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Fixed-Time Fuzzy Vibration Reduction for
Stochastic MEMS Gyroscopes with Low

Communication Resources
Yu Xia, Ke Xiao, Yangang Yao, Zhibo Geng and Zsófia Lendek

Abstract—The microelectromechanical system (MEMS) gyro-
scope is a complex nonlinear system with multiple variables,
strong coupling, and susceptibility to stochastic disturbances.
This paper presents an adaptive fuzzy control scheme for
stochastic MEMS gyroscopes, with the primary objectives of
reducing control vibration and achieving high precision pre-
scribed performance tracking with low communication resources
within a fixed-time backstepping framework. To address the
stochastic disturbances and unknown nonlinear system dynamics,
the interval type-3 fuzzy logic system (IT3FLS) is introduced.
Additionally, a novel quadratic prescribed performance func-
tion (QPPF) is proposed to ensure satisfactory transient and
steady-state performance of the system while mitigating initial
control vibrations during fast error convergence. Furthermore,
an event-triggered mechanism (ETM) is developed using a
switching threshold strategy to minimize the communication load
without compromising control accuracy. By utilizing the fixed-
time command-filtered backstepping design method and newly
introduced error-compensating signals, the issue of “explosion of
complexity” is effectively resolved, and filtering errors are ade-
quately compensated. The proposed control scheme guarantees
that the tracking errors converge to a predefined set of arbitrarily
small residuals in probability. In addition, all the closed-loop
signals are within a fixed time bounded in probability (FTBIP).
The simulation results validate the effectiveness and superiority
of the proposed scheme.

Index Terms—Adaptive prescribed fuzzy control, fixed-time
stability, vibration reduction, low communication resources,
stochastic MEMS gyroscope.

I. INTRODUCTION

THE microelectromechanical system (MEMS) gyroscope
is extensively used as an inertial device for measuring an-

gular rates. It is strongly preferred in automotive applications,
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aerospace applications, consumer electronics, and mobile
robotics due to its cost-effectiveness, low power consumption,
and compactness[1]–[3]. However, certain unavoidable factors
severely impact the MEMS gyroscope’s tracking performance,
during both transient and steady-state stages. These factors
include variations in system parameters caused by fabrication
imperfections [4] and stochastic disturbances [5] arising from
practical operating environments. These challenges hinder the
MEMS gyroscope from achieving high-performance measure-
ment capabilities.

Currently, research is being conducted on the adaptive
control of the MEMS gyroscope using both type-1 [6], [7] and
type-2 [8], [9] fuzzy logic systems (FLSs) to effectively handle
uncertain nonlinear functions. The significant role that type-1
and type-2 FLSs play in uncertainty modeling has prompted
researchers to further extend them to higher types of fuzzy
sets, particularly interval type-3 fuzzy sets. This concept has
been explored and theorized in [10], [11], and it has been
implemented in studies [12]–[16]. Meanwhile, the superiority
of interval type-3 fuzzy logic systems (IT3FLSs) has been
demonstrated through comparisons with type-1 and type-2
FLSs in these applications [12]–[16]. Unlike type-1 and type-2
FLSs that represent membership functions (MFs) using crisp
values and type-1 fuzzy sets, respectively, IT3FLSs define MFs
as a type-2 fuzzy set. The additional degrees of freedom enable
IT3FLSs to effectively handle higher levels of uncertainties.
However, the application of IT3FLS in stochastic nonlinear
systems has not been explored yet. Therefore, comparing its
ability to handle stochastic disturbances with that of type-1 and
type-2 FLSs continues to be an intriguing and challenging area
of research.

The previously discussed methods [6]–[16] have an infi-
nite settling time, which makes them unsuitable for practical
applications. To address this issue, the concept of finite-time
stability was introduced [17], resulting in the exploration
and development of various finite-time control schemes for
stochastic systems [18]–[21]. However, existing finite-time
control approaches have the drawback that the settling time is
influenced by the initial system value, requiring repeated pa-
rameter adjustments to achieve the desired convergence time.
To overcome this limitation, the fixed-time stability theorem
(FTST) has been proposed in [22], ensure that the settling
time solely depends on the system parameters. Consequently,
numerous schemes based on the FTST have been developed
for stochastic systems [23]–[26]. However, existing research
on control of the MEMS gyroscope [2]–[9] has been primarily
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based on deterministic models and overlooked the impact
of stochastic disturbances. Additionally, the critical aspect of
settling time has been neglected, rendering current approaches
[2]–[9] unsuitable for practical applications. Thus, establishing
a stochastic model of the MEMS gyroscope and designing a
corresponding control scheme based on this stochastic model
while considering settling time remains a challenging problem.

Since practical tracking control (PTC) of the MEMS gyro-
scope is more widely applicable and requires less restrictive
constraints than asymptotic tracking control, it is the focus of
many existing control methods. In PTC, achieving high track-
ing accuracy is of significant importance. As a result, research
on schemes that emphasize predefined tracking accuracy has
gained considerable attention, resulting in the proposal of
numerous effective methods [4], [19], [27]–[36]. The initial
introduction of the prescribed performance control (PPC)
scheme in [27] has proven to be highly effective. Subsequently,
the PPC technique has been applied to the MEMS gyroscope
with different control strategies [4], [28]–[33]. However, a
significant challenge that cannot be ignored is that the PPC for
the MEMS gyroscope often requires a fast convergence rate,
which can result in relatively large control torque vibrations
in the initial stage. This vibration phenomenon can potentially
damage the control system. Hence, the challenge we focus
on is developing a vibration reduction PPC scheme tailored
explicitly for the MEMS gyroscope, to mitigate this issue and
enhance the overall performance.

Another limitation in current research on the MEMS gy-
roscope is the unnecessary resource usage that is commonly
demanded. In many cases, electrostatic actuators and com-
munication channels connecting the controller module and the
actuator are activated at every sampling instant, even when the
system is operating satisfactorily without requiring additional
control actions. This results in the wastage of resources and
significantly reduces the effective operational time of the
MEMS gyroscope. To address this issue, the event-triggered
mechanism (ETM) has been extensively studied in various
applications [18], [20], [26], [28], [37]. It should be noted that
the ETM only activates the actuators when preassigned con-
ditions related to the system properties are violated, providing
an effective solution to mitigating unnecessary resource usage.
However, setting a large sampling interval fails to capture fast
dynamics caused by unknown disturbances or abrupt reference
changes, which can result in substantial tracking errors. Thus,
the trade-off between tracking accuracy and communication
resource utilization in the MEMS gyroscope continues to pose
a challenge.

The control schemes mentioned above with the ETM are
primarily designed within the backstepping framework, which
encounters the challenge of “explosion of complexity.” For-
tunately, the issue has been addressed by recent studies [38],
[39] through the introduction of command filter technology.
This approach adeptly handles a range of nonlinear control
challenges within the command filter-based backstepping de-
sign (CFBBD) framework. In [40], a controller was developed
by integrating the adaptive technique with the CFBBD to
achieve asymptotic tracking of uncertain nonlinear systems
with time-varying parameters and disturbances. Moreover, an

error compensation mechanism (ECM) was introduced in [41]
to compensate for any errors introduced by the filter. A similar
ECM was also discussed in [42], where a novel command
filter was used to enhance filtering performance. As far as we
are aware, there is no existing literature exploring CFBBD for
the MEMS gyroscope. Give the above exposed challenges, we
propose a control strategy for the MEMS gyroscope that has
the following four contributions:

1) This study presents a stochastic model of the MEMS
gyroscope, considering the influence of stochastic distur-
bances in controller design. The objective is to address
the inherent challenge of the MEMS gyroscope accuracy
being susceptible to stochastic disturbances, a topic that
has not been previously explored in existing research
[2]–[9], [28]–[30], [32], [33] on MEMS gyroscope con-
trol.

2) This study employs adaptive IT3FLS to handle the
problem of stochastic disturbances for the first time.
By comparing it with control strategies based on type-
1 and type-2 FLSs, this study aims to demonstrate the
potential of expanding the application of IT3FLS to
solve more complex nonlinear control problems. Hence,
the findings of this study hold significant implications
for the advancement of fuzzy systems and their practical
applications.

3) This study proposes a novel quadratic prescribed perfor-
mance function (QPPF) for the first time. Compared with
the traditional prescribed performance function (TPPF)
[4], [19], [27]–[29], [31]–[33], the QPPF can guaran-
tee a predefined tracking error while simultaneously
reducing initial control vibrations, especially with fast
error convergence rates. Moreover, the QPPF provides a
feasible approach that can be generalized to other control
systems [43]–[46] to minimize vibration damage while
achieving the required tracking accuracy for certain
urgent tasks.

