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Abstract—The present paper provides a systematic way to 

generalize controller design for discrete-time nonlinear 

descriptor models. The controller synthesis is done using a 

Takagi-Sugeno representation of the descriptor models and 

linear matrix inequalities. We propose approaches to exploit the 

discrete-time nature of the problem by using delayed Lyapunov 

functions which allow delayed controller gains. In addition, the 

well-known Finsler’s Lemma is used to avoid the explicit 

substitution of the closed-loop dynamics. Examples are provided 

to show the effectiveness of the proposed results.  

 
Index Terms—Controller design, linear matrix inequality, 

nonlinear descriptor model, non-quadratic Lyapunov function.  

 

I. INTRODUCTION 

large class of nonlinear models can be exactly 

represented by Takagi-Sugeno (TS) models via the sector 

nonlinearity approach [1]. When this methodology is used, the 

designed controller/observer applies directly to the nonlinear 

system. The TS model is a collection of local linear models 

combined by nonlinear membership functions (MFs); these 

MFs share the convex sum property [2]. The TS model 

facilitates analysis via the direct Lyapunov method and linear 

matrix inequalities (LMIs). The interest of casting conditions 

in LMI terms is because they can be efficiently solved via 

convex optimization techniques [3], [4]. Nevertheless, the TS-

LMI framework presents an important shortcoming: when 

using the sector nonlinearity approach, the number of rules 

(linear models) is exponentially related to the number of non-

constant terms in the original nonlinear model, thus possibly 

turning the problem computationally intractable, especially 

when mechanical systems are under study. 

Often, mechanical systems can be expressed as descriptor 

models [5]. A way to rewrite these models using the TS 

framework was proposed in [6]. Since the TS descriptor model 

keeps the nonlinear terms in the left-hand side, it can highly 

reduce the number of linear models in comparison with a 
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classical TS model description [6]–[10]. In recent literature 

there are several works that concern discrete-time descriptor 

models [11]–[14], whereas other works refer to descriptor-

redundancy, where the classical TS model is written in 

descriptor-like form to reduce the pessimism of the results 

[15]–[17].  

One of the sources of conservativeness is the use of a 

quadratic Lyapunov function candidate [18]. For discrete-time 

TS models several improvements have been achieved with the 

use of non-quadratic Lyapunov functions. Generally, these 

Lyapunov functions share the same MFs as the TS model 

under consideration [19]–[23]. However, these advantages are 

not easily implemented in continuous-time TS models [18], 

[24]–[27]. More recently, polynomial approaches have been 

used [28]–[30], approaches exploiting the properties and shape 

of the MFs [31]–[34]. 

The aim of this work is to provide a systematic way to 

synthesize controllers for nonlinear discrete-time regular 

descriptor systems. This is motivated by mechanical systems 

where the left-hand side contains the mass matrix, which is 

regular and positive definitive [9], [35]. The basic idea is to 

rewrite the nonlinear descriptor model using TS descriptor 

representation. The controller design is based on two different 

non-quadratic Lyapunov functions, similar to those in [13], 

[36]; we also take advantage of the “delayed” approach 

presented in [21]; the main idea is to introduce past samples 

into the MFs of the Lyapunov function; thus bringing new 

controller structures including also information on past 

samples. This approach not only exploits the discrete-time 

nature of the problem; but from the point of view of the LMI 

constraint problem it brings relaxed results by increasing the 

number of decision variables while the number of LMI 

constraints remains the same. The new approaches are based 

on the well-known Finsler’s Lemma, which avoids the explicit 

substitution of the closed-loop dynamics and allows adding 

slack variables [36]–[38]. In addition, this work provides a 

systematic analysis on how to choose the past samples 

involved in the MFs of the controller gains and the Lyapunov 

matrix, thus generalizing existing results in the literature [36].  

The paper is organized as follows: Section II introduces the 

TS descriptor model, and provides some properties and the 

notation used along the work, together with a motivating 

example; Section III presents the main results for controller 

design for discrete-time TS descriptor models with illustrative 

examples; Section IV extends the results to H∞  attenuation 

and robust control; Section V concludes the paper.  
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II. PRELIMINARIES 

A. TS descriptor models 

Consider the nonlinear descriptor model:  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )1E x x A xk k k kx B k kx u+ = + , (1) 

where ( ) nx k ∈�  is the state vector, ( ) mu k ∈�  is the control 

input vector, and k  is the current sample. Matrices ( )A x , 

( )B x , and ( )E x  are assumed to be smooth in a compact set 

xΩ  of the state space including the origin. Moreover, matrix 

( )E x  is assumed to be nonsingular for all ( )x k  in the 

considered compact set 
xΩ ; this is motivated by mechanical 

systems, in which ( )E x  contains the mass matrix and is 

therefore nonsingular [9], [31], see Example 1 hereafter.  

Nonlinear terms are assumed to be bounded, i.e., 

( ) ,nl nl nl ⋅ ∈   . Using the sector nonlinearity approach [2] the 

p  nonlinear terms in the right-hand side and the 
ep  nonlinear 

terms in the left-hand side are captured via the nonlinear 

membership functions (MFs) ( )ih ⋅ , { }1, , 2
p

i ∈ K  and ( )jv ⋅ , 

{ }1, , 2 ep
j ∈ K . These MFs hold the convex sum property, i.e., 

( )
1

1
r

ii
h

=
⋅ =∑ , ( ) 0ih ⋅ ≥ , ( )

1
1

er

jj
v

=
⋅ =∑ , ( ) 0jv ⋅ ≥  in the 

compact set 
xΩ ; the number of linear models in the right-

hand side and in the left-hand side is 2 pr =  and 2 ep

er = , 

respectively. In addition, the MFs depend on the premise 

vector ( )z k  which is assumed to be known. 

Using the sector nonlinearity approach, an exact 

representation of the discrete-time nonlinear descriptor model 

(1) in the compact set 
xΩ  is [6]: 

( )( ) ( ) ( )( ) ( ) ( )( )
1 1

1
er r

j i i

j i

j iv z k E x k h z k A x k B u k
= =

+ = +∑ ∑ , (2) 

where matrices 
iA , 

iB ,  { }1, ,i r∈ K  represent the i-th linear 

right-hand side model and 
jE , { }1, , ej r∈ K  represent the j-th 

linear left-hand side model of the TS descriptor model.  

An asterisk ( )∗  will be used in matrix expressions to denote 

the transpose of the symmetric element; for in-line expressions 

it will denote the transpose of the terms on its left-hand side. 

Arguments will be omitted when their meaning is evident. 

B. Properties and lemmas  

In order to obtain LMI conditions, MFs are usually dropped 

out from the expression; to this end the following sum 

relaxation scheme will be employed. 

Lemma 1. [40] (Relaxation Lemma). Let 
1 2i iϒ  be matrices 

of proper dimensions where { }1 2, 1, ,i i r∈ … . If  

1 1 1 1 1 2 2 11 1 2

2
0, 0, ,

1
,i i i ii i i i i ii

r
ϒ < ϒ + ϒ + ϒ < ≠

−
∀  (3)  

then ( )( ) ( )( )
1 2 1 21 21 1

0
r r

i ii i i ik kh z h z
= =

ϒ <∑ ∑  holds. 

In the next sections we will also use the following lemma 

and properties. 

Lemma 2. [37] (Finsler’s Lemma). Let ,nx ∈�  
T n n

Q Q
×= ∈� , and m nR ×∈ �  such that ( )rank R n< ; the 

following expressions are equivalent: 

a) 0
T

x Qx < , { }: 0, 0nx x x Rx∀ ∈ ∈ ≠ =� . 

 b) : 0
n m T T

M Q MR R M
×∃ ∈ + + <� . 

Property 1. Let 0TQ Q= >  and R  be matrices of 

appropriate size. The following expression holds: 

( ) ( )1 10
T T TR Q Q R Q R Q R R R Q− −− − ≥ ⇔ ≥ + − . 

Property 2. Let 0TQ Q= > , R  and M  be matrices of 

appropriate size. The following expression holds: 
1T T T TR M M R R QR M Q M−+ ≤ + . 

C. Motivation 

Of course, considering ( )( )E x k  invertible for all 

trajectories such that 
xx ∈ Ω , (1) can be written in a classical 

TS form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
1

,

x k E x A x x k E x

A

B x u k

x x k B x u k

− −+ = +

= +
 (4) 

therefore the usual results apply directly on (4). Nevertheless, 

even if  (1) and (4) are perfectly equivalent in 
xΩ , the 

derivation of an equivalent TS model from the two nonlinear 

models can bring very different results and the two models 

directly influence the quality and the conservatism of the 

results. For example, the complexity of the LMI problems for 

control increases directly if the input matrix ( )B x  is state 

dependent. This is due to the fact that cross products will 

occur  [2], [6] and relaxations on double-sums must be used 

[40]. Therefore, if we consider (1) with a constant B  its 

representation in (4) will be state dependent as 

( ) ( )1B x E x B−= . What we claim is that the closer the TS 

structure is to the nonlinear model, the best it is. 

The following example issued from a real mechanical 

system shows the interest of the approach. We present the 

complexity of the TS models – classical vs. descriptor – and 

the feasibility results for various LMI constraints problems. 

