
Periodic Lyapunov functions for periodic TS systems

Zs. Lendekb, J. Laubera, T. M. Guerraa

aUniversity of Valenciennes and Hainaut-Cambresis, LAMIH,
Le Mont Houy, 59313 Valenciennes Cedex 9, France.

bDepartment of Automation, Technical University of Cluj-Napoca,
Memorandumului 28, 400114 Cluj-Napoca, Romania

Abstract

In this paper we consider stability analysis and controller design for periodic Takagi-Sugeno
fuzzy models. To develop the conditions, we use a switching nonquadratic Lyapunov function
defined at the time instants when the subsystems switch. Using the proposed conditions we are
able to handle periodic Takagi-Sugeno systems where the local models or even the subsystems
are unstable or cannot be stabilized. The application of the conditions is illustrated on
numerical examples.
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1. Introduction

Takagi-Sugeno (TS) fuzzy systems [1] are able to exactly represent a large class of nonlinear
systems [2] as convex combinations of local linear models. They belong to the quasi- linear
parameter varying (quasi-LPV) family.

Stability, controller, and observer design conditions for TS systems have been developed us-
ing the direct Lyapunov approach. Traditionally, conditions have been derived using quadratic
Lyapunov functions [3] and piecewise quadratic Lyapunov functions [4]. More recently, to re-
duce the conservativeness of the conditions, nonquadratic Lyapunov functions [5] have been
used. The stability or design conditions are usually formulated as linear matrix inequalities
(LMIs).

In the discrete-time case, non-quadratic Lyapunov functions have shown a real improve-
ment of the design conditions [6, 7]. It has been proven that the solutions obtained by
non-quadratic Lyapunov functions include and extend the set of solutions obtained using the
quadratic framework.

To further improve the results, non-quadratic Lyapunov functions have been extended to
double-sum Lyapunov functions [8] and later on to polynomial Lyapunov functions [9]. A
different type of improvement in the discrete case is the α-sample variation [10], using which
the conditions are obtained by replacing the classical one sample variation of the Lyapunov
function by its variation over several samples.
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This paper deals with a particular class of nonlinear models with periodic parameters which
can be represented by periodic TS models. This kind of models can be found in numerous
domains such as automotive, aeronautic, and aerospace or also computer control of industrial
process. For example in [11], a periodic dynamic model is used to estimate the air/fuel ratio
in each cylinder on an internal combustion engine, [12] proposes a periodic model for the rotor
blades of helicopter, [13] deals with the problem of on-board automatic station keeping of a
small spacecraft on a specific orbit of reference and proposes a periodic state feedback control
law. Other examples are provided in [14] related to computer control and communication
systems.

The stability of linear periodic systems is characterized by the monodromy transition
matrix and by its eigenvalues, called the characteristic multipliers (often referred to the poles
of the system). If all of the characteristic multipliers are in the open unit disc of the complex
plane then the system is asymptotically stable [15]. Concerning the stabilization problem
of those models, results are available in [16]. For models including time varying delays, [17]
proposed methods based on Floquet’s transformation, which is only applied to autonomous
systems, and led to conditions for exponential stability.

Some extensions exist to polytopic LPV periodic models, where the stability analysis
is based on the use of quadratic [16, 18] or non-quadratic [19] Lyapunov functions. In the
nonlinear TS context, as far as we know, [20, 21] are the only articles dealing with stabilization
of discrete TS models with periodic parameters.

In this paper, we consider stability analysis and controller design for periodic, discrete-time
TS models. To derive the conditions, we propose a periodic non-quadratic Lyapunov function.
Although in general, stability analysis of TS models relies on the stability of each local model,
and controller design for TS models requires the controllability of each local model, using this
Lyapunov function we are able to prove the stability of a periodic TS system having non-stable
local models and even unstable subsystems. Moreover, with the conditions derived using this
Lyapunov function we are able to design stabilizing control laws for switching systems in the
case when the local models of the subsystems are not stable and not stabilizable.

The structure of the paper is as follows. Section 2 presents a motivating example, the
notations, and the existing results we make use of in this paper. The stability analysis of
periodic TS systems, together with a discussion and an example is presented in Section 3.
Section 4 presents and discusses the conditions for controller design and illustrates them on
numerical examples. Section 5 concludes the paper.

2. Preliminaries

2.1. A motivating example

In the literature, one of the main assumptions on switching systems is that the switching
can occur at any time, between any two subsystems. However, for periodic systems, the
extra knowledge of when and between which subsystems the switching will occur can lead to
more relaxed conditions. Consider for instance, the switching system composed of two linear
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subsystems, with state matrices

A1 =

(
0.7 0.8
0.2 0.3

)
A2 =

(
0.5 0.8
0.2 a

)

where a is a real-valued parameter. Using e.g., the results in [19], we are able to prove stability
of the switching system for a ∈ [−0.89, 0.67]. However, if we know that the system switches
from one subsystem to the other at every time instant, the stability of the switching system
can be proven for a ∈ [−5.1, 1.1].

Consequently, by using the knowledge of when and how a periodic system switches, can
significantly relax the stability conditions. In what follows, we investigate this possibility for
TS systems. Moreover, we extend the conditions to controller design, leading to considerable
improvements of current design conditions.