4) This study ensures practical fixed-time tracking perfor-
mance for the MEMS gyroscope by predefining the
desired tracking errors, distinguishing it from existing
control schemes [2]–[9], [28]–[30], [32], [33]. Moreover,
in order to address the issue of complexity explosion and
offset filtering errors, a novel ECM is introduced in con-
junction with the CFBBD framework. Furthermore, the
significance of the switching threshold event-triggered
mechanism (STETM) in improving the communication
resource limitations of the MEMS gyroscope is empha-
sized in our findings.

II. SYSTEM FORMULATION AND PRELIMINARIES

In this section, we will provide a detailed explanation of
the derivation process of the stochastic MEMS gyroscope
equation. Additionally, we will introduce the theoretical prin-
ciples of the QPPF and the IT3FLS, while also covering the
mathematical knowledge necessary for the controller design
process.
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TABLE I
SYSTEM PARAMETERS.

Notation Explanation
m weight of a proof mass
Ω∗

z angular velocity
x∗, y∗ coordinates in drive and sensitive shaft
u∗x , u∗y control inputs in drive and sensitive shafts
k∗xx, k∗yy spring coefficients in drive and sensitive shafts
d∗xx, d∗yy damping coefficients in drive and sensitive shafts

k∗xy coupled spring coefficient caused by asymmetric structure
d∗xy coupled damping coefficient caused by asymmetric structure

A. Dynamics of stochastic MEMS gyroscopes

Fig. 1 depicts the components of a typical MEMS gyro-
scope, which include a vibrational proof mass, a rigid frame,
springs, and dampers. The rigid frame rotates around the rota-
tion axis, while the control input torque induces oscillations in
the vibrational proof mass along the drive axis. This oscillation
generates a Coriolis force along the sense axis, allowing for
the demodulation of the angular rate of the MEMS gyroscope.
Some notations used are listed in Table I.

Fig. 1. Schematic of the MEMS gyroscope.

The standard dynamical model of the MEMS gyroscope
[2]–[4] can be expressed as

mẍ∗ + d∗xxẋ
∗ + d∗xy ẏ

∗ + k∗xxx
∗ + k∗xyy

∗ = u∗x − 2mΩ∗
z ẏ

∗,
mÿ∗ + d∗xyẋ

∗ + d∗yy ẏ
∗ + k∗xyx

∗ + k∗yyy
∗ = u∗y − 2mΩ∗

zẋ
∗.
(1)

Non-dimensional processing of the dynamics (1) yields

ẍ+ dxxẋ+ dxy ẏ + ω2
xx+ ωxyy = ux − 2Ωz ẏ,

ÿ + dxyẋ+ dyy ẏ + ωxyx+ ω2
yy = uy − 2Ωzẋ,

(2)

where dij = d∗ij/mω0, ωi =
√
k∗ii/mω

2
0 , ωij = k∗ij/mω

2
0 ,

x = x∗/q0, ẋ = ẋ∗/ω0q0, ẍ = ẍ∗/ω2
0q0, y = y∗/q0, ẏ =

ẏ∗/ω0q0, ÿ = ÿ∗/ω2
0q0, ui = u∗i /mω

2
0q0, m is the reference

mass, q0 denotes the length, and ω2
0 indicates the resonance

frequency. Indices i = x, j = x, and i = y, j = y imply the
coefficients in drive and sensitive shaft, respectively, i = x,
j = y means the coupled coefficient, and Ωz = Ω∗

z/ω0 is the
dimensionless angular velocity.

Considering the possibility of unknown variations in the
damping and spring terms due to fabrication imperfections,
the damping and spring coefficients in the non-dimensional

expression above can be rewritten as d∗ij = d∗Nij + ∆d∗ij and
k∗ij = k∗Nij + ∆k∗ij , where d∗Nij and k∗Nij are the nominal
terms, and ∆d∗ij and ∆k∗Nij are the unknown uncertainties.
Accordingly, the non-dimensional terms are further derived as
dij = dNij +∆dij , ωi = ωN

i +∆ωi, ωij = ωN
ij +∆ωij , where

dNij = d∗Nij /mω0, ωN
i =

√
k∗Nii /mω

2
0 , ωN

ij = k∗Nij /mω
2
0 ,

and ∆dij = ∆d∗ij /mω0, ∆ωi =
√

∆k∗ii/mω
2
0 , ∆ωij =

∆k∗ij /mω
2
0 .

Then, the compound nonlinearities of the dynamics are
defined as

f̄1 = −dxxẋ− (dxy − 2Ωz) ẏ − ω2
xx− ωxyy,

f̄2 = − (dxy + 2Ωz) ẋ− dyy ẏ − ωxyx− ω2
yy.

(3)

With (3), and denoting x1 = x, x2 = ẋ, x3 = y, and
x4 = ẏ, dynamics (2) can be rewritten as

ẋ1 = x2,
ẋ2 = f̄1 + ux,
ẋ3 = x4,
ẋ4 = f̄2 + uy.

(4)

In practical applications, the MEMS gyroscope is suscepti-
ble to stochastic disturbances, which can significantly impact
system performance. Considering the form of stochastic non-
linear systems [19] as dχ = F (χ) dt + GT (χ) dω, we can
extend the dimensionless model (4) to a stochastic dynamic
model as follows:

dx1 = (x2 + f1 (x)) dt+GT1 (x) dw,
dx2 = (ux + f2 (x)) dt+GT2 (x) dw,
dx3 = (x4 + f3 (x)) dt+GT3 (x) dw,
dx4 = (uy + f4 (x)) dt+GT4 (x) dw,

(5)

where x = [x1, x2, x3, x4] = [x, ẋ, y, ẏ] indicates the system
state vector, ω denotes a standard Brownian motion, fi (x) and
GTi (x), i = 1, 2, 3, 4 are the unknown continuous functions,
and fi = [f1, f2, f3, f4] =

[
0, f̄1, 0, f̄2

]
.

Control Goal: Develop an adaptive control scheme for the
stochastic MEMS gyroscope (5) in which all the signals are
ensured to be FTBIP and the residual errors are guaranteed to
be in prescribed performance bounds.

Remark 1: When stochastic disturbances are encountered,
the control performance and stability of the overall closed-loop
system can be compromised, which is the primary motivation
for considering stochastic control of the MEMS gyroscope.

B. Quadratic Prescribed Performance Function

First, we define the tracking errors of the MEMS gyroscope
as follows:

ei (t) = xi (t)− xdi (t) , (6)

where xdi , i = 1, 3 denote the reference signals.
To characterize the vibration reduction tracking performance

of the system within the predefined behavior function, we
propose the QPPF

ρi (t) = (ρi0 − ρi∞) e−ℓit
2

+ ρi∞, (7)

where ρi0 and ρi∞, i = 1, 3 represent the expected upper
bounds for the initial and steady-state tracking errors, re-
spectively. Terms ℓi, i = 1, 3 reflect the convergence rate of
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ρi (t), which gradually decay to a final value of ρi∞ as time
approaches infinity. Moreover, ρi (t) , i = 1, 3 satisfy the initial
condition −ρi (0) < ei (0) < ρi (0).

Then, we define the converted tracking errors as follows:

si (t) = tan

(
πei (t)

2ρi (t)

)
, ei (0) < ρi (0) , (8)

where si (t) , i = 1, 3 are the transformed tracking errors, and
their time derivatives can be deduced as

dsi (t) = λi

(
dxi − ẋdi −

2

π
ρ̇i (t) arctan (si (t))

)
, (9)

where λi = π
(
1 + s2i (t)

)
/2ρi (t) , i = 1, 3.

Remark 2: From a practical engineering perspective, it is
important to select significant convergence rates ℓi to ensure
that the system response of the MEMS gyroscope can effec-
tively meet the requirements of the majority of measurement
tasks.

Remark 3: Based on current research [4], [19], [27]–[29],
[31]–[33] where the TPPF is typically designed as ρi (t) =
(ρi0 − ρi∞) e−ℓit + ρi∞, the following represents the design
of the corresponding universal control law:
ui = λi

−1
(
−kisi (t) + λiei(t)ρ̇i(t)

ρi(t)

)
+ ẋdi .

This indicates that considerable convergence rates ℓi cause
initial rapid fluctuations of ρ̇i. Accordingly, significant vibra-
tions of the inputs ui, i = 1, 3 during the initial phase are
unavoidable.