Example 1. Let us consider the continuous-time nonlinear 

descriptor system of the human stance presented in [9]. Using 

the Euler’s approximation: ( ) ( ) ( )( )1 sx t x k x k T= + −&  a 

discrete-time descriptor system (1) is obtained: 

( ) ( ) ( ) ( ) ( )1E x k A x kx x Bu k+ = + , (5) 

with ( ) ( ) ( )1 2 1 2, ,

s

s

I
x

x

I

x

T
A

T G x M x

× 
=  

 
,  

0

s

B
RT

 
=  

 
, and 

( ) ( )1 2
,

0

0
x

x

I
E

M x

 
=  

 
; where 

1 1

0 1
R

− 
=  

 
 is the linking in 
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the joint torques, ( ) ( )
( )

1 2

1 2

1 2

cos

cos
,

a c x
M x

c x b

x
x

x



−
=

− 
 
 

 

is the inertia matrix, the gravitational matrix is defined by  

( ) ( )
( )

1

2

1

2

1

2

0sin
,

si0 n

xd x
G x

e x
x

x

 
=  

 
, and sT  is the 

sampling time. The Coriolis effect has been neglected, similar 

to [9]. The scalars 2 2 2

1 1 1 2 1K La m Ll m= + + , 
2

2

2 2b l m L= + , 

2 1 2c m L L= , ( )2 1 1md m LK g+= , 
2 2e m gL=  are defined in 

[9]: 0.525K = , 1 0.87L m= , 2 0.26L m= , 2

1 1.25I kg m= , 

2

2 2.32I kg m= , 
1 21.87m kg= , and 

2 45.87m kg= . 

Using the sector nonlinearity approach, an exact 

representation (2) in 4

xΩ = �  gives 2er =  due to the term 

( )1 2cos x x−  in ( )E x ; and 8r =  due to nonlinearities 

( )1 2cos x x− , ( )1 1sin x x  and ( )2 2sin x x  in ( )A x ; notice 

also that the input matrix B  is constant. As ( )E x  and ( )A x  

share the nonlinearity ( )1 2cos x x− , the TS descriptor 

representation of (5) has 8 linear descriptor models. 

A “classical” form (4) can be obtained with: 

( ) ( ) ( )2

2

1

1

2

1

1 2

0
, cos

,0
ab c x

x

I
E x x

M x

−
−

 
 
 

= ∆ = − − , and 

( ) ( )
( )

1 2

1 2

1 2

1 ,
cos1

cos

b c x
M x

c x a

x
x

x

− − − 
=  −∆  −

;  therefore 

(4) writes: ( ) ( ) ( )1

1 2 1 2
, ,

s

s

I T
A

T M x G

I
x

x Ix x−

× 
=  

 
, and 

( ) ( )1

1

2,

0

sT x
B x

M x R
−

 
=  

 
; thus nonlinearities come from: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2 1 2

1 2

1 2

1 2

1 2

1 2

1 2

1

cos

, ,

s

1

cos

in sin

sin sin

M x G x

bd ce x
x x

x x

x x
x

x x
c

x
xd x ae

x

−

 
− 

 =  ∆
 −
  

−

−

 and 

( ) ( )
( )

1

2

1 2

1

1 2

cos1

c
,

os

b b c x
M

x
xx R

c x ax

− −

−

 − − 
=  −∆  

. 

Applying the sector nonlinearity approach requires 
4

2 16r = =  linear models. For example one can use the 

nonlinear terms ( )1 1sin x x , ( )2 2sin x x , ( )1 2cos x x− , and 

( )( )22

1 21 c1 os xab c x∆ = − − . Note that the number of linear 

models increased from 8 to 16 and that the input matrix now 

also contains nonlinear terms. These two facts will have a 

direct impact on the conservatism of the solutions.  

Consider for the classical TS representation the conditions in 

[19]–[21], and [23], which are the main state of art conditions, 

together with Lemma 1. Using these conditions no solution is 

available; the complexity of the problem and the results are 

given in Table I. Considering the descriptor representation and 

without any relaxation scheme – as there is no cross-product 

due to the fact that B  is constant – the following conditions 

can be used [13]: 

( )( ) ( )( ) ( )( )

( )

1 2 1

1 2 1

1 1 1

1 1 1 1 1 2 2 1 2

1 1 1

1

0.

e

i j

j i

i j i

rr r

i

i i

j i i j i

j

T

j

T

j

h z k zh

G

A BK

k v z k

G P

G EE P P P

= = =

+ ×

 + ∗
× < 

− −+

−

+ 

−



∑∑∑
 (6) 

The number of LMIs is reduced and feasible solutions are 

obtained. 

 
TABLE I 

RESULTS FOR EXAMPLE 1, WHERE NQ STANDS FOR NON-QUADRATIC 

Approach 

Nr. 

of 

sums 

Nr. of LMIs 
Feasible 

solution 

NQ Theorem 5 in 

[20] + Lemma 1 
3 3 4112r r+ =  No 

NQ Theorem 1 in 

[19] + Lemma 1 
4 4 2

65792r r+ =  
Numerical 

problems 

NQ Theorem 1 in 

[23] + Lemma 1 
4 4 2

65792r r+ =  
Numerical 

problems 

NQ Theorem 1 in 

[21] + Lemma 1 
3 3 4112r r+ =  No 

NQ [13] (TS 

Descriptor) 
4 

2
136er r r+ =  Yes 

 

This example pointed out the motivation for deriving 

specific tools – controller, estimation, LMI conditions – for TS 

descriptor structure with ( )E x  being regular. ◊  

Let us recall the basic idea in [21], where the delayed MFs in 

the Lyapunov function were introduced for observer design 

for classical TS models. Two options for the Lyapunov 

functions are possible:  

• OP1. 
( )( ) ( ) ( )( )( ) ( )

( ) ( ) ( )

1

1

1 .

rT

i

T

z k

i
V x x h z P x

x P

k k k

k kx

k
−

=

−

=

=

∑
  

• OP2. 
( )( ) ( ) ( )( )( ) ( )

( ) ( ) ( )

1

1

1

1

1

.

rT

ii

T

z k

V k k k k

k

x x h z P x

x P x k

−

=

−
−=

= −∑
 

Case 1: the control law ( ) ( ) ( ) ( )1

z k z k
u k K G x k−=  together with 

the Lyapunov function OP1 yield condition: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1

*
0

T

z k z k z k

z k z k z k z k z k

G G P

A G B K P +

 − − +
  <

+ −  
. 

Case 2: considering a new control law 

( ) ( ) ( ) ( ) ( ) ( )1

1 1z k z k z k z k
u k K G x k−

− −=  and the Lyapunov function 

OP2, the conditions are: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1

*
0

T

z k z k z k z k z k

z k z k z k z k z k z k z k

G G P

A G B K P

− − −

− −

 − − +
  <

+ −  
. 

These two conditions show the main interest of using 

delayed Lyapunov functions. In fact, the second one (Case 2) 
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allows a double time description ( ) ( )1z k z k −  in the control. 

Theoretically, it is also possible to introduce 

( ) ( ) ( ) ( ) ( ) ( )1

1 1z k z k z k z k
u k K G x k−

+ +=  in the first one (Case 1), but it 

clearly results in a non causal control. Note that the number of 

LMI conditions remains the same in both cases.  

In Section 3, the advantages of delayed Lyapunov functions 

are extended to TS descriptor systems. 

D. Notations  

For sake of brevity and clarity, the following notations will 

be used throughout this paper [36]. 

Definition 1. (Multiple sum) A multiple sum with 
h

nϒ terms 

and delays evaluated at sample k  is of the form: 

( )( )

( )( ) ( )( )
1

1 2

2 2

0

1

1 1 1

2

1

,

h

h h

n

h
n n

r r r

H i

i i i i

i i i

n i

h z

h

k d

k d kz z dh

ϒ

ϒ

ϒϒ ϒ

= = =

ϒ = ×

× ϒ

+

+ +

∑∑ ∑

L

L

L

 

where 
0H
ϒ  is the multiset of delays { }1 20 , , ,d

h
nH d d

ϒ

ϒ = K , 

( )d ⋅ ∈� . The definition of 
0

ϒV  is similar, i.e., 

( )( ) ( )( )1 10

1 1 1

1 .
n n vv

n

h

h

r r

j j n j j

j j

k dz v dv kzϒ
ϒϒ ϒ

ϒ
= =

ϒ + ϒ+= ∑ ∑ L
L L

V
 

Definition 2. (Multiset of delays) 
0H
ϒ  denotes the multiset 

containing the delays in the multiple sum involving ϒ  at 

sample k . Hα
ϒ  denotes the multiset containing the delays in 

the sum ϒ  at sample k α+ . 

Definition 3. (Cardinality) The cardinality of a multiset H , 

HH n= , is defined as the number of elements in H . 

Definition 4. (Index set) The index set of a multiple sum 

Hϒ  is { }: 1,2, , , 1,2, ,H j ji i r j H= = =K KI , the set of all 

indices that appear in the sum. An element i  is a multiindex. 

Definition 5. (Multiplicity) The multiplicity of an element 

x  in a multiset H , ( )H x1  denotes the number of times this 

element appears in the multiset H . 

Definition 6. (Union) The union of two multisets 
AH  and 

BH  is 
C A BH H H= ∪ , such that: 

( ) ( ) ( ){ }: max ,
C A BHC H Hx H x x x=∀ ∈ 1 1 1 . 

Definition 7. (Intersection) The intersection of two multisets 

AH  and 
AH  is 

AC BH H H= ∩  such that 
Cx H∀ ∈ : 

( ) ( ) ( ){ }min ,
C A BH HH x x x=1 1 1 . 

Definition 8. (Sum) The sum of two multisets 
AH  and 

BH  

is 
C A BH H H= ⊕  s. t.  ( ) ( ) ( ):

C A BC H HHx x x xH =∀ +∈ 1 1 1 . 

