3:

Table A.3: Functions for polynomials
roots(p) Roots of polynomial p
polyval(p,value) Value of polynomial p at value
conv(p,q) Polynomial multiplication
deconv(p,q) Divide two polynomials

A.6 Loops and logical statements

Matlab provides loops and logical statements for programming, like for, while, and if state-
ments. The general forms are:
for variable = expression, statement, ..., statement end;
while variable, statement, ..., statement, end
if variable, statements, end

75

APPENDIX

Table A.4: Plotting
plot(x,y) Plots vector y versus vector x.
semilogx(x,y) Plots vector y versus vector x. The y-axis is log10, the

x-axis is linear.
semilogy(x,y) Plots vector y versus vector x. The x-axis is log10, the

y-axis is linear.
loglogx,y) Plots vector x versus vector y. Both axes are logarith-

mic.
mesh(x,y,z) Creates a 3-D mesh surface.
contour(x,y,z) Plots the countour of a function (2D).

A.7 Plotting

The simple plot(x,y) function will plot the vector y versus the vector x.
Let us plot a sine wave as a function of time. First define the time vector and then compute

the sin value at each time index.

>> t=0:0.25:7; y = sin(t); plot(t,y)

The result is shown in Figure A.1.

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

Figure A.1: Plot of sin(t).

Basic plotting is very easy in Matlab, and the plot command has extensive add-on capa-
bilities. These capabilities include many functions such as those presented in Table A.5.

Table A.5: Plotting accessories
grid Toggles a grid on and off in the current figure.
axis Controls axis scaling and appearance
title(‘text’) Adds ‘text’ at the top of the current axis
xlabel(‘text’) Labels the x-axis with ‘text’
ylabel(‘text’) Labels the y-axis with ‘text’
subplot Creates axes in tiled positions

76

APPENDIX

Let us now see 3D plotting. Consider the function f : R → R, f(x, y) = x2 + y2.
To graphically represent this function, first the values of x and y have to be defined using
meshgrid.

>> [x,y]=meshgrid(-1:.01:1);

Different grids can also be defined for x and y, as follows:

>> [x,y]=meshgrid(-1:.01:1,-2:.01:2);

Then, the graphic (see Figure A.2) is obtained by using mesh :

>> mesh(x,y,x.ˆ2+y.ˆ2)

This in effect means that the value of the function is computed for each point on the grid
generated by ‘meshgrid’. In many cases more conclusions can be drawn if, instead of the 3D

Figure A.2: Graphical representation of x2 + y2.

representation, one inspects the projection of the representation on the x-y plane, specifically
the contour plot, see Figure A.3:

>> contour(x,y,x.ˆ2+y.ˆ2)

x

y

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure A.3: Contour plot of x2 + y2.

77

APPENDIX

A.8 Toolboxes and m-files
The functions in Matlab are in general grouped in toolboxes. For instance, the Control sys-
tems Toolbox contains functions of direct use in control engineering. It provides commands
for Bode plots, time responses, control-design and so on. There are many other toolboxes
available for MATLAB, e.g: Optimization, Symbolic Math, Identification, Image Process-
ing, Neural Networks, Spline Functions, Robust Control, Adaptive Control, etc.

The toolboxes are actually written in MATLAB (that is, they use the statements and com-
mands of the MATLAB language). They consist of collections of files, called m-files (because
they have the filename extension .m). An m-file is an ASCII file created using any text editor,
and containing a sequence of MATLAB commands, typed exactly as they would be from the
keyboard when using MATLAB.

Example. Create an m-file called garbage.m containing nothing but the following lines:

a=[1 2 3; 2 84; 1 7 9];
inv(a)
eig(a)

and simply enter the filename (without the .m extension) in response to the MATLAB prompt.
This will execute the commands in the file.

>> garbage

would have exactly the same result as entering the original commands. The file garbage.m
has effectively become a new MATLAB command. Such files are called script files.

Another type of m-file is a function file. In contrast with the script files the function files
have a name following the word “function” at the beginning of the file. The filename has to
be the same as the function name, and it must not start with numbers or contain mathematical
operations. The function statement syntax is:

function [output arguments] = function name(input arguments)
The input arguments are variables passed to the function. The output arguments are re-

turned.

Example. Create a m-file called myfunc.m which contains the following lines:

function [sum, product] = myfunc(x,y)
sum = x+y;
product = x*y;

The function will return the sum and product of two numbers and it can be called in the
following way:

>> a=10;
>> b=25.9;
>> [alpha,beta]=myfunc(a,b)
or simply
>> [alpha,beta]=myfunc(10, 25.9)

The variable alpha will have the value of the sum of a and b and beta the value of the product.

78

APPENDIX

A.9 Symbolic math
The Symbolic Math toolbox allows one to work with symbolic variables. A symbolic variable
x is defined as

>> syms x

Standard Matlab operations and functions can be used on symbolic variables, and the returned
result will be symbolic, i.e., generic variables that can be used without values.

>> syms x y z
>> f=x+y
f =
x+y
>> g=2*y+z
g =
2*y+z
>> h=f*g
h =
(x+y)*(2*y+z)
>> f=[x yˆ2 z]
f =
[x, yˆ2, z]

To evaluate a symbolic variable at a given value, one can either use subs (for one variable)

subs(f,x,1)
ans =
[1, yˆ2, z]

or eval, after specifying the values

>> x=1; y=2; z=3;
>> eval(f)
ans =

1 4 3

Symbolic functions can be differentiated or integrated, using diff or int. In general, sym-
bolic operations must be performed before one evaluates the variables.

The symbolic function h defined above can be differentiated wrt. one variable as

diff(h,x)
ans =
2*y+z
diff(diff(h,x),y)
ans =
2

or wrt. all the variables as

79

APPENDIX

g=jacobian(h)
g =
[2*y+z, 4*y+z+2*x, x+y]

the result being the vector of partial derivatives. Differentiation of a vector function wrt. all
the variables results in a symbolic matrix (function):

jacobian(g)
ans =
[0, 2, 1]
[2, 4, 1]
[1, 1, 0]

One can also solve symbolic equations

>> syms x
>> sol=solve(’xˆ2+3*x=2’)
sol =
-3/2+1/2*17ˆ(1/2)
-3/2-1/2*17ˆ(1/2)

or systems of equations

>> syms x y
>> sol=solve(’xˆ2+3*x=2’,’x+y=3’)
sol =

x: [2x1 sym]
y: [2x1 sym]

>> sol.x
ans =
-3/2+1/2*17ˆ(1/2)
-3/2-1/2*17ˆ(1/2)

>> sol.y
ans =
9/2-1/2*17ˆ(1/2)
9/2+1/2*17ˆ(1/2)

The results are treated as symbolic variables. To obtain the exact value, they must be
evaluated:

>> eval(sol.x)
ans =

0.5616
-3.5616

>> eval(sol.y)
ans =

2.4384
6.5616

80