Remark 4: The design of the QPPF is inspired by the
quadratic characteristics of the normal distribution curve. The
design idea is to create a performance function that exhibits
a gentler decline than the TPPF at the outset, then drops at
a rate similar to the TPPF in the middle of the decline, and
maintains the same limiting boundary as TPPF at the end of
the decline. In other words, the slope of the QPPF will be
smaller than that of the TPPF at the initial stage of decline,
resulting in a smaller derivative of the QPPF during this phase.
As discussed in Remark 3, the control input required by the
QPPF will also be smaller.

Remark 5: In contrast with the TPPF, the QPPF proposed in
this paper is capable of smoothly transitioning the exponential
boundary in the early stages of convergence, thereby helping
to reduce vibrations of ui. However, it is important to note
that this relatively smooth decline may trade off with the
convergence speed. Therefore, when utilizing the QPPF, it
becomes crucial to select the design parameters (ρi0, ρi∞, ℓi)
more judiciously to align with the specific requirements of the
application. A comparison of the two behavioural functions is
depicted in Fig. 2 (ℓi = 1, ℓi = 10).

C. Interval type-3 fuzzy logic system

As demonstrated in [47], the IT3FLS possesses superior
uncertainty modeling capabilities, increased disturbance re-
sistance, and a reduced number of membership functions in
comparison to type-2/type-1 FLSs. Consequently, IT3FLS is
employed to approximate the unknown nonlinear functions
with stochastic disturbances in this paper.

Fig. 2. Behavior of TPPF and QPPF.

Consider ξ̃ji as the j-th fuzzy sets for the inputs Xi, i =
1, . . . , n, the memberships at secondary levels M1i and M2i

are given as

U 1|ξ̃ji |M1i
=



1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 2|ξ̃ji )M1i

,

ifΓξ̃ji
− θ 2|ξ̃ji

< Xi ≤ Γξ̃ji
0, ifXi > Γξ̃ji

+ θ 1|ξ̃ji
orXi ≤ Γξ̃ji

− θ 2|ξ̃ji

1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 1|ξ̃ji )M1i

,

ifΓξ̃ji
< Xi ≤ Γξ̃ji

+ θ 1|ξ̃ji

,

U 1|ξ̃ji |M2i
=



1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 2|ξ̃ji )M2i

,

ifΓξ̃ji
− θ 2|ξ̃ji

< Xi ≤ Γξ̃ji
0, ifXi > Γξ̃ji

+ θ 1|ξ̃ji
orXi ≤ Γξ̃ji

− θ 2|ξ̃ji

1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 1|ξ̃ji )M2i

,

ifΓξ̃ji
< Xi ≤ Γξ̃ji

+ θ 1|ξ̃ji

,

U 2|ξ̃ji |M1i
=



1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 2|ξ̃ji )1/M1i

,

ifΓξ̃ji
− θ 2|ξ̃ji

< Xi ≤ Γξ̃ji
0, ifXi > Γξ̃ji

+ θ 1|ξ̃ji
orXi ≤ Γξ̃ji

− θ 2|ξ̃ji

1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 1|ξ̃ji )1/M1i

,

ifΓξ̃ji
< Xi ≤ Γξ̃ji

+ θ 1|ξ̃ji

,

U 2|ξ̃ji |M2i
=



1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 2|ξ̃ji )1/M2i

,

ifΓξ̃ji
− θ 2|ξ̃ji

< Xi ≤ Γξ̃ji
0, ifXi > Γξ̃ji

+ θ 1|ξ̃ji
orXi ≤ Γξ̃ji

− θ 2|ξ̃ji

1−
(∣∣∣Xi − Γξ̃ji

∣∣∣ /θ 1|ξ̃ji )1/M2i

,

ifΓξ̃ji
< Xi ≤ Γξ̃ji

+ θ 1|ξ̃ji

,

(10)
where U 1|ξ̃ji |M2i

/ U 1|ξ̃ji |M2i
and U 2|ξ̃ji |M1i

/ U 2|ξ̃ji |M2i
are

the upper/lower memberships for ξ̃ji at M2i and M1i. Terms
θ 2|ξ̃ji

and θ 1|ξ̃ji
are the distances from the centre Γξ̃ji

to the
start/end points of ξ̃ji .
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The rule firings are

ϑl1|M1i
=

∏n
j=1 U 1|ξ̃ji |M1i

, ϑl1|M2i
=

∏n
j=1 U 1|ξ̃ji |M2i

,

ϑl2|M1i
=

∏n
j=1 U 2|ξ̃ji |M1i

, ϑl2|M2i
=

∏n
j=1 U 2|ξ̃ji |M2i

,
(11)

where the l−th IF-THEN rule is: IF X1 is ξ̃P1
1 and · · · and Xn

is ξ̃Pn1 , THEN µ ∈ [ψ2l, ψ1l], l = 1, 2, . . . , ϖ, where ξ̃Pji is
the Pj−th fuzzy sets for Xi, and ψ2l and ψ1l are consequent
parameters.

Then, we can obtain

µ =

∑nM

i=1 (M2iµ2i +M1iµ1i)∑nM

i=1 (M2i +M1i)
, (12)

where

µ1i =

∑nr

i=1

(
ξl1|M1i

ψ1l + ξl2|M1i
ψ2l

)
∑nr

i=1

(
ξl1|M1i

+ ξl2|M1i

) ,

µ2i =

∑nr

i=1

(
ξl1|M2i

ψ1l + ξl2|M2i
ψ2l

)
∑nr

i=1

(
ξl1|M2i

+ ξl2|M2i

) .

Now, the output Y (X) can be written as

Y (X) = ψTH (X) , (13)

where
ψT = [ψ21, . . . , ψ2nr, ψ11, . . . , ψ1nr] ,

H = [H21, . . . ,H2nr, H11, . . . ,H1nr] ,

H2l =

nM∑
i=1

M2iϑ
l
2|M2i

nM∑
i=1

(M2i+M1i)
nr∑
l=1

(
ϑl

1|M2i
+ϑl

2|M2i

)

+

nM∑
i=1

M1iϑ
l
2|M1i

nM∑
i=1

(M2i+M1i)
nr∑
l=1

(
ϑl

1|M1i
+ϑl

2|M1i

) ,

H1l =

nM∑
i=1

M2iϑ
l
1|M2i

nM∑
i=1

(M2i+M1i)
nr∑
l=1

(
ϑl

1|M2i
+ϑl

2|M2i

)

+

nM∑
i=1

M1iϑ
l
1|M1i

nM∑
i=1

(M2i+M1i)
nr∑
l=1

(
ϑl

1|M1i
+ϑl

2|M1i

) .
Lemma 1 [18]: For an unknown nonlinear function F (X)

defined on a compact set Ω, and any ε ∈ R+, there is a FLS
(13) such that

sup
X∈Ω

∣∣F (X)− ψTH (X)
∣∣ ≤ ε. (14)

D. Preliminaries

Definition 1 [19]: Consider the stochastic system:

dχ = F (χ) dt+GT (χ) dω. (15)

Define the following differential operator L of the positive
definite function V (χ):

LV (χ) =
∂V

∂χ
F (χ) +

1

2
Tr

{
GT (χ)

∂2V

∂χ2
G (χ)

}
. (16)

Lemma 2 [23]: If there exist two functions Λ1 (·) ,Λ2 (·) ∈
k∞, and some constants σ1, σ2, β > 0, 0 < p < 1, q > 1 such
that

Λ1 (∥χ∥) ≤ V (χ) ≤ Λ2 (∥χ∥) ,
LV (χ) ≤ −σ1V p (χ)− σ2V

q (χ) + β,
(17)

then, the solution of (15) is FTBIP for any 0 < η < 1 with

E [T ] ≤ Ts =
1

σ1η (1− p)
+

1

σ2η (q − 1)
. (18)

Lemma 3 [50]: Consider the following filter: φ̇11 = φ12 − r11M
1
2 sig(φ11 − α1)

1
2

− h11N
1
2 sig(φ11 − α1)

µ11 ,
φ̇12 = −r12Msig (φ12 − φ̇11)− h12Nsig(φ11 − αi)

µ12 ,
(19)

where sigα = |·|αsign (·), µ1i = iµ − (i − 1), where µ ∈
(1, 1 + ι) with sufficiently small ι > 0, M,N > 0, ri1, ri2,

hi1, hi2 are selected so that the matrices A1 =

[
−ri1 1
−ri2 0

]
and A2 =

[
−hi1 1
−hi2 0

]
are Hurwitz. Then, the output of (19)

satisfies ᾱ1 = φ11 , ˙̄α1 = φ̇11 , and ᾱ1 − α1 ≤ η within a
fixed time TF , where η is a design constant and TF can be
expressed as

E [T ] ≤ TF =
2λ

3
2
max (P1)

λmin (Q1)
+

λmax (P2)

λmin (Q2) (µ− 1) ςµ−1
, (20)

where ς ≤ λmin (P2), and P1, P2, Q1, and Q2 satisfy

P1A1 +AT1 P1 = −Q1,
P2A2 +AT2 P2 = −Q2.