The following example illustrates the previous definitions. 

Example 2. Consider the multiple sum 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1

1 4 5 6

5

2 30

2 3

4 6 1 2 3 4 5 6

1 1 1 1 1 1

1

.2 3 3

r r r r r r

H
i i i i i i

i i

i i i

i i ii i ii

h z h z h z

h z h

k k

z h z

k

k k k

ϒ

== = = = =

−

− − −

ϒ = ×

× ϒ

∑∑∑∑∑∑
 

Then, 
0H ϒ  is given by { }0 0,0, 1, 2, 3, 3H

ϒ = − − − − , or 

{ }, , 1, 32, 3,Hα α α α α ααϒ = − − −− .  The cardinality of 0H ϒ  

is 
0 6

h
H n

ϒ
ϒ= = . The index set of the multiple sum 

0H ϒϒ  is 

{ }
0

: 1, 2, , , 1,2, ,6j jH
i i r jϒ = = =K KI . The multiplicity of the 

elements in 
0H ϒ  is ( )

0

0 2
H ϒ =1 , ( )

0

1 1
H ϒ − =1 , ( )

0

2 1
H ϒ − =1 , 

and ( )
0

3 2
H ϒ − =1 . Now, let 

AH  and 
BH  be two multisets 

defined as { }0,0, 1, 2, 3AH = − − −  and { }0, 3, 4BH = − − . The 

union of these multisets is { }0,0, 1, 2, 3, 4A BH H∪ = − − − − , 

the intersection is { }0, 3A BH H∩ = − , and their sum is 

{ }0,0,0, 1, 2, 3, 3, 4A BH H⊕ = − − − − − . ◊  

Definition 9. (Projection of an index) The projection of the 

index 
AH∈ Ii  to the multiset of delays 

BH , 
BHpr i ,  is the part 

of the index that corresponds to the delays in A BH H∩ . 

Considering the definitions above, the discrete-time TS 

descriptor model (2) can be written as 

( ) ( ) ( )
0 0 0

1E A BH H
E x k A x k B u k+ = +

V
, (7) 

with { }0 0 0 0E A BH H= = =V , i.e., the system matrices are 

without delays. 

The next section presents the main results. These are based 

on Finsler’s Lemma and the use of two non-quadratic 

Lyapunov functions together with the so-called non-PDC. 

III. MAIN RESULTS 

A. Controller design via two Lyapunov functions 

In what follows, for design purposes, consider the non-PDC 

control law: 

( ) ( )
0 0 0 0

1
K K G GH H

u k G x kK −=
V V

, (8) 

where 
0 0
K KH

K
V

 and 
0 0
G GH

G
V

 are matrices of appropriate 

dimensions to be determined. The regularity of 
0 0
G GH

G
V

 will be 

discussed further on. Obviously, for causality these matrices 

cannot contain “positive delays” which correspond to future 

samples [21], [36]. The delays are given by the multisets 
0

K
H , 

0

G
H , 

0

K
V , and 

0

G
V . Thus, the closed-loop of the model (7) 

under the control law (8) is 

( ) ( ) ( )
0 0 00 0 00

11 KE GA K GBH H H H
KE x k A B G x k−+ = +

VV V
. (9) 

Example 3. Recall that the multisets for the system 

matrices are { }0 0 0 0E A BH H= = =V  and by choosing 

{ }0 0 0 0 0K G K GH H= = = =V V  for the controller gains, the 

closed-loop TS descriptor (9) renders: 

( )( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

1 1 1 2 1

1 1 2 1

1 2 2 1 2 1 2 1

2 1

1 1 1 1

1

1

1

1
e e

e

r rr r

j j i ji

j j

j i i j

rr

i i i i j i

i j

v z k E x k h z k h z v z

A B K h z v z G

k k

k k x k

= = = =

=

−

=

 
× 

 

+ =

 
 × +
 
 

∑ ∑∑∑

∑∑
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which is the same as Case 1 of [13]. ◊  

The analysis of the closed-loop model is done through the 

direct Lyapunov method. To this end, two different Lyapunov 

functions are proposed: 

Case 1: ( )( ) ( ) ( )
0 0

1 ,P P

T

H
V x k x k P x k−=

V
 

Case 2: ( )( ) ( ) ( )
0 0 0 00 0

1 ,P PG G G G

T T

HH H
V x k x k G P G x k− −=

VV V
 

where 
0 0 0 0, ,

0P P P P

TP P= >
i ij j

, 
0
PH

∈ Ii , 
0
P∈

V
Ij , and 

0 0
G GH

G
V

 is the 

same matrix as in the controller (8). 

Thereinafter, results are based on Lemma 2. It is important 

to remark that via Lemma 2 it is possible to avoid explicit 

substitution of the closed-loop dynamics and it facilitates 

dealing with the nonlinear matrix ( )E x .  

Considering Case 1, the following result can be stated: 

Lemma 3. The closed-loop TS descriptor model (9) is 

asymptotically stable if there exist 
, ,P P P P

k k k k

TP P=
i j i j

, P
k

P

k H
pr= ii , 

P
k

P

k pr=
V

jj , 0,1k = , 
0 0,K KK

i j
, 

0
0 K

K

H
pr= ii , 

0
0 K

K pr=
V

jj , and 

0 0,G GG
i j

, 
0

0 G

G

H
pr= ii , 

0
0 G

G pr=
V

jj , HΓ
∈ Ii , 

Γ
∈ VIj , where 

( ) ( )0 1 0 0 0 0

P P B K A GH H H H H H HΓ = ∪ ∪ ⊕ ∪ ⊕ , 

0 1 0 0 0

P P K G E

Γ = ∪ ∪ ∪ ∪V V V V V V  such that 

( )
0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 1 1

0
G G G G P P

A G G B K K E P P P P E P P

T

H H H

T

H H H H H H H

G G P

A G B K E P P E P

 − − + ∗
  <

+ − − +  

V V V

V V V V V V V

 (10) 

The number of sums involved in (10) for MFs ( )h ⋅  and 

( )v ⋅  is  Hn HΓ Γ= +V V . 

Proof. The variation of the non-quadratic Lyapunov 

function ( )( ) ( ) ( )
0 0

1
P P

T

H
V x k x k P x k−=

V
 writes 

( )( ) ( )
( )

( )
( )

0 0

1 1

1

1

0
0.

1 10

P P

P P

T

H

H

Px k x k
V x k

x k x kP

−

−

 −   
 ∆ = <   + +     

V

V

 (11) 

Rewriting (9) as an equality constraint results in 

( )
( )0 0 00 0 0 0

1
0

1
K EGB K GAH H H H

x k
A B G E

x
K

k

−   + − =   + 
V VV

. (12) 

Through Lemma 2, inequality (11) under constraint (12) is 

equivalent to: 

( ) ( )

0 0

1 1

0 0 00 0 0 0

1

1

1

0

0

0,

P P

P P

A K K G GB EH H

H

H

H H

P

P

M A B GK E

−

−

−

 −
 
  

 + + − + ∗ < �

V

V

V

VV

 (13) 

with ( )
2n nM ×∈

�
� . Using the congruence property with matrix 

( )
0 0 1 1

,G G P P

T

H H
diag G P

V V
 yields 

( )

( )

0 0 0 0 0 0 0 0

1 1 1 1

0 00 0 0 0 0 1 1

1
0 0

0 0

0.

G G P P G G G G

P P P P

A G G B E P PK K

T T

H H H H

H H

H HH H H

G P G G
M

K

P P

A G B E P

−   −
   + ×
      

 × + − + ∗ < 

�

V V V V

V V

VV V V

 (14) 

The choice ( )
1 1

1

0

P PH

M
P

−

 
=  

  
�

V

 and applying Property 1 yields 

directly (10). Note also that if (10) is satisfied, its first block 

gives: 
0 0 0 0 0 0

0G G G G P P

T

H H H
G G P+ > >

V V V
 and therefore 

0 0
G GH

G
V

 is 

always regular thus concluding the proof. �  

A refined result can be obtained by modifying the matrix 

( )M
�

 and the matrix used for congruence in (13) as follows: 

Theorem 1. The closed-loop TS descriptor model (9) is 

asymptotically stable if there exist 
, ,P P P P

k k k k

TP P=
i j i j

, P
k

P

k H
pr= ii , 

P
k

P

k pr=
V

jj , 0,1k = , 
0 0,K KK

i j
, 

0
0 K

K

H
pr= ii , 

0
0 K

K pr=
V

jj , 
0 0,G GG

i j
, 

0
0 G

G

H
pr= ii , 

0
0 G

G pr=
V

jj , and 
0 0,F FF

i j
, 

0
0 F

F

H
pr= ii , 

0
0 F

F pr=
V

jj , 

HΓ
∈ Ii , 

Γ
∈ VIj , where: 

( ) ( )0 1 0 0 0 0 0

P P B K A G F
H H H H H H H HΓ = ∪ ∪ ⊕ ∪ ⊕ ∪ , 

( )0 1 0 0 0 0

P P K G E F

Γ = ∪ ∪ ∪ ∪ ⊕V V V V V V V  such that 

( ) ( )
( ) ( )

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 1

0

0

G G G G P P

A G G B K K E F F

F F P P

T

H H H

H H H H H

H H

G G P

A G B K E F

F P

 − − + ∗ ∗
 
 + − + ∗ ∗ <
 
 − 

V V V

V V V V

V V

(15) 

The number of sums involved in (15) for MFs ( )h ⋅  and 

( )v ⋅  is  Hn HΓ Γ= +V V . 