(21)

Lemma 4 [42]: For any x, y ∈ R, a1, a2, a3 ∈ R+, it holds
that

|x|a1 |y|a2 ≤ a1
a1 + a2

a3|x|a1+a2 +
a1

a1 + a2
a−

a1
a2 |y|a1+a2 .

(22)
Lemma 5 [26]: For any x ∈ R and y ∈ R+, one has

0 ≤ |x| − 2

π
x tanh

(
x

℘

)
≤ 2

π
y. (23)

Lemma 6 [26]: For any 0 < ς < 1 and xi ∈ R, i = 1, . . . , n,
one has(

n∑
i=1

|xi|
)2

≤ n
n∑
i=1

x2i ,

(
n∑
i=1

|xi|
)ς

≤
n∑
i=1

|xi|ς . (24)

Assumption 1: The reference signals xdi , i = 1, 3 and their
derivatives ẋdi are continuous and bounded.

Remark 6: Assumption 1 is essential for controlling system
(5). It is important to note that unlike the traditional backstep-
ping method [21], [23], which assumes the reference signal
and its derivative are continuously differentiable up to the
(n + 1)th-order, this paper introduces the filters as in [20],
[40], thus only requiring the continuity and boundedness of
the reference signals xdi , i = 1, 3 and their first derivatives ẋdi .
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III. CONTROL DESIGN AND STABILITY ANALYSIS

In this section, we will present a detailed procedure for
designing the command filter-based prescribed performance
fixed-time event-triggered fuzzy vibration reduction controller
for the stochastic MEMS gyroscope. The stability analysis,
based on the fixed-time Lyapunov criterion, will also be
included. Notably, the controller design incorporates the ECM
and the IT3FLS to effectively handle filter errors and stochastic
disturbances, thereby enhancing the overall performance of the
controller. Additionally, with the aim of conserving communi-
cation resources, this section will also present the utilization
of the STETM and examine its non-Zeno behaviour.

A. Control Design

Define the following error systems:

zi (t) =

{
si (t) , i = 1, 3,
xi (t)− ᾱi (t) , i = 2, 4,

(25)

where ᾱi (t) , i = 2, 4 are the outputs of the following filter: φ̇i1 = φi2 − ri1M
1
2 sig(φi1 − αi)

1
2

− hi1N
1
2 sig(φi1 − αi)

µi1 ,
φ̇i2 = −ri2Msig (φi2 − φ̇i1)− hi2Nsig(φi1 − αi)

µi2 ,
(26)

where ᾱi = φi1 , ˙̄αi = φ̇i1 , and the meaning of the
parameters is the same as in (19).

Subsequently, define the compensated error variables

vi = zi − ζi, (27)

where ζi, i = 1, 2, 3, 4 are compensation signals that will be
specified in the i-th control design step.

Remark 7: The purpose of implementing ECM is to min-
imize the impact of filter error on the transient performance.
It should be noted that the ECM was also utilized in [20]
and [41], although these approaches only focused on ensuring
the finite-time stability of the ECM. In contrast, the ECM
proposed in this paper effectively compensates for filter errors
and guarantees the stability of the ECM within a fixed time.

Step 1: Define the compensation signal ζ1 as follows:

ζ̇1 = −l11ζ13 + λ1 (ᾱ2 − α2) + λ1ζ2 − λ1l12sign (ζ1) , (28)

where l11 and l12 are design parameters.
From (5), (6), (9), and (25)–(28), one has

dv1 =
(
λ1

(
v2 + α2 − 2

π ρ̇1 arctan (s1)− ẋd1
+l12sign (ζ1)) + l11ζ1

3
)
dt+GT1 dw.

(29)

Select the first Lyapunov function candidate as follows:

V1 =
1

4
v41 +

1

2γ1
Θ̃T1 Θ̃1, (30)

where Θ̃1 = Θ1 − Θ̂1 is the estimation error with the ideal
value Θ1 and the estimated value Θ̂1, and γ1 is a design
parameter.

Based on Definition 1, one has

LV1 = λ1v
3
1

(
v2 + α2 − 2

π ρ̇1 arctan (s1)

+l12sign (ζ1)− ẋd1
)
+ l11ζ1

3v31

+ 3
2λ

2
1v

2
1G

T
1G1 − 1

γ1
Θ̃1

˙̂
Θ1.

(31)

According to Lemma 4, one has
3

2
λ21v

2
1G

T
1G1 ≤ 3

4
λ41v

4
1∥G1∥4 +

3

4
. (32)

Substituting (32) into (31) yields

LV1 ≤ λ1v
3
1

(
v2 + α2 − 2

π ρ̇1 arctan (s1)
+l12sign (ζ1)− ẋd1 + F1 (X1)

)
− 1

γ1
Θ̃1

˙̂
Θ1 +

3
4 ,

(33)

where F1 (X1) = 3λ31v1∥G1∥4/4 + l11ζ1
3v31/λ1. The

IT3FLS is introduced to approximate F1 (X1), i.e.,
F1 (X1)=ψ

T
1 H1 (X1) + ε1 (X1). With Lemma 1, we

assume that |ε1 (X1)| ≤ ε1M , where ε1M ∈ R+.
Define the following ideal parameter ψ1:

ψ1 = arg min
ψ̂1∈Ψ1

[
sup

X1∈XX1

∣∣∣ψ̂1H1 (X1)− F1 (X1)
∣∣∣] , (34)

where Ψ1 and X1 are compact sets for ψ̂1 and X1, and ψ̂1is
the estimation of ψ1. The subsequent steps involve calculating
ideal weights similar to (34). However, they are not displayed
in the following controller design process to save space. The
interested reader is referred to [35], [41].

Based on Lemma 4 again, we can obtain

λ1v
3
1F1 (X1) ≤ 1

2a11
λ21v

6
1Θ1H

T
1 H1 +

3
4a12

v41λ
4
3
1

+
2a11+a

3
12ε

4
1M

4 ,

λ1v
3
1l12sign (ζ1) ≤ 3

4a13
λ

4
3
1 v

4
1 +

a313
4 l412,

λ1v
3
1v2 ≤ 3

4λ
4
3
1 v

4
1 +

1
4v

4
2 ,

(35)

where a11, a12, a13 ∈ R+ are design constants, and Θ1 =
max ∥ψ1∥2 is the learning parameter.

Substituting (35) into (33) yields

LV1 ≤ λ1v
3
1

(
α2 − 2

π ρ̇1 arctan (s1)

+ 1
2a11

λ1v
3
1Θ̂1H

T
1 H1 − ẋd1 +

3
4λ

1
3
1 v1

+ 3
4a12

λ
1
3
1 v1 +

3
4a13

λ
1
3
1 v1

)
+

3+2a11+a
3
12ε

4
1M+a313l

4
12

4 + 1
4v

4
2

+ Θ̃1

(
− 1
γ1

˙̂
Θ1 +

1
2a11

λ21v
6
1H

T
1 H1

)
.

(36)

Design α2 and Θ̂1 for the first subsystem as follows:

α2 = −kp1v4p−3
1 − kq1v

4q−3
1 + ẋd1

+ 2
π ρ̇1 arctan (s1)−

1
2a11

λ1v
3
1Θ̂1H

T
1 H1

− 3
4λ

1
3
1 v1 − 3

4a12
λ

1
3
1 v1 − 3

4a13
λ

1
3
1 v1,

(37)

˙̂
Θ1 = − γ1

2a11
λ21v

6
1H

T
1 H1 − pΘ11Θ̂1 − pΘ12Θ̂

2q−1
1 , (38)

where kp1, kq1, pΘ11, pΘ12 ∈ R+ are design parameters.
Substituting (37) and (38) into (36) yields

LV1 ≤ −kp1v4p1 − kq1v
4q
1 + 1

γ1
pΘ11Θ̃1Θ̂1

+ 1
γ1
pΘ12Θ̃1Θ̂

2q−1
1 +

3+2a11+a
3
12ε

4
1M+a313l

4
12

4 + 1
4v

4
2 .

(39)

It should be noted that
pΘ11

γ1
Θ̃1Θ̂1 ≤ pΘ11

2γ1
Θ2

1 −
pΘ11

2γ1
Θ̃2

1,(
Θ̃2

1

)p
≤ Θ̃2

1 + (1− p) p
p

1−p ,

pΘ12

γ1
Θ̃1Θ̂

2q−1
1 ≤ pΘ12(2q−1)

2qγ1

(
Θ2q

1 − Θ̃2q
1

)
.

(40)
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Then, the following can be obtained:

LV1 ≤ −kp1v4p1 − kq1v
4q
1 − pΘ11

2γ1
Θ̃2p

1

− pΘ12(2q−1)
2qγ1

Θ̃2q
1 + 1

4v
4
2 + Ξ1,

(41)

where Ξ1 = pΘ11Θ
2
1/2γ1 + (1− p) pΘ11p

p/(1−p) /2γ1 +(
3 + 2a11 + a312ε

4
1M + a313l

4
12

)
/4 + (2q − 1) pΘ12Θ

2q
1 /2qγ1.

Step 2: Define the compensation signal ζ2 as follows:

ζ̇2 = −l21ζ23 − λ1ζ1 − l22sign (ζ2) , (42)

where l21 and l22 are design parameters.
From (5), (25)–(27), and (42), one has

dv2 =
(
ux + f2 − ˙̄α2 + l21ζ2

3 + λ1ζ1
+l22sign (ζ2)) dt+GT2 dw.

(43)

Select the second Lyapunov function candidate as follows:

V2 = V1 +
1

4
v42+

1

2γ2
Θ̃T2 Θ̃2, (44)

where Θ̃2 = Θ2 − Θ̂2 is the estimation error with the ideal
value Θ2 and the estimated value Θ̂2, and γ2 is a design
parameter.

From (41)–(44), one has

LV2 ≤ v32
(
ux + f2 − ˙̄α2 + l21ζ2

3 + λ1ζ1
+l22sign (ζ2)) +

1
4v

4
2 +

3
2G

T
2G2v

2
2

− kp1v
4p
1 − kq1v

4q
1 − pΘ11

2γ1
Θ̃2p

1

− pΘ12(2q−1)
2qγ1

Θ̃2q
1 − 1

γ2
Θ̃2

˙̂
Θ2 + Ξ1.

(45)

According to Lemma 4, one has
3

2
GT2G2v

2
2 ≤ 3

4
v42∥G2∥4 +

3

4
. (46)

Substituting (46) into (45) yields

LV2 ≤ v32 (ux − ˙̄α2 + λ1ζ1 + l22sign (ζ2)
+F2 (X2)) +

1
4v

4
2 +

3
4

− kp1v
4p
1 − kq1v

4q
1 − pΘ11

2γ1
Θ̃2p

1

− pΘ12 (2q−1)
2qγ1

Θ̃2q
1 − 1

γ2
Θ̃2

˙̂
Θ2 + Ξ1,

(47)

where F2 (X2) = 3v2∥G2∥4/4 + l21ζ2
3 + f2. The

IT3FLS is introduced to approximate F2 (X2), i.e.,
F2 (X2)=ψ

T
2 H2 (X2) + ε2 (X2). With Lemma 1, we

assume that |ε2 (X2)| ≤ ε2M , where ε2M ∈ R+.
Based on Lemma 4 again, we can obtain

v32F2 ≤ 1
2a21

v62Θ2H
T
2 H2 +

3
4a22

v42

+
2a21+a

3
22ε

4
2M

4 ,

v32l22sign (ζ1) ≤ 3
4a23

v42 +
a323
4 l422,

(48)

where a21, a22, a23 ∈ R+ are design constants, and Θ2 =
max ∥ψ2∥2 is the learning parameter.

Substituting (48) into (47) yields

LV2 ≤ v32

(
ux − ˙̄α2 + λ1ζ1 +

1
2a21

v32Θ̂2H
T
2 H2

+ 3
4a22

v2 +
1
4v2

)
+

3+2a21+a
3
22ε

4
2M+a323l

4
22

4

− pΘ11

2γ1
Θ̃2p

1 − pΘ12 (2q−1)
2qγ1

Θ̃2q
1

− Θ̃2

(
− 1
γ2

˙̂
Θ2 +

1
2a21

v62H
T
2 H2

)
− kp1v

4p
1 − kq1v

4q
1 + Ξ1.

(49)

Design α3 and Θ̂2 for the second subsystem as follows:

α3 = −kp2v4p−3
2 − kq2v

4q−3
2 − λ1ζ1 + ˙̄α2

− 1
2a21

v62Θ̂2H
T
2 H2 − 1

4v2 −
3

4a22
v2 − 3

4a23
v2,

(50)

˙̂
Θ2 = − γ2

2a21
v62H

T
2 H2 − pΘ21Θ̂2 − pΘ22Θ̂

2q−1
2 , (51)

where kp2, kq2, pΘ21, pΘ22 ∈ R+ are design parameters.
Substituting (50) and (51) into (49) yields

LV2 ≤ −
2∑
i=1

kpiv
4p
i −

2∑
i=1

kqiv
4q
i − pΘ11

2γ1
Θ̃2p

1

− pΘ12 (2q−1)
2qγ1

Θ̃2q
1 + pΘ21

γ2
Θ̃2Θ̂2

+ pΘ22

γ2
Θ̃2Θ̂

2p−1
2 + v32 (ux − α3)

+
3+2a21+a

3
22ε

4
2M+a323l

4
22

4 + Ξ1.

(52)

It should be noted that
pΘ21

γ2
Θ̃2Θ̂2 ≤ pΘ21

2γ2
Θ2

2 −
pΘ21

2γ2
Θ̃2

2,(
Θ̃2

2

)p
≤ Θ̃2

2 + (1− p) p
p

1−p ,

pΘ22

γ2
Θ̃2Θ̂

2q−1
2 ≤ pΘ22(2q−1)

2qγ2

(
Θ2q

2 − Θ̃2q
2

)
.

(53)

Substituting (53) into (52) yields

LV2 ≤ −
2∑
i=1

kpiv
4p
i −

2∑
i=1

kqiv
4q
i −

2∑
i=1

pΘi1

2γi
Θ̃2p
i

−
2∑
i=1

pΘi2(2q−1)
2qγi

Θ̃2q
i +

2∑
i=1

Ξi + v32 (ux − α3) ,

(54)

where Ξ2 = pΘ21Θ
2
2 /2γ2 + (1 − p) pΘ21p

p/(1−p) /2γ2 +(
3 + 2a21 + a322ε

4
2M + a323l

4
22

)
/4 + (2q − 1) pΘ22Θ

2q
2 /2qγ2.

Steps 3 and 4: Given the similarity of these two steps to
the derivations in Step 1 and Step 2, we will solely present
the key expressions herein for space conservation.

Define the compensation signals ζ3 and ζ4 as follows:

ζ̇3 = −l31ζ33 + λ3 (ᾱ4 − α4) + λ3ζ4 − λ3l32sign (ζ3) ,

ζ̇4 = −l41ζ43 − λ3ζ3 − l42sign (ζ4) ,
(55)

where l31, l32, l41, and l42 are design parameters.
From (5), (6), (9), (25)–(27), and (55), we can obtain

dv3 =
(
λ3

(
v4 + α4 + l32sign (ζ3)− ẋd3

− 2
π ρ̇3 arctan (s3)

)
+ l31ζ3

3
)
dt+GT3 dw,

dv4 =
(
uy + f4 − ˙̄α4 + l41ζ4

3 + λ3ζ3
+l42sign (ζ4)) dt+GT4 dw.

(56)

Select the third and fourth Lyapunov function candidates as

V3 = V2 +
1
4v

4
3 +

1
2γ3

Θ̃T3 Θ̃3,

V4 = V3 +
1
4v

4
4 +

1
2γ4

Θ̃T4 Θ̃4,
(57)

where Θ̃3 = Θ3 − Θ̂3 and Θ̃4 = Θ4 − Θ̂4 are estimation
errors between ideal values Θ3, Θ4 and estimated values Θ̂3,
Θ̂4, and γ3, γ4 are design parameters.