Proof. Consider (13), and ( )
0 0

0

F F F

T

H

M −⋅

 
=  

  V

. Congruence with 

matrix ( )
0 0 0 0

,G G F F

T T

H H
diag G F

V V
 gives:  

( )
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

1

1

0.

G G P P G G

E F F F F E

A G G B K K

F F P P F F

T

H H H

T T

H H

H H H H T

H H H

G P G

E F F E
A G B K

F P F

−

−

 ∗
 
  − − <
  +
  +  

V V V

V V V V

V V

V V V

 (16) 

Applying Property 1 on the first block of (16) gives: 

( )
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

1

F 0

F

G G G G P P

E F F F F E

A G G B K K

F F P P F F

T

H H H

T T

H H

H H H H T

H H H

G G P

E F E
A G B K

P F
−

 − − + ∗
 
  − − <
  +
  +  

V V V

V V V V

V V

V V V

(17) 

Finally, the Schur complement applied on (17) gives (15).�  

Remark 1. The inclusion of the free matrix 
0 0
F FH

F
V

 provides 

extra degrees of freedom, with respect to Lemma 3, while the 

number of LMI constraints remains the same. Also it can be 

seen that, under the same multisets, Theorem 1 always 

includes Lemma 3. 

A similar procedure can be applied for the Lyapunov 

function in Case 2.  

Theorem 2. The closed-loop TS descriptor model (9) is 

asymptotically stable if there exist 
, ,P P P P

k k k k

TP P=
i j i j

, P
k

P

k H
pr= ii , 

P
k

P

k pr=
V

jj ,  
,G G

k k

G
i j

, G
k

G

k H
pr= ii , G

k

G

k pr=
V

jj , 0,1k = , and 
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0 0,K KK
i j

, 
0

0 K

K

H
pr= ii , 

0
0 K

K pr=
V

jj , HΓ
∈ Ii , 

Γ
∈ VIj ,  where 

( ) ( )0 1 0 0 0 0 1

P P B K A G GH H H H H H H HΓ = ∪ ∪ ⊕ ∪ ⊕ ∪ ,

( )0 1 0 0 0 1

P P K G E G

Γ = ∪ ∪ ∪ ∪ ⊕V V V V V V V  such that 

( )
0 0

0 0 0 0 0 0 0 1 1 1 1 0 1 1

0
P P

A G G B K K E G G G G E P P

H

T T

H H H H H H H

P

A G B K GE G E P

− ∗ 
  <

+ − − +  

V

V V V V V V V

 (18) 

The number of sums involved in  (18) for MFs ( )h ⋅  and 

( )v ⋅  is  Hn HΓ Γ= +V V . 

Proof. The variation of the non-quadratic Lyapunov 

function ( )( ) ( ) ( )
0 000 0 0

1
P PG G G G

T T

HH H
V x k x k G P G x k

− −=
V VV

 gives: 

( ) ( )0 0

1

0 0 0 0

1 1 1 1 1

1

1

0
0,

0

G G G G

G

P P

P PG G G

H H

H H

T

HT

T

H

G P G
X X

G P G

− −

− −

 −
  <
  

� �
V V

V V

V

V

 (19) 

with ( ) ( ) ( )1
T

T TX x k x k = + � . Then, constraint (12) 

together with inequality (19) and using Lemma 2 gives 

( ) ( )

0 0

1 1

0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

1

1

1

0

0

0,

G G G G

G G G G

K K G G

P P

P P

A B E

T

H

T

H

H

H H

H H

H H H

G P G

G P G

M A B G EK

− −

− −

−

 −
 
  

 + + − + ∗ < �

V V

V VV

VV

V

V

 (20) 

with ( )
2n nM ×∈

�
� . Using the congruence property with matrix 

( )
0 0 1 1

,G G G G

T T

H H
diag G G

V V
 and choosing ( )

1 1

0

G GH

TM
G

−

 
=  

  
�

V

 gives 

directly (18), thus concluding the proof.�  

Remark 2. Note that the classical TS model is a special 

case of the TS descriptor one when 
0
EE I=

V
, Γ = ∅V , where 

∅  stands for the empty set; therefore Theorems 1 and 2 

recover their respective theorems in [36]. 

An expansion of the Lemma 1 for two double sums follows. 

Lemma 4. Consider a two double sum co-negativity 

problem where { }21, 1, ,i i r∈ K , { }1 2, 1, , ej j r∈ K . 

( )( ) ( )( )

( )( ) ( )( )

1 2

1 2 1 2

1 2 1 2 1 2

1 1 1 1

0.

e er rr r
vv

hh i i

i i j j

j i i jj j

h z h z

v z

k

zk v

k

k

= = = =

ϒ = ×

× ϒ <

∑∑∑∑
 (21) 

Sufficient conditions for (21) to hold are: 

( )( ) ( )

( )

1 1 1 1

1 1 1 1 1 11 2 1

2 2

2

2 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 2

2 1 2

1 1 1 1 1 1

1 1 1 2 1 1 1 1 2 12 1 2

1 1

1 1 2

1 1 2

0, ,

2
0, ,

1

0

,

,

2
,

1

4 2

1 1 1

2

1

, ,

i i j j

i i j j i i j j i i j j

i i j j i i j j i i j j

i i j j i i j j i i j j

e e

i i j j i i j j i i j j

e

i i j j

j

i j

i j

j i
r

r r r

r

r

i

∀

∀

+ + ∀

ϒ <

ϒ + ϒ +

−

+
− −

ϒ < ≠
−

ϒ ϒ ϒ < ≠

ϒ + ϒ ϒ

ϒ + ϒ

−

+ + +
−

ϒ ϒ

+ ϒ
2 2 1 21 1 2 1 1 2 1 2,0 ,,i i j j i i j j i ji jϒ < ≠ ≠+

 (22) 

Proof. See Appendix A.�  

B. Discussion 

 At this point, let us clarify how to select the multisets 

involved in the control law and in the Lyapunov functions. To 

this end, an example is employed. Consider the closed-loop 

system (9) with { }0 0 0 0E A BH H= = =V  and the multisets 

{ }0 0 0 0, 1G K FH H H= = = − , { }0 0 0 0, 1G F K= = = −V V V , and 

{ }0 0 1P PH = = −V , i.e., 

{ } { } ( )( ) ( )( )
1 1 1 1

1

0 0

1

1 , 1
1 1

,1 1P

e

P

rr

jH
i

j

j

i iP P h z v z k Pk−
=

−
=

= = − −∑∑V
 

{ } { } ( )( ) ( )( )

( )( ) ( )( )

{ } { } ( )( ) ( )( )

( )( ) ( )( )

{ } { } ( )( ) ( )( )

1

1 1 2

1 1 2 1 2

1

1 1 2

1

20 0

2

2

20 0

1 2

2

2

20 0

1 2

1

2

0, 1 , 0, 1

0, 1 , 0, 1

0, 1 ,

1 1 1 1

0, 1

1 1 1 1

1

,1

1

1

1

,

1K

e e

e e

e

K

G G

G G

r rr r

H
i i j j

j j i j

r rr r

H
i i j j

i i

i j

i i

i j

i

j j i j

r

H
j

i

h z h z

v z v z K

G G h

K K k k

k

z h z

v z v z G

k

k k

k k

F F k kh z h z

= = = =

= = =

− −

− −

− −

=

=

−

−

= = ×

×

= =

= −=

−

−

×

×

×

∑∑∑ ∑

∑∑∑∑

V

V

V

( )( ) ( )( )
1 1

1 1 2 1

2

22

1 1 1

1 .

e

i j

rr r

i i j

j j i jv z v zk k F

= = =

× −

∑∑∑ ∑

 

Then, the conditions of Lemma 3 are  

{ } { } ( ) { } { } ( )

{ } { } { } { } { } { } { } { } { } ( ) { } { }

0, 1 , 0, 1 1 , 1

0 0, 1 , 0, 1 0 0, 1 , 0, 1 0 0 , 0 0 , 0

0,
G P

A G B K E P P

− − − −

− − − −

− + ∗ + ∗ 
  <

+ − + ∗ +  
or 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
( )

( )

1

1 2 3

1

2 3 2 3 2 3 2 3 3 3

1

2 3

2 3 1

2 3

22 3 2 3 1 2 3 2 3 1 2 2 2

1 1 1 1

,

1 1

0.

1

1

e e er r rr r r

i i i j j j

j j j

T

i j i j i j

i i j i i j j i j

i i i

i j i j

i jj ii j

h z h z h z

v z v z v z

G G P

A G B K E P P

k k k

k k k

= = = = = =

×

× ×

 − − + ∗
× < 

+ − + ∗ +  

−

−

∑∑∑∑ ∑ ∑

 

The conditions of Theorem 1 are  

{ } { } ( )

{ } { }
( ) ( )

{ } { } { }

{ } { } { }
{ } { } { } ( ) ( )

{ } { } { } { }

0, 1 , 0, 1

1 , 1

0 0, 1 , 0, 1

0 0, 1 , 0, 1

0 0, 1 , 0, 1

0, 1 , 0, 1 0 , 0

0,

0

G

P

A G
E F

B K

F P

− −

− −

− −

− −
− −

− −

 − + ∗ 
   ∗ ∗
 +   

  
  − + ∗ ∗ <
 +  

 
−  

 

or 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( )

1

1 2 3

1

2 3 2 3 3 3

1 2 3 2 3 1 2 3 2 3 1 2 3 2

2 3

2 3 1

2 3

2 2

3

2 3 2 3

1 1 1 1 1 1

1

1

0.