Let F3 (X3) = 3λ33v3∥G3∥4/4 + l31ζ3
3v33/λ3 and

F4 (X4) = 3v4∥G4∥4/4 + l41ζ4
3 + f4. The IT3FLSs used

to approximate these two nonlinear functions are F3 (X3) =
ψT3 H3 (X3) + ε3 (X3) and F4 (X4)=ψ

T
4 H4 (X4) + ε4 (X4),

and we assume that |ε3| ≤ ε3M and |ε4 (X4)| ≤ ε4M ,
where ε3M ∈ R+, ε4M ∈ R+. Θ3 = max ∥ψ3∥2 and
Θ4 = max ∥ψ4∥2 are learning parameters.
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Design α4 and Θ̂3 for the third subsystem as follows:

α4 = −kp3v4p−3
3 − kq3v

4q−3
3 − 1

2a31
λ3v

3
3Θ̂3H

T
3 H3

− 3
4λ

1
3
3 v3 − 3

4a32
λ

1
3
3 v3 − 3

4a33
λ

1
3
3 v3

+ 2
π ρ̇3 arctan (s3) + ẋd3,

(58)

˙̂
Θ3 = − γ3

2a31
λ23v

6
3H

T
3 H3 − pΘ31Θ̂3 − pΘ32Θ̂

2q−1
3 , (59)

where a31, a32, a33, kp3, kq3, pΘ31, pΘ32 ∈ R+ are design
parameters.

Design α5 and Θ̂4 for the fourth subsystem as follows:

α5 = −kp4v4p−3
4 − kq4v

4q−3
4 + ˙̄α4 − λ3ζ3

− 1
2a41

v34Θ̂4H
T
4 H4 − 1

4v4 −
3

4a42
v4 − 3

4a43
v4,

(60)

˙̂
Θ4 = − γ4

2a41
v64H

T
4 H4 − pΘ41Θ̂4 − pΘ42Θ̂

2q−1
4 , (61)

where a41, a42, a43, kp4, kq4, pΘ41, pΘ42 ∈ R+ are design
parameters.

From (54), (57), and (56)–(59), we can obtain

LV4 ≤ −
4∑
i=1

kpiv
4p
i −

4∑
i=1

kqiv
4q
i +

4∑
i=1

Ξi −
4∑
i=1

pΘi1

2γi
Θ̃2p
i

−
4∑
i=1

pΘi2 (2q−1)
2qγi

Θ̃2q
i + v32 (ux − α3) + v34 (uy − α5) ,

(62)
where Ξ3 = pΘ31Θ

2
3 /2γ3 + (1 − p) pΘ31p

p/(1−p) /2γ3 +(
3 + 2a31 + a332ε

4
3M + a333l

4
32

)
/4 + (2q − 1) pΘ32Θ

2q
3 /2qγ3

and Ξ4 = pΘ41Θ
2
4/2γ4 + (1 − p) pΘ41p

p/(1−p)/2γ4 +(
3 + 2a41 + a342ε

4
4M + a343l

4
42

)
/4 + (2q − 1) pΘ42Θ

2q
4 /2qγ4.

Step 5: The STETM is introduced in this step for data
transmission. For simplicity, let vx = v2, vy = v4, αx = α3,
αy = α4. Then, the intermediate control signals are designed
as follows: (i = x, y)

ωi = − (1 + ℵi)
[
αi tanh

(
v3i αi
℘i

)
+ m̄i tanh

(
v3i m̄i

℘i

)]
.

(63)
Define the corresponding trigger mechanism as follows:

ui = ωi
(
tki
)
,∀ti ∈

[
tki , t

k+1
i

)
, δi = ωi − ui,

tk+1
i =

{
inf

{
ti > tki ||δi| ≥ ni

}
, |ui| ≥ Di,

inf
{
ti > tki ||δi| ≥ ℵi |ui|+mi

}
, |ui| < Di,

(64)
where Di, ℵi, ni, mi, m̄i, and ℘i denote design parameters,
and δi, i = x, y denote the measurement errors. Term tki are
the update times of the controller, while 0 < ℵi < 1 and
m̄i > mi/ (1− ℵi). The control signals hold as ui

(
tki
)

during
the time

[
tki , t

k+1
i

]
. When the ETM is triggered, the time will

be set instantly as tk+1
i . Then, the control signals ui

(
tk+1
i

)
will be applied.

Remark 8: As observed from the trigger mechanism (64),
the introduced STETM incorporates a combined approach of
fixed and relative threshold design methods. More specifically,
when the control input signals satisfy |ui| < Di, the control
system adopts a relative threshold strategy to achieve precise
control. Conversely, when |ui| exceed a certain value, the
relative threshold policy is switched to a fixed threshold
policy, ensuring that the measurement errors δi remain within
bounds to maintain a certain level of system performance. This

threshold design scheme combines the benefits of both fixed
threshold and relative threshold design strategies, offering en-
hanced flexibility and allowing the system to make appropriate
adjustments in order to save communication resources while
balancing system performance.

Remark 9: Unlike finite-time control schemes [17]–[22],
[29], [39], where the stability time depends on the initial state
of the system, in this paper, the controller is designed based
on the fixed-time stability theory [22]. Therefore, the proposed
control scheme ensures that the settling time is completely
determined by the design parameters.

B. Stability Analysis

Theorem 1: For the stochastic MEMS gyroscope (5) under
Assumptions 1, the virtual control signals (37), (50), (58),
(60), the adaptive laws (38), (51), (59), (61), the intermediate
control signal (63), and the switching threshold event-triggered
rules (64), all the closed-loop system signals are FTBIP and
the tracking errors are within the prescribed performance
boundaries within a fixed time.

Proof: From (64), one has

ωi = (1 + ℏi1ℵi)ui + ℏi2mi, (65)

where ℏi1 and ℏi2 are continuous time-varying parameters with
ℏi1 (0) = ℏi2 (0) = 0 and |ℏi1| , |ℏi2| ≤ 1. It should be
noted that

viωi
1 + ℏi1ℵi

≤ viωi
1 + ℵi

,

∣∣∣∣ ℏi2mi

1 + ℏi1ℵi

∣∣∣∣ ≤ mi

1− ℵi
< m̄i. (66)

With Lemma 5 and (66), one can obtain

v3i (ui − αi)

= −v3i
[
αi tanh

(
v3iαi

℘i

)
+ m̄i tanh

(
v3i m̄i

℘i

)
− αi − m̄i

]
≤

∣∣v3i αi∣∣− v3i αi tanh
(
v3iαi

℘i

)
+
∣∣v3i m̄i

∣∣
−v3i m̄i tanh

(
v3i m̄i

℘i

)
≤ 0.557℘i.

(67)
Select the Lyapunov function as follows:

V =

4∑
i=1

1

4
v4i +

4∑
i=1

1

2γi
Θ̃Ti Θ̃i. (68)

Combining (62) , (67) and (68) yields

LV ≤ −
4∑
i=1

kpiv
4p
i −

4∑
i=1

kqiv
4q
i −

4∑
i=1

pΘi1

2γi
Θ̃2p
i

−
4∑
i=1

pΘi2 (2q−1)
2qγi

Θ̃2q
i +

4∑
i=1

Ξi + 0.557 (℘x + ℘y) .

(69)

From (69), one has

LV ≤ − σ1

(
4∑
i=1

v4pi +
4∑
i=1

Θ̃2p
i

)
− σ2

(
4∑
i=1

v4qi +
4∑
i=1

Θ̃2q
i

)
+ β

(70)

where σ1 = min {4kpi, pΘi1}, σ2 = min
{
4kqi,

(2q−1)pΘi1

q

}
,

β =
4∑
i=1

Ξi + 0.557 (℘x + ℘y). By selecting suitable con-

stants σ1, σ2 and β, Lemma 2 allows us to conclude that both
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the states vi and the parameter estimation errors Θ̃i are all
FTBIP. Furthermore, given the introduction of ECM into the
system, it becomes imperative to confirm that ζi, i = 1, 2, 3, 4
are FTBIP.

Select the Lyapunov function as follows:

Vζ =

4∑
i=1

1

2
ζ2i . (71)

Calculating its time derivative yields

dVζ = − l11ζ1
4 + λ1ζ1 (ᾱ2 − α2) + λ1ζ1ζ2 − λ1l12 |ζ1|

− l31ζ3
4 + λ3ζ3 (ᾱ4 − α4) + λ3ζ3ζ4 − λ3l32 |ζ3|

− l21ζ2
4 − λ1ζ1ζ2 − l22 |ζ2| − l41ζ4

4

− λ3ζ3ζ4 − l42 |ζ4|

=−
4∑
i=1

li1ζi
4 +

∑
i=1,3

λiζi (ᾱi − αi)−
4∑
i=1

∆ili2 |ζi|

(72)
where ∆i = λi, i = 1, 3 and ∆i = 1, i = 2, 4. According to
Lemmas 3 and 6, one has ᾱi − αi ≤ ηi within a fixed time
TiF . Then, we can obtain

dVζ ≤ −
4∑
i=1

li1ζi
4 −

∑
i=1,3

∆i (li2 − ηi+1) |ζi| −
∑
i=2,4

li2 |ζi|

≤ −ι1V
1
2

ζ − ι2V
2
ζ ,

(73)
where ι1 =

√
2min {λ1 (l12 − η2) , λ3 (l32 − η4) , l22, l42},

and ι1 = min {l11, l21, l31, l41}.
From (73) and Lemma 2, we know ζi are FIBIP with the

settling time Tζ = 2/ι1 + 1/ι2. Moreover, since zi = vi + ζi,
then zi are FIBIP. From (6), (25), and Assumptions 1, we can
determine that si, i = 1, 3 and xi, i = 2, 4 are FIBIP. Besides,
it can be observed from (8) that the boundedness of si means
that −1 < ei/ρi < 1. In other words, ei ∈ Ωei , i = 1, 3 always
hold. Therefore, the prescribed performance boundaries of
tracking errors with a fixed time can be guaranteed. Moreover,
from Lemmas 2 and 3, we can deduce that the settling
time satisfies T = 1/ [σ1 (1 − p)] + 1/ [σ2 (q − 1)] +∑4

i=1 TiF +Tζ .
Next, it should be noted that δi = ωi − ui for ∀ti ∈[
tki , t

k+1
i

)
. Hence, one obtains

d

dt
|δi| ≤

d

dt
(δi × δi)

1
2 = sign (δi) δ̇i ≤ |ω̇i| . (74)

Since ω̇i, i = x, y are bounded, ω̇i continuously connect to
the bounded signals when ti ∈

[
tki , t

k+1
i

)
. In other words,

there exists positive constants Υi such that |ω̇i| ≤ Υi,
ti ∈

[
tki , t

k+1
i

)
, i = x, y, leading to the conclusion that

|δi| ≤ Υi
(
ti − tk+1

i

)
, ti ∈

[
tki , t

k+1
i

)
. It should be noted that

δi
(
tki
)
= 0 and lim

ti→tk+1
i

|δi| ≤ ℵi
∣∣ωi (tk+1

i

)∣∣ +mi; thus, one

has
mi ≤ lim

ti→tk+1
i

|δi| ≤ Υi∆ti, (75)

where ∆ti = tk+1
i − tki . Evidently, ∆ti > 0 can be easily

deduced for any finite time interval. Additionally, tki → ∞ can
be observed as k → ∞, which can be verified by contradiction.
Specifically, assuming t∞i = lim

k→∞
tki < ∞ implies that

lim
k→∞

∆ti = 0. In conjunction with eq (75), it results that

0 < mi ≤ Υi × 0 = 0, k → ∞. Having considered the
preceding discussion, we can assert that the occurrence of
Zeno behavior can be effectively eliminated. Up to now, we
have completed the proof of Theorem 1.

Remark 10: A discussion on the effect of the control
parameters is detailed below.

1) By increasing the control gains kpi, kqi, i = 1, 2, 3, 4,
the adaptive gains pΘi1, pΘi2, the filter gains li1, and
decreasing the filter gains li2, the upper bound of vi can
be reduced to achieve a more effective tracking. How-
ever, excessively large values of kpi, kqi, pΘi1, pΘi2, li1
and excessively small values of li2 can lead to surges and
vibrations in control inputs, potentially causing damage
to the control system. Therefore, it is important to
moderately adjust these control parameters to ensure
satisfactory tracking performance without exceeding the
control system’s input capability.

2) The parameters of the QPPF (7) need to be adjusted
according to the actual application requirements. Specif-
ically, parameters ρi0, i = 1, 3 should encompass the ini-
tial position of the system states xi(0), while parameters
ρi∞ must be fine-tuned based on the specific application
needs. Theoretically, the values of ρi∞ can approach in-
finitesimal levels. However, as ρi∞ decrease, the control
signals amplify, leading to higher energy consumption.
Therefore, in practical engineering applications, a trade-
off between the control signals and the steady-state limit
boundary must be maintained. Additionally, increasing
parameters ℓi can improve error convergence speed, but
excessively large values of ℓi may introduce overshoots
and vibrations. Hence, selecting moderate values for
ℓi, tailored to the specific application requirements, is
crucial.

3) The performance of the filter (26) can be improved by
decreasing the filter parameters ri1, hi1, i = 2, 4, and
increasing ri2, hi2,M,N . However, pursuing an extreme
filtering performance may lead to unbounded growth in
control inputs. Therefore, it is essential to maintain a
balance between filtering performance and control inputs
when adjusting the filtering parameters.

4) The performance of STETM (63) and (64) can be en-
hanced by decreasing parameters ℵi, ℘i, i = x, y. Nev-
ertheless, excessively small values of ℵi, ℘i may lead
to an increased frequency of trigger occurrences. There-
fore, it is important to avoid setting ℵi, ℘i too small.
Additionally, parameters ni,mi, m̄i influence the trig-
ger threshold. Specifically, larger values of ni,mi, m̄i

may delay event triggering, whereas smaller values of
ni,mi, m̄i may lead to more frequent event triggering.
The adjustment of parameters Di has been detailed in
Remark 8.

5) The remaining control parameters, such as ai1, ai2, ai3,
i = 1, 2, 3, 4 are utilized to address potential singularity
issues that may arise from the introduction of inequal-
ity transformations. In cases where such singularity
problems occur, these parameters can be decreased to
prevent singularity and ensure the controller’s normal
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operation. Parameter γi serves a similar purpose, yet it
is distinctively used to mitigate singularity issues when
employing fuzzy approximators.

IV. SIMULATION RESULTS

This section presents the numerical experiments that were
conducted to verify the feasibility and effectiveness of the pro-
posed control scheme for the MEMS gyroscope. The system
parameters were selected as follows [3]: m = 1.8 × 10−7kg,
Ω∗
z = 100rad/s, ω0 = 1000HZ, d∗xx = 1.8 × 10−6Ns/m,

d∗yy = 3.6 × 10−7Ns/m, d∗xy = 1.8 × 10−6Ns/m, k∗xx =
63.955N/m, k∗yy = 95.92N/m, and k∗xy = 12.799N/m, and
the desired tracking signals were set as xd1 = 1.36 sin (2t) +
0.14 and xd3 = 1.32 sin (t) + 0.18.

Simulation 1: (Effectiveness and superiority of the proposed
controller):

Case 1: The main control parameters were chosen as kp1 =
kp3 = 75, kp2 = kp4 = 30, kq1 = kq3 = 75, kq2 = kq4 = 30,
l11 = l21 = l31 = l41 = 20, l12 = l22 = l32 = l42 = 0.01,
a11 = a21 = a31 = a41 = 0.75, a12 = a22 = a32 = a42 =
0.1, a13 = a23 = a33 = a43 = 0.5, r21 = r41 = 1, r22 =
r42 = 20, h21 = h41 = 1, h22 = h42 = 20, µ21 = µ22 =
µ41 = µ42 = 1, M = N = 20, γ1 = γ1 = γ1 = γ1 =
0.2, pΘ11 = pΘ21 = pΘ31 = pΘ41 = 10, pΘ12 = pΘ22 =
pΘ32 = pΘ42 = 10, ℓ1 = ℓ3 = 1, ρ10 = 0.6, ρ30 = 0.5, and
ρ1∞ = ρ3∞ = 0.1. For IT3FLS, consider five membership
functions centered on −1,−0.25, 0, 0.75, and 1, and five rules.
The initial conditions were x1 (0) = 0.2, x3 (0) = 0.15,
x2 (0) = x4 (0) = 0, Θ̂1 (0) = Θ̂3 (0) = 0.01, Θ̂2 (0) =
Θ̂4 (0) = 0, φ21 (0) = φ22 (0) = 0, φ41 (0) = φ42 (0) = 0,
ᾱ2 (0) = α2 (0) = 0, and ᾱ4 (0) = α4 (0) = 0.

Case 2: Based on Case 1, the unknown variations
of spring and damping terms were further considered as
∆d∗xx = 0.4× d∗xx × sign (x) ,∆d∗yy = 0.35× d∗yy × sign (y) ,
∆d∗xy = 0.3× d∗xy × sign (x) + 0.3× d∗xy × sign (y) ,
∆k∗xx = 0.3× k∗xx × sign (x) ,∆k∗yy = 0.35× k∗yy × sign (y) ,
∆k∗xy = 0.3× k∗xy × sign (x) + 0.3× k∗xy × sign (y) .