0

e e er r rr r r

i i i j j j

j j j

i j i j

i i j i i j j i j

i j i

i i i

i j

i j i j i

j

j

i j

kh z h z h z

v z v z v z

G P

A G B K

k k

k k k

E F

F P

= = = = = =

×

× ×

 − + ∗ + ∗ ∗
 

× + − + ∗ ∗ < 
 

− 

−



−

∑∑∑∑∑ ∑

 (23) 

Similarly, the conditions of Theorem 2 are  
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( )( ) ( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )
( )

1

1 4

2

2 3 1

3 4

2 3

2 3 4

1

4

3 3

1 2 2 1 2 3 2 3 1 2 3 2 34 4 2 2

1 1 1 1 1 1 1 1

1 1

1

0

1

.

ee e er r r rr r r r

i i i i j j j j

j

j j j

i j

i i j i i j

i i

i i

i j i j j i ji j i j

h z h z

h z h z v z

v

k k

k k k

kz v z v z

P

A G B K

k

G P

k

E

= = = = = = = =

×

× ×

× ×

− ∗ 
× < 

+ − + ∗ +  

+ −

+ −

∑∑∑∑∑∑ ∑ ∑

 (24) 

Recall that the maximum number of sums in Lemma 3 is:  

2 2 2
h v h v h vP K KH P G Gn H n n n n n nΓ Γ= + ≤ + + + + + +V V , 

which for Theorem 1 becomes: 

2 2 2
h v h v h v h vP K KH P G FG Fn n n n n n n n n≤ + + + + + + + +V , while 

for Theorem 2 it is: 

2 2 2 2 2
h v h v h vP K KH P G Gn n n n n n n≤ + + + + + +V ; this of course, 

considering that { }0 0 0 0E A BH H= = =V , i.e., the considered 

system is (2), without delays in the system matrices. The 

relations above show that the maximum number of sums in 

Theorem 1 is smaller than the maximum number of sums in 

Theorem 2 (for instance, see (23) and (24)). 

Therefore multisets in 
0 0
K KH

K
V

, 
0 0
G GH

G
V

, 
0 0
F FH

F
V

, and 
0 0
P PH

P
V

 

should be chosen such that sum relaxations can be used and 

considering the number of sums and the computational 

complexity of the resulting LMI, with the goal to profit from 

the co-negativity problem as in Lemma 4. 

What are the “good” multisets? Without considering solver 

limitations, the following reasoning applies:  

Step 1: since { }0 0 0 0
E A B

H H= = =V , multisets 
0

KH , 
0

GH , 

0

FH , 
0

KV , 
0

GV , and 
0

FV  should contain { }0 . Double sum 

relaxations and the maximum number of variables should be 

used, but without increasing the number of sums. To illustrate 

these, consider { }0 0 0 0 0 0 0K G F K G FH H H= = = = = =V V V . The 

conditions of Theorem 1 are 

{ } { } { } { } ( ) ( )

{ } { } { } { } { } { } { } { } { } ( ) ( )

{ } { }

0 0

1 1

0 , 0 0 , 0

0 0 , 0 0 0 , 0 0 0 , 0

0 , 0

0

0

P P

P P

T

H

H

G G P

A G B K E F

F P

 − − + ∗ ∗
 

+ − + ∗ ∗ < 
 

−  

V

V

(25) 

By selecting { }0 0 1P PH = = −V , (25) gives 

{ } { } { } { } { } { } ( ) ( )

{ } { } { } { } { } { } { } { } { } ( ) ( )

{ } { } { } { }

0 , 0 0 , 0 1 , 1

0 0 , 0 0 0 , 0 0 0 , 0

0 , 0 0 , 0

0.

0

T
G G P

A G B K E F

F P

− −
 − − + ∗ ∗
 

+ − + ∗ ∗ < 
 

−  
 (26) 

From (26) one can see that the co-negativity problem is in 

the form of (21). Expression (26) ends in six sums, i.e., for 

MFs ( )h ⋅ : ( )( ) ( )( ) ( )( )
212 31 31 1 1

1
r r r

i i i i i ih z h h zk kz k
= = =

−∑ ∑ ∑  

and ( )v ⋅ : ( )( ) ( )( ) ( )( )
211 3 321 1 1

1
e e er r r

j j jj j jv z v z vk k kz
= = =

−∑ ∑ ∑ .  

Step 2: due to the structure (26), it is possible to add the 

delay { }1−  into each multiple sum 
0 0
K KH

K
V

, 
0 0
G GH

G
V

, 
0 0
F FH

F
V

 

without increasing the number of sums. Therefore we obtain: 

{ } { } ( )

{ } { }
( ) ( )

{ } { } { }

{ } { } { }
{ } { } { } ( ) ( )

{ } { } { } { }

0, 1 , 0, 1

1 , 1

0 0, 1 , 0, 1

0 0, 1 , 0, 1

0 0, 1 , 0, 1

0, 1 , 0, 1 0 , 0

0.

0

G

P

A G
E F

B K

F P

− −

− −

− −

− −
− −

− −

 − + ∗ 
   ∗ ∗
 +   

  
  − + ∗ ∗ <
 +  

 
−  

(27) 

Step 3: since the multiple sum 
0 0
F FH

F
V

 does not multiply 

0
AH

A  and 
0
BH

B , one can add { }0  in 
0

F
H ; similarly for the 

multiple sums 
0 0
K KH

K
V

 and 
0 0
G GH

G
V

: one can add { }0  in 
0

KV  

and 
0

GV , respectively. Thus the “good” multisets for this 

problem are:  

{ } { } ( )

{ } { }
( ) ( )

{ } { } { }

{ } { } { }
{ } { } { } ( ) ( )

{ } { } { } { }

0, 1 , 0,0, 1

1 , 1

0 0, 1 , 0,0, 1

0 0,0, 1 , 0, 1

0 0, 1 , 0,0, 1

0,0, 1 , 0, 1 0 , 0

0.

0

G

P

A G
E F

B K

F P

− −

− −

− −

− −
− −

− −

 − + ∗ 
   ∗ ∗
 +   

  
  − + ∗ ∗ <
 +  

 
−  

  

Table II shows how the number of decision variables 

changes at each step. 

 
TABLE II 

NUMBER OF DECISION VARIABLES IN THEOREM 1. 

Step Nr. of LMIs 
Feasible 

solution 

Step 1 

( )( ) ( )

( ) ( )
( ) ( )

2

0.5 1

2

e

e

e

n n

n

r r

r r

m n r r

× + × ×

+ × ×

+ × × ×

×  
3 sums in ( )h ⋅  

3 sums in ( )v ⋅    

Step 2 

( )( ) ( )

( ) ( )
( ) ( )

2 2 2

2 2

2

0.5 1 e

e

e

r r

r r

m n

n

r r

n n × ×

+ × ×

+ × × ×

× +

×  
3 sums in ( )h ⋅  

3 sums in ( )v ⋅    

Step 3 

( )( ) ( )

( ) ( )
( ) ( )
( ) ( )

2 32

2

32

32

0.5 1 e

e

e

e

r r

r r

n n

n

r

n r r

m n r

× ×

+ × ×

+ × ×

+ × × ×

× +

 
3 sums in ( )h ⋅  

3 sums in ( )v ⋅    

 

Let us analyze the options for Theorem 2 starting with 

multisets { }0 0 0 0 0K G K GH H= = = =V V , which give: 

( )

{ } { } { } { } { } { } { } { } { } ( )
0 0

1 1
0 0 , 0 0 0 , 0 0 1 , 1

0.
P P

P P

H

H

P

A G B K E G P

− ∗ 
  <

+ − + ∗ +  

V

V

 (28) 

Since there is no double sum in ( )v ⋅  at the current sample 

k , it is possible to add { }0  in 
0

K
V , i.e., ( )0 0 0

K E G= ⊕V V V . 

Then (28) gives: 
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( )

{ } { } { } { } { } { } { } { } { } ( )
0 0

1 1
0 0 , 0 0 0 , 0,0 0 1 , 1

0.
P P

P P

H

H

P

A G B K E G P

− ∗ 
  <

+ − + ∗ +  

V

V

 (29) 

Expression (29) ends in three sums for ( )h ⋅ , i.e., 

( )( ) ( )( ) ( )( )
212 31 31 1 1

1
r r r

i i i i i ih z h h zk kz k
= = =

+∑ ∑ ∑  and three 

for ( )v ⋅ : ( )( ) ( )( ) ( )( )
211 3 321 1 1

1
e e er r r

j j jj j jv z v z vk k kz
= = =

+∑ ∑ ∑ , 

6 sums in total, the same as for Theorem 1. To keep the same 

number of sums, the best solution for the Lyapunov multiple 

sum is { }0 0 0P PH = =V . Finally, (29) renders: 

{ } { } ( )

{ } { } { } { } { } { } { } { } { } ( ) { } { }

0 , 0

0 0 , 0 0 0 , 0,0 0 1 , 1 1 , 1

0.
P

A G B K E G P

− ∗ 
  <

+ − + ∗ +  
 (30) 

Note that positive delays cannot be added to K  and G , 

since the information of the future states is not available. 

Table III summarizes these results for an arbitrary cardinality 

of the multisets. 

 
TABLE III 

HOW TO SELECT MULTISETS FOR THEOREM 1 AND THEOREM 2. 

Multiple 

sum 

Multisets in  

Theorem 1 

Multisets in  

Theorem 2 

{ }0 1, 1, , 1
P

H = − − −K  

0 h

P

PH n=  

{ }0 0,0, , 0
P

H = K

0 h

P

PH n=    

0 0
P PH

P
V

 

{ }0 1, 1, , 1
P = − − −KV  

0 v

P

Pn=V  

{ }0 0,0, ,0
P = KV

0 v

P

Pn=V    

{

}

0 0,0, ,0,

1, 1, , 1

Ph

Ph

K

n

n

H =

− − −

K
14243

K
1442443

0 2
h

K

PH n=  

}{0 0,0, ,0,

Ph

K

n

H = K
14243

0 h

K

PH n=    

0 0
K KH

K
V

 

{

}

0 0,0,0, ,0,

1, 1, , 1

Pv

Pv

K

n

n

=

− − −

K
14243

K
1442443

V

 

0 1 2
v

K

Pn= +V  

{ }0
0,0,0, ,0

Pv

K

n

= K
14243

V  

0 1
v

K

Pn= +V    

{

}

0 0,0, ,0,

1, 1, , 1

Ph

Ph

G

n

n

H =

− − −

K
14243

K
1442443

 

0 2
h

G

PH n=  

}{0 0,0, ,0,

Ph

G

n

H = K
14243

 

0 h

G

PH n=    

0 0
G GH

G
V

 

{

}

0 0,0,0, ,0,

1, 1, , 1

Pv

Pv

G

n

n

=

− − −

K
14243

K
1442443

V

.. 

}{0 0,0, ,0,

Pv

G

n

= K
14243

V

0 v

G

Pn=V    

{

}

0 0,0,0, ,0,

1, 1, , 1

Ph

Ph

F

n

n

H =

− − −

K
14243

K
1442443

 

0 1 2
h

F

PH n= +  

----------------  

0 0
F FH

F
V

 
{

}

0 0,0, ,0,

1, 1, , 1

Pv

Pv

F

n

n

=

− − −

K
14243

K
1442443

V

0 2
v

F

Pn=V  

---------------- 

 

C. Examples 

The following examples illustrate the performances of 

Lemma 3, Theorem 1, and Theorem 2. 

Example 4. Consider a nonlinear descriptor system  

( ) ( ) ( ) ( ) ( ) ( )1E x x A xk kx x kB u+ = + , (31) 

with matrices as follows: 

( )
( )( )

( )( )

2

1

2

1

1.4 2 1 1 0.2

0.1 1.6 2 1 1

b x
E x

a x

 + + −
 =
 − − + −  

, 

( ) 2

2

1 0.3

1.4 1.5

ax
A x

bx

− + 
=  + 

, and ( )
2

0

1 0.3
B x

ax

 
=  − − 

; where a  

and b  are real-valued parameters, [ ], 1.5,1.5a b ∈ − . To obtain 

a TS descriptor model of the form (2), consider the MFs 

defined as ( )1 2 1 2h x= + , 2 11h h= − , ( )11

21 1v x= + , and 

2 11v v= − . These MFs hold the convex-sum property in the 

compact { }1 2: , 1x x x xΩ = ∈ ≤� . Thus, (31) is equivalent to: 

( )( ) ( ) ( )( ) ( ) ( )( )
2 2

1 1

1j ij i i

j i

v z k E x k h z k A x k B u k
= =

+ = +∑ ∑ ,  

with 
1

1.4 0.2

0.1 1.6

b

a
E

+ 
=  − − 

, 
2

1.4 0.2

0.1 1.6

b

a
E

− 
=  − + 

, 

1

1 0.3

1.4 1.5b
A

a− + 
=  + 

, 
2

1 0.3

1.4 1.5b
A

a− − 
=  − 

, 
1

0

1 0.3
B

a

 
=  − − 

, 

and 
2

0

1 0.3
B

a


=


 − + 

. This example compares Lemma 3 and 

Theorem 1; for a “fair” comparison between them, multisets 

are chosen as follows: 

• Ch1: Lemma 3 with  { }0 0 0 0P K GH H H= = = , 

{ }0 0 0K G= =V V , and 
0

P = ∅V , which corresponds to 

Lemma 1 in [13]. The results are illustrated in Figure 1A.  

• Ch2: Lemma 3 with { }0 0 1P PH = = −V , 

{ }0 0 0, 1K GH H= = − , and { }0 0 0,0, 1K G= = −V V . The 

results are illustrated in Figure 1A. 
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• Ch3: Theorem 1 with { }0 0 0 0
P K G

H H H= = = ,  

{ }0 0 0 0K G F= = =V V V , { }0 0,0,1FH = , and 
0 0

P F= = ∅V V , 

which corresponds to Theorem 1 in [13]. The results are 

shown in Figure 1B. 

• Ch4: Theorem 1 with { }0 0 1P PH = = −V , 

{ }0 0 0, 1K GH H= = − , { }0 0,0, 1FH = − , { }0 0, 1F = −V , and 

{ }0 0 0,0, 1K G= = −V V . The results are shown in Figure 1B. 

Choices Ch2 and Ch4 give 3 sums in ( )h ⋅  and 3 sums in 

( )v ⋅ . Figure 1 illustrates Remark 1. The feasible solutions for 

conditions of Lemma 3 are plotted in Figure 1A: Ch1 ( ∇ ) and 

Ch2 ( + ). Figure 1B shows the solution set for conditions via 

Theorem 1: Ch3 ( � ) and Ch4 ( × ). Under the same number 

of sums, the solution set of Theorem 1 always includes the one 

of Lemma 3 (Remark 1). 

 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

a

b

(A)

 
 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

a

b

(B)

 
Figure 1. Feasible sets of parameter values in Example 4. 

 

For parameter values 1.3a = −  and 0.5b = −  no solution 

was found using the conditions in Ch1, Ch2, and Ch3; while 

conditions of Ch4 provide a solution; some of the controller 

gains are: [ ]11111 0.57 0.88 ,K =  [ ]11211 0.77 1.55K = , 

[ ]11212 0.43 1.36K = , [ ]21212 0.09 0.63K = , 

11111

0.02 0.04

0.09 0.32
G

 
=  

 
, and 

12112

0.02 0.02

0.03 0.24
G

 
=  

 
. 

0 1 2 3 4 5 6

-0.4

-0.2

0

0.2

0.4

0.6

Sample

S
ta

te
s

 

 

x
1

x
2

 
Figure 2. States simulation in Example 4. 

 

Figure  2 shows the convergence of the states for initial 

conditions ( ) [ ]0 0.5 0.5
T

x = − ; recall that results presented in 

[13] cannot provide a controller for the system when 1.3a = −  

and 0.5b = − . ◊  

Example 5. Consider (2) with 2er r= = , 

21 1

1.18 0.2 1.31 0.69 1.41 1
, , ,

0.33 0.23 1.17 1.43 1.05
A A B

β− −     
=     − −

=
−     

=

2

1 0.1

0
B

β− 
=  

 
, 1

1.1 0

0 0.36
E

 
 
 

= , and 2

0.95 0

0 1
E

 
 
 

= ; 

where 0β >  is a real-valued parameter.  Applying Theorem 2 

with multisets: 

• { }0 0 0 0 0
P K G K

H H H= = = =V , 
0 0

P G= = ∅V V  (four sums 

are involved), the maximum value of  β  for which 

conditions were found feasible is 0.86β = . (Using the 

same number of sums the conditions of Theorem 1 are not 

feasible for any β ). 

• { }0 0 0 0, 1
P G K

H H H= = = − , { }0 0
K =V , 

0 0

P G= = ∅V V  (five 

sums are involved), the maximum value of  β  for which 

conditions were found feasible is 0.90β = . 

• { }0 0 0 0 0 0
P K G P G

H H H= = = = =V V  and { }0 0,0K =V , both 3 

sums in ( )h ⋅  and ( )v ⋅ , the maximum value was 1.86.β =  

IV. EXTENSIONS 

An advantage of the TS-LMI framework is that different 

specifications can be implemented. This section shows the 

extensions of the previous results to H∞  attenuation and 

robust control. 

A. H∞  attenuation 

An external disturbance signal ( ) qw k ∈�  implies the TS 

descriptor form: 

( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 0 0

0 0

1

,

E A B D

C J

H H H

H H

E x k A x k B u k D w

y k x k

k

C kJ w

+ = + +

= +

V
 (32) 

where ( ) oy k ∈�  is the output vector, the multiple sums 
0
CH

C , 
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0
DH

D , and 
0
JH

J  share definitions similar to 
0
AH

A . Using the 

control law (8)  for the TS descriptor (32) gives 

( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 0 00 0 0 0

0 0

1
1

.