Additionally, the stochastic disturbances were chosen as
G1 = (1− cos (x1π/180))× randn,
G2 = (1− sin (x2π/180))× randn,
G3 = (x3 sin (x2π/180))× randn,
G4 = (x4 sin (x3π/180))× randn,

where randn represents a random number that conforms to a
normal distribution.

Case 3 and Case 4: To demonstrate the potential advantages
of the control scheme proposed in this paper, the control results
of the controllers in literature [48] (Case 3) and literature [49]
(Case 4) were presented for the stochastic MEMS gyroscope.
The system parameters were set according to Case 1, while
the applied stochastic disturbances were based on Case 2.

Case 5: Based on Case 2, to showcase the superior handling
of stochastic disturbances by the IT3FLS, we compared and
evaluated the tracking performance of controllers based on
the radial basis function (RBF), type-1 fuzzy logic system
(T1FLS), type-2 fuzzy logic system (T2FLS), and IT3FLS.

Case 6: Based on Case 2, to directly analyze the computa-
tional burden of the IT3FLS, we compared the execution time
between different fuzzy-based methods. The simulations were

TABLE II
COMPARATIVE RESULTS OF TRACKING PERFORMANCE

INDICES

Indices Case 1 Case 2 Case 3 Case 4
µe1 0.0013 0.0014 0.0068 0.0064
µe3 0.0008 0.0010 0.0095 0.0094
Se1 0.0053 0.0056 0.0150 0.0159
Se2 0.0027 0.0027 0.0162 0.0153

TABLE III
COMPARISON OF PROPOSED CONTROLLER WITH VARIOUS

NEURO-FUZZY SYSTEMS

Indices RBF T1FLS T2FLS IT3FLS
µe1 0.0031 0.0031 0.0020 0.0014
µe3 0.0026 0.0027 0.0017 0.0010
Se1 0.0122 0.0125 0.0095 0.0053
Se2 0.0094 0.0089 0.0067 0.0027

conducted using Matlab 2019b on a system with an Intel®
Core™ i7-8700 CPU @ 3.20GHz and 8GB of RAM.

Simulation 2: (Superiority of QPPF):
Case 1: Based on Simulation 1 (Case 2), resetting ℓ1 =

ℓ3 = 2, and comparing the QPPF with the TPPF.
Case 2: Based on Simulation 1 (Case 2), resetting ℓ1 =

ℓ3 = 5, and comparing the QPPF with the TPPF.
Simulation 3: (Superiority of ETM):
Based on Simulation 1 (Case 2), the event-triggered pa-

rameters were selected as follows: Dx = Dy = 125,
ℵx = ℵy = 0.1, ℘x = ℘y = 0.1, m̄x = m̄y = 10,
nx = ny = 10, mx = my = 10.

In this paper, the following four performance indices are
used to quantitatively analyze the control effectiveness:

µei =
1

N

N∑
j=1

|ei (j)| (76)

Sei =

√√√√ 1

N

N∑
j=1

[|ei (j)− µei |] (77)

Mum = max
j=1,...,N

{[um (j) − µum ]}

− min
j=1,...,N

{[um (j) − µum ] } (78)

Fcm =
Mum

1
N

N∑
j=1

um (j)

(79)

where µeiand Sei are the mean and standard deviation of
ei, i = 1, 3, respectively, Mum

and Fcm are are the amplitude
and vibration factor values of um,m = x, y, respectively, and
N denotes the number of sample points.

The MATLAB was utilized to obtain the simulation results
presented in Figs 3–5. A fixed step size of 0.001 was employed
throughout the simulations.

Fig. 3 illustrates the trajectory tracking and tracking errors
between the actual and the reference trajectory of the MEMS
gyroscope. As demonstrated in Fig. 3, despite the existence
of stochastic disturbances and unknown variations, the actual
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Fig. 3. Tracking results of x1 and x3.

TABLE IV
COMPARISON OF EXECUTION TIMES

Indices T1FLS T2FLS IT3FLS
Execution time (s) 36.329657 37.400013 39.213035

trajectory closely approximated the reference trajectory with
minimal errors and remained within the specified bound. Table
II provides the relevant tracking performance indices. Com-
paring the control performance of the MEMS gyroscope with
and without unknown variations and stochastic disturbances,
it is evident that these factors scarcely affected the control
performance of the controller under the QPPF constraints.
Moreover, the proposed scheme demonstrated both lower
tracking errors (smaller mean and standard deviation values)
for the MEMS gyroscope compared to the methods presented
in [48] and [49].

Additionally, based on Table III, it is evident that the
IT3FLS exhibited a considerable enhancement in tracking ac-
curacy when compared to conventional neural-fuzzy systems.
This result highlights the superior capability of the IT3FLS in
effectively handling stochastic disturbances.

Furthermore, Table IV validates that the execution time
of the IT3FLS was marginally longer compared to conven-
tional FLS-based methods. However, it’s worth mentioning

TABLE V
COMPARATIVE RESULTS OF CONTROL INPUT CHATTERING

Indices Case1-QPPF Case1-TPPF Case2-QPPF Case2-TPPF
Mux 371.6798 388.1492 374.2849 417.4556
Muy 201.4831 208.8479 201.8316 220.4914
Fcx 17.7243 18.5097 17.8577 19.9203
Fcy 5.0721 5.2557 5.0803 5.5491

that besides CPU performance, the programming approach
employed in FLSs also influences the execution time. Utilizing
vector programming and minimizing loops can significantly
enhance time efficiency. Moreover, with the progress of high-
speed programmable ICs, the slightly longer execution time
of the IT3FLS does not lead to a substantial increase in
computational burden.

Fig. 4. Vibration evaluation results of ux and uy .

Fig. 4 showcases a comparison of the control input torques
provided by the QPPF and the TPPF for different values of ℓi,
from which it is evident that the control inputs of the QPPF
and the TPPF were essentially similar at smaller values of ℓi.
However, as ℓi became sufficiently large, the TPPF exhibited
more pronounced vibrations during the initial stage of control
input compared to the QPPF (note that the area covered in
red is larger in the initial phase). Corresponding comparative
index values are presented in Table V, which demonstrates
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TABLE VI
COMPARISON BETWEEN EMT AND CCT

Indices Relative Switching Fixed Continuous-time
ux 142 210 337 10000
uy 63 150 225 10000
µe1 0.0016 0.0016 0.0015 0.0014
µe3 0.0012 0.0010 0.0010 0.0010
Se1 0.0065 0.0058 0.0057 0.0053
Se3 0.0035 0.0034 0.0031 0.0027

that the proposed QPPF effectively mitigated the initial control
vibrations for the MEMS gyroscope.

Fig. 5. Event-triggered results of ux and uy .

Fig. 5 provides valuable insights into the control input and
switching threshold event-triggered frequency of the MEMS
gyroscope. The results depicted in Fig. 5 and summarized
in Table VI demonstrate that the control scheme utilizing
the STETM is effective in reducing the reliance on fre-
quent communication while preserving control accuracy, as
compared to the control scheme employing the continuous-
time-triggered mechanism. Furthermore, the STETM strikes
a balance between triggered times and tracking accuracy,
in contrast to control schemes based on relative thresholds
and fixed threshold event-triggered mechanisms. Additionally,
Fig. 5 reveals that during the initial phase, the controller

required frequent triggers to track the reference signal rapidly.
However, as the process progressed, the system reached a
relatively stable state, significantly increasing the average time
interval between trigger events. Furthermore, the control input
based on the STETM exhibited a vibration-shielding effect.
These findings underline the significance of implementing the
STETM in MEMS gyroscope control applications.

V. CONCLUSION

This article effectively addressed the challenge of develop-
ing fixed-time fuzzy vibration reduction control for stochastic
MEMS gyroscopes. The combination of the CFBBD with the
ECM in the proposed approach was aimed at addressing the
issue of complexity explosion and compensating for filtering
errors. Moreover, the QPPF was designed to drive the tracking
error towards a small neighborhood of zero within a predefined
period and reduce control vibrations. The employment of the
STETM ensured efficient resource utilization and vibration
filtration without sacrificing control accuracy. The simulation
results substantiated the effectiveness and superiority of the
proposed control strategy in attaining the desired control
performance of MEMS gyroscopes.
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