E A B D

C J

K K G GH H H H H

H H

E x k A B K kG x k D w

y k x kC w kJ

−+ = + +

= +

V V V
 (33) 

The disturbance attenuation corresponds to the well-known 

condition:  

( )( ) ( ) ( ) ( ) ( )2 0.T TV x k k ky y w wk kγ+ −∆ <  (34) 

For Case 1 the following result can be stated: 

Theorem 3. The closed-loop system (33) is asymptotically 

stable and the attenuation is at least γ  if there exist 0γ > , 

, ,P P P P
k k k k

TP P=
i j i j

, P
k

P

k H
pr= ii , P

k

P

k pr=
V

jj , 0,1k = , 
0 0,K KK

i j
, 

0
0 K

K

H
pr= i

i , 
0

0 K

K
pr=

V

j
j , 

0 0,G GG
i j

, 
0

0 G

G

H
pr= i

i , 
0

0 G

G
pr=

V

j
j , and 

0 0,F FF
i j

, 
0

0 F

F

H
pr= ii , 

0
0 F

F pr=
V

jj , HΓ
∈ Ii , 

Γ
∈ VIj ,  where 

( ) ( )( )0 1 0 0 0 0 0 0

P P B K G A C FH H H H H H H H HΓ = ∪ ∪ ⊕ ∪ ⊕ ∪ ∪ , 

( )0 1 0 0 0 0

P P K G E F

Γ = ∪ ∪ ∪ ∪ ⊕V V V V V V V  such that 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

0 0 0 0 0 0

0 0 0 0

0 0 1 1

0

0

0

0 0 0

0

2,2

2

00 F

0 0

0 0

G G G G P P

A G G B

F F P

K K

P

D

C G G J

T

H H H

H H H

H H

H

H H H

H

T

G G P

A G B

P

I

G I

D

J

K

C

γ

 − − + ∗ ∗ ∗ ∗
 
 + ϒ ∗ ∗ ∗
 
  <− ∗ ∗
 
 − ∗
 

−  

V V V

V

V

V

V

V
 (35) 

with ( )
0 0 0 0 0 0

2,2
FE F F F F E

T T

H H
E F Eϒ = − −

V V V V
. 

Proof. The proof follows similar lines as Theorem 1.�  

For Case 2 the following result can be established: 

Theorem 4. The closed-loop system (33) is asymptotically 

stable and the attenuation is at least γ  if there exist 0γ > , 

, ,P P P P
k k k k

TP P=
i j i j

, P
k

P

k H
pr= ii , P

k

P

k pr=
V

jj ,  
,G G

k k

G
i j

, G
k

G

k H
pr= ii , 

G
k

G

k pr=
V

jj , 0,1k = , and 
0 0,K KK

i j
, 

0
0 K

K

H
pr= ii , 

0
0 K

K pr=
V

jj , 

HΓ
∈ Ii , 

Γ
∈ VIj ,  where 

( ) ( )( )0 1 0 0 0 0 0 1

P P B K G A C G
H H H H H H H H HΓ = ∪ ∪ ⊕ ∪ ⊕ ∪ ∪ , 

( )0 1 0 0 0 1

P P K G E G

Γ = ∪ ∪ ∪ ∪ ⊕V V V V V V V  such that 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

0 0

0 1 1 1 1

0

0 0 0 0

2,1

2
0,

0

0

P P

E G G P P

D

C G G J

T

H

H H

H

H H H

P

E G P

D I

C JG I

γ

− ∗ ∗ ∗ 
 
 ϒ − + ∗ + ∗ ∗
  <
 − ∗
 

−  

V

V V V

V

 (36) 

with ( )
0 0 0 0 0 0

2,1
A G G B K KH H H H

A G B Kϒ = +
V V

. 

Proof. The proof follows similar lines as Theorem 2.�  

Remark 3. For comparable given multisets the results 

obtained through conditions of Theorem 1 and Theorem 2 are 

not equivalent [36]. The same reasoning applies for the case of 

H∞  attenuation. One theorem may succeed while the other 

one fails (see Example 7). 

The following examples illustrate the performances of 

Theorem 3 and Theorem 4. Let us recall the motivating 

Example 1. The local matrices for the TS descriptor 

representation are given for 0.3sT s= . 

Example 6. Consider the discrete-time nonlinear descriptor 

model of the human stance from Example 1. Using the sector 

nonlinearity approach in 4

xΩ = � , the following local 

matrices were obtained: in the left-hand side 2er = ,  

1

0

0

I

E a c

c b

 
 =   

    

, and 2

0

0

I

E a c

c b

 
 = −  

  −  

; in the right-

hand side 8r =  with matrices 1 0

0

s

s

I

A d a c

e c

T

T
b

 
 =     

        

, 

2 3, ,0 0

0 0

s s

s s

I I

A Ad a c d a

T T

T
e c b e c b

T
cϕ

ϕ

   
   = =          

                    

 

4 5, ,0 0

0 0

s s

s s

I I

A Ad a c d a

T T

T
c

e c b e c
T

b

ϕ ϕ
ϕ

   
   = = −          

          −          

6 7,0 0

0 0

s s

s s

I I

A Ad a c d a c

T

e

T

T T
c b e c b

ϕ
ϕ

   
   = =− −          

          − −          

8

0 0.1
, , ,0

0.2
0

s

s

s

I

A B Jd a c
R

e
T

b

T

c

T

ϕ
ϕ

 
    = = =−        
       −    

[ ]
[ ]

2 3 4

5 6

1

7 8

0.7 1 0.5 0.9 ,

0.7 1 0.5 0.9 ,

T

T

s

s

D D T

D D

D D

D D T

α

α

= = × −

= = × +

= =

= =

1 0 0 0

0 1 0 0
C

 
=  

 
, where α  is a real-valued parameter. The 

value 0.2172ϕ = −  is the lower bound on the nonlinear terms 

( )1 1sin x x  and ( )2 2sin x x . The scalars are defined in 

Example 1. Considering that matrices B  and C  are constant  

–there is no cross-product–, different configurations for 

multisets have been tested:  

• Conf1: Theorem 3 with { }0 0 0 0 0P K K GH H= = = =V V , 

{ }0 0,1
F

H = , and 
0 0 0

G P FH = = = ∅V V . There are no 

double-sums involved at the current sample time. 

• Conf2: Theorem 3 with { }0 0 0 1G P PH H= = = −V , 

{ }0 0 0 0, 1K F FH H= = = −V , and { }0 0 0,0, 1K G= = −V V  

which gives a problem with 2 sums in ( )h ⋅  and 3 sums in 

( )v ⋅ . Note that Lemma 1 is applicable over the double 

sum in ( )v ⋅  at the current sample time. 
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• Conf3: Theorem 4  with multisets as 

{ }0 0 0 0P K KH H= = =V  and 
0 0 0

G P G
H = = = ∅V V .  There 

are no double-sums involved at the current sample time. 

• Conf4: Theorem 4 with multisets 

{ }0 0 0 0 0 0P K P K GH H= = = = =V V V  and 
0

G
H = ∅ . There 

are no double-sums involved at the current sample time. 

Table 4 shows results for several parameter values when 

different multiset options have been tested:  

 
TABLE IV 

γ  VALUES IN EXAMPLE 6. 

α  

value 
Conf1 Conf2 Conf3 Conf4 

0α =  0.9525γ =
 

0.8325γ =
 

0.9525γ =
 

0.9523γ =
 0.3α =

 

1.0791γ =
 

0.9546γ =
 

1.0828γ =
 

1.0827γ =
 0.7α =

 

1.2558γ =
 

1.1261γ =
 

1.2637γ =
 

1.2636γ =
 1α =  1.3926γ =

 

1.2592γ =
 

1.4032γ =
 

1.4032γ =
  

Note that Conf1 and Conf3 have the same co-negativity 

problem: ( )( ) ( )( ) ( )( )
2 1111 21 1 1

1
r r r

ji i j i ih z h z v zk k k
= = =

+∑ ∑ ∑ . 

However, for this example Conf1 provides better results than 

Conf3. Moreover, using the classical TS representation it is 

not possible to design a controller, see Example 1. ◊  

The following numerical example illustrates the 

performances of Theorem 3 and Theorem 4. Different options 

for multisets have been tested:  

• Opt1: Theorem 3 with  { }0 0 0 0P K GH H H= = = , 

{ }0 0 0K G= =V V , { }0 0,0,1FH = , and 
0 0

P F= = ∅V V  which 

gives a problem with 3 sums in ( )h ⋅  and 1 sum in ( )v ⋅ . 

•  Opt2: Theorem 3 with { }0 0 0 0, 1K G FH H= = = −V , 

{ }0 0 1
P P

H = = −V , and { }0 0 0 0,0, 1
K G F

H= = = −V V  which 

gives a problem with 3 sums in ( )h ⋅  and 3 sums in ( )v ⋅ .  

• Opt3: Theorem 4  with multisets as 

{ }0 0 0 0 0P G K KH H H= = = =V  and 
0 0

P G= = ∅V V  which 

gives a problem with 3 sums in ( )h ⋅  and 1 sum in ( )v ⋅ .  

• Opt4: Theorem 4 with multisets { }0 0 0 0P K GH H H= = = , 

{ }0 0 0P G= =V V , and { }0 0,0K =V  which gives a problem 

with 3 sums in ( )h ⋅  and 3 sums in ( )v ⋅ .   

Note that multisets for Opt1 and Opt3 correspond to those 

in Theorem 1 and 2 in [13]. 

Example 7. Consider the TS descriptor model (32) with 

2er r= = , 1

0.9 0.1

0.4 1.1
E

α+ 
=  − 

, 2

0.9 1.1

0.4 1.1
E

 
=  − 

, 

1

0 1.5

0 0.5
A

−
=


 
 

, 2

1 1.5

2 0.5
A

− − 
 
 

= , 1

0

1
B

 
=  

 
, 2

0

1
B


=


 
 

, 

[ ]1 0 1.28C = , [ ]2 0 0.43C = , [ ]1 0.23 0
T

D = , 

[ ]2 0 0.12
T

D = , 
1 0.12J = , and 

2 0.09J α= + ,  ; where α  is 

a real-valued parameter. Table V shows the results for several 

parameter values when using the options above.  

 
TABLE V 

γ  VALUES IN EXAMPLE 7. 

α value Opt1 Opt2 Opt3 Opt4 

1.5α = −  2.73γ =  1.79γ =  2.44γ =  2.18γ =  

1α = −  1.23γ =  1.12γ =  1.27γ =  1.21γ =  

0.5α = −  0.69γ =  0.64γ =  0.76γ =  0.72γ =  

0α =  0.53γ =  0.50γ =  0.56γ =  0.56γ =  

0.5α =  0.77γ =  0.77γ =  0.77γ =  0.77γ =  

 

The obtained results illustrate Remark 3, for instance, for 

1.5α = − , Opt3 has provided better γ  attenuation than Opt1; 

while for 0.5α = −  Opt1 has given better result than Opt3. ◊  

B. Robust control 

Consider a TS descriptor model with uncertainties:  

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

1 ,E A BH H
E E x k A A x k B B u k+ ∆ + = + ∆ + + ∆

V
(37) 

with the uncertainties defined as 
0,e 0,e
D LeE D L∆ = ∆

V V
, 

0,a 0,a
D LaH H

A D L∆ = ∆ , and 
0,b 0,b
D LbH H

B D L∆ = ∆ , with T

e e I∆ ∆ < , 

T

a a I∆ ∆ < , and T

b b I∆ ∆ < . The uncertain model (37) under the 

control law (8) gives 

( ) ( )

( ) ( )
0 0 0 0 0 0 0 0

0

0 0

1 1

1

.K K G K GB G G

E

A KH HH H H H

E E x k

K KA B G A B G x k
− −

+ ∆ +

= + + ∆ + ∆
V V V V

V

 (38) 

Then, for Case 1, the following result can be stated: 

Theorem 5. The closed-loop system (38) is asymptotically 

stable if there exist 
, ,P P P P

k k k k

TP P=
i j i j

, P
k

P

k H
pr= ii , P

k

P

k pr=
V

jj , 

0,1k = , 
0 0,K KK

i j
, 

0
0 K

K

H
pr= ii , 

0
0 K

K pr=
V

jj , 
0 0,G GG

i j
, 

0
0 G

G

H
pr= ii , 

0
0 G

G pr=
V

jj , 
0 0,F FF

i j
, 

0
0 F

F

H
pr= ii , 

0
0 F

F pr=
V

jj , 
0, 0,,a a
τ ττ

i j
, 

0,
0

a

a

H
pr τ

τ = ii , 
0,

0
a

a pr τ
τ =

V

jj ,  
0, 0,,b b
τ ττ

i j
, 

0,
0

b

b

H
pr τ

τ = ii , 
0,

0
b

b pr τ
τ =

V

jj , and  

0. 0,,e e
τ ττ

i j
, 

0,
0

e

e

H
pr τ

τ = ii , 
0,

0
e

e pr τ
τ =

V

jj , 
HΓ

∈ Ii , 
Γ

∈ VIj , where 

( )( ) ( )( )0 1 0 0 0, 0 0 0,a

P P K B L G A L

bH H H H H H H H HΓ = ∪ ∪ ⊕ ∪ ∪ ⊕ ∪

( ) ( )0 0, 0, 0,b 0,b 0,e

F D D

a aH H H H H Hτ τ τ∪ ∪ ⊕ ∪ ⊕ ∪ , 

( )( ) ( )0 1 0 0 0 0 0, 0,e 0,e

P P K G F E L D

e

τ
Γ = ∪ ∪ ∪ ∪ ⊕ ∪ ∪ ⊕V V V V V V V V V V  

0,a 0,b

τ τ∪ ∪V V  such that 

( )

( )

( )
( ) ( ) ( )

( ) ( )
( )

0 0 0 0 0 0

1 1

1,1

2,1

0,

0

0 0

E F F F F E

P P

T T

H H

H

E F F E

P

 ∗ϒ
∗ ∗ ∗ 

− −ϒ 
 

− ∗ ∗ < 
 − ∗ 
 −
 

%%

%%

%

V V V V

V

D T

G T

F

 (39) 
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where
( ) ( )

0 0 0 0 0 0 0 0 0 0 0 0

1,1 2,1
, ,G G G G P P A G G B K K

T

H H H H H H H
G G P A G B Kϒ = − − + ϒ = +

V V V V V

 

0,a

0,b

0, 0,

0,b 0,b

0,e 0,e 0,e

0

0

0

D

D

a a

D

T

H

T

H

H

HH

T

D

D

D

τ τ

τ τ

τ τ

τ

τ

τ

 
 
 =
 
 
 

%

V

V V

V
D = , 

0,a

0,b

0

0

0

e 0,

0

0

0

0

0

0

G G

K K

L F

L

F

L

H

H

H

H

H

L

L

G

K

FL

 
 

=  
 
  

−

%

V

V

VV

G , 

0 0

0 F FH
F=   

%
V

F  , and 

0, 0,

0,b 0,b

0,e 0,e

0 0

0 0

0 0

a aH

H

H

τ τ

τ τ

τ τ

τ

τ

τ

 
 

=  
 
  

%

V

V

V

T . 

Proof. The proof follows similar lines as Theorem 1.�  

For Case 2: 

Theorem 6. The closed-loop system (38) is asymptotically 

stable if there exist 
, ,P P P P

k k k k

TP P=
i j i j

, P
k

P

k H
pr= ii , P

k

P

k pr=
V

jj ,  

,G G
k k

G
i j

, G
k

G

k H
pr= i

i , G
k

G

k pr=
V

j
j , 0,1k = , 

0 0,K KK
i j

, 
0

0 K

K

H
pr= i

i , 

0
0 K

K pr=
V

jj , 
0, 0,,a a
τ ττ

i j
, 

0,
0

a

a

H
pr τ

τ = i
i , 

0,
0

a

a pr τ
τ =

V

j
j ,  

0, 0,,b b
τ ττ

i j
, 

0,
0

b

b

H
pr τ

τ = i
i , 

0,
0

b

b pr τ
τ =

V

j
j , and 

0. 0,,e e
τ ττ

i j
, 

0,
0

e

e

H
pr τ

τ = i
i , 

0,
0

e

e pr τ
τ =

V

j
j , 

HΓ
∈ Ii , 

Γ
∈ VIj ,  where 

0 1 1

P P G
H H H HΓ = ∪ ∪ ∪  

( )( ) ( )( ) ( )0 0 0, 0 0 0,a 0, 0,

K B L G A L D

b a aH H H H H H H Hτ⊕ ∪ ∪ ⊕ ∪ ∪ ⊕

( )0,b 0,b 0,e

DH H Hτ τ∪ ⊕ ∪
, 0 1 0 0 0,a 0,b

P P K G τ τ
Γ = ∪ ∪ ∪ ∪ ∪V V V V V V V

( )( ) ( )1 0 0, 0,e 0,e

G E L D

e

τ∪ ⊕ ∪ ∪ ⊕V V V V V   such that 

( )

( )
( ) ( ) ( )

( )

0 0

0 1 1 1 1

2,1

0

0

P P

E G G P P

H

H H

P

E G P

− ∗
∗ ∗ 

− + ∗ + ϒ
< 

− ∗ 
 

−  

%%

%%

V

V V V

D T

G T

, (40) 

where  
( )2,1ϒ , %D , and %T were defined in Theorem 5, and 

0,a

0,b

0

0

0

e 1,

0

0

1

0

0

0

G G

K K

L G

L

G

L

H

H

H

H

H

L

L

G

K

GL

 
 

=  
 
  

−

%

V

V

VV

G . 

Proof. The proof follows similar lines as Theorem 2.�  

V. CONCLUSIONS 

A novel controller design for nonlinear descriptor systems 

in TS form has been presented. The benefits of the TS 

descriptor model instead of the classical TS model are pointed 

out via a biomechanical example. The proposed approaches 

exploit the discrete-time nature of the treated problem by 

adding delays in the MFs, thus relaxing previous conditions. 

Design conditions are given in terms of LMIs which can be 

solved via convex optimization techniques. The validity of the 

approaches is illustrated on a biomechanical example as well 

as on numerical examples.  

APPENDIX A 

Proof of Lemma 4: Applying Lemma 1 on the double convex 

sum of ( )( )h z k  in (21) yields 

1 1 1 1 1 2 2 11 1 2

2
0, , 0, .

1

vv vv vv vv

i i i i ii i i i i
r

iϒ < ϒ + ϒ + ϒ < ≠
−

∀  (41) 

Now taking the first inequality in (41) using Lemma 1 over 

the double convex sum of ( )( )v z k  it renders 

1 1 1 1

1 1

1 1 1 1 1 1 2 11 2 11

1 1

1 1 2

,0, ,

0 2
0, .

1
,

i i j j

i i j j i i j

vv

i i

j i i j j

e

i j

i j j
r

ϒ <


ϒ < → 
ϒ + ϒ + <

∀

∀ϒ ≠ −

 

Finally, following a similar procedure with the second 

inequality in (41), it ends in: 

1 1 1 2 2 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1

2 2

2 2

2 2

2 1 2 2 1 2

1 1 2 1 1 2 1 1 2

1 1 1 1 2 1

1 1 2

2
,

1

2 2

1 1

2

1

2

1

2
0

1

0, ,

i

i i j j i i j j i i j j

i i j j i i j

vv vv vv

j i i j j

e

i i j j i i j j i i j j

i i j j i i j j i i j

i i i i

j

i

j i
r

r

r r

r

r

i

ϒ + ϒ + ϒ <
−

ϒ ϒ ϒ < ≠

ϒ ϒ ϒ

⇒
 ϒ ϒ ϒ 
 

+ + ∀
−

 + + − − 

+ + +
−

+ + + ϒ ϒ ϒ 
 − 1 2 1 20 ,, ,ii j j











 < ≠ ≠


thus concluding the proof. �   
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