2.2. Background

In this paper we consider stability analysis and controller design of discrete-time periodic
TS systems. For stability analysis, we consider subsystems of the form

x(k + 1) =

rj∑
i=1

hji(zj(k))Aj,ix(k)

= Aj,zx(k)

(1)

and for controller design

x(k + 1) =

rj∑
i=1

hji(zj(k))(Aj,ix(k) + Bj,iu(k))

= Aj,zx(k) + Bj,zu(k)

(2)

where j is the number of the current subsystem, j = 1, 2, . . . , ns, ns being the number of the
subsystems, x denotes the state vector, rj is the number of local models in the jth subsystem,
zj is the scheduling vector, hji, i = 1, 2, . . . , rj are normalized membership functions, and
Aj,i and Bj,i, i = 1, 2, . . . , rj, j = 1, 2, . . . , ns, are the local models. We assume that the TS
models do not have a finite escape time.

We consider periodic systems, i.e., the subsystems defined above are activated in a sequence
1, 1, . . . , 1︸ ︷︷ ︸

p1

, 2, 2, . . . , 2︸ ︷︷ ︸
p2

, . . . , ns, ns, . . . , ns︸ ︷︷ ︸
pns

, 1, 1, . . . , 1︸ ︷︷ ︸
p1

, etc., where pi denotes the number of

samples for which the ith subsystem is active. In what follows, we will refer to pi as the
period of the ith subsystem.

0 and I denote the zero and identity matrices of appropriate dimensions, and a (∗) denotes
the term induced by symmetry. The subscript z + m (as in A1,z+m) stands for the scheduling
vector being evaluated at the current sample plus mth instant, i.e., z1(k +m). An underlined
variable j denotes the modulo of the variable, i.e., j = (j mod ns) + 1.
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We use a Lyapunov function defined only in the switching instants. This also means that
the α-difference in the Lyapunov function corresponds to α consecutive switches in the system.
To illustrate this, consider consider a switching TS model consisting of two subsystems, each
with period 2, i.e., we have:

x(k + 1) =

{∑r1

i=1 h1i(z1(k))A1ix(k) if k = 4m, 4m + 1∑r2

i=1 h2i(z2(k))A2ix(k) if k = 4m + 2, 4m + 3
(3)

The switching in the system and in the Lyapunov function are depicted in Figure 1.
As can be seen, the Lyapunov function (with matrices P1 and P2) is defined only in the
moments when there is a switching in the system: from A1,z to A2,z or from A2,z to A1,z,
respectively. A 1-sample variation of the Lyapunov function corresponds to the difference
between two consecutive values of the Lyapunov function. A 2-sample variation corresponds
to the difference after 2 samples of the Lyapunov function, etc.

A1z
A1z A2z A2z A1z A1z A2z A2z

A1z

P2 P2 P2P1 P1

... ...

k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9

1-sample
variation

1-sample
variation

2-sample
variation

2-sample
variation

1-sample
variation

1-sample
variation

Figure 1: Switches in the system and in the Lyapunov function.

In what follows, we will make use of the following results:

Lemma 1. [22] Consider a vector x ∈ Rnx and two matrices Q = QT ∈ Rnx×nx and R ∈
Rm×nx such that rank(R) < nx. The two following expressions are equivalent:

1. xT Qx < 0, x ∈ {x ∈ Rnx ,x 6= 0, Rx = 0}
2. ∃M ∈ Rm×nx such that Q + MR + RT MT < 0

Controller design for TS models often leads to double-sum negativity problems of the form

xT

r∑
i=1

r∑
j=1

hi(z(k))hj(z(k))Γijx < 0 (4)

where Γij, i, j = 1, 2, . . . , r are matrices of appropriate dimensions.

Lemma 2. [23] The double-sum (4) is negative, if

Γii < 0

2

r − 1
Γii + Γij + Γji < 0, i, j = 1, 2, . . . , r, i 6= j
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Property 1. Let A and B be matrices of appropriate dimensions and ranks, with B = BT >
0. Then

(A−B)T B−1(A−B) ≥ 0 ⇐⇒ AT B−1A ≥ A + AT −B

3. Stability analysis of periodic TS systems

3.1. Stability conditions

In this section, we consider the stability analysis of switching TS systems of the form (1).
The results are also extended for α-sample variation, similar to [10].

Consider the periodic TS system (1), composed of ns subsystems, with each subsystem j
being active for pj samples, j = 1, 2, . . . , ns. Then, the following results can be stated.

Theorem 1. The periodic TS system (1) with periods p1, p2, . . . , pns is asymptotically stable,
if there exist Pj,i = P T

j,i > 0, Mj,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj, such that the following
condition is satisfied:




−Pj,z (∗) . . . (∗) (∗)
Mj+1,zAj+1,z −Mj+1,z + (∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . Mj+1,z+pj+1−1Aj+1,z+pj+1−1 Ωj+1,j+1


 < 0 (5)

for j = 1, 2, . . . , ns, where Ωj+1,j+1 = −Mj+1,z+pj+1−1 + (∗) + Pj+1,z+pj+1
.

Remark: Note that j + 1 is used because due to the periodicity the ns + ith subsystem
is in fact the ith one.

Proof: By considering a periodic Lyapunov function defined only in the instants when a
switching takes place in the system:

V (x(k)) = x(k)T Pj,zx(k)

the proof follows the same line of reasoning as the one of Theorem 3, Section 4.1.

Remark: Different from the control problem, LMI conditions may be obtained with
virtually any multiplier matrix M , as long as the Lyapunov function uses Pj,z instead of P−1

j,z

as it is used in the control problem. However, to keep the notation simple, we only present
the result for a specific case.

The result above can easily be extended using α-sample variation of the Lyapunov function
defined in the switching instant. Note that this means that the Lyapunov function does not
have to decrease in every instant where it is defined, but it should decrease every α instants.
Recall that the Lypunov function is only defined in the switching instants, and the α-difference
in the Lyapunov function corresponds to α consecutive switches in the system. Then, the
following result can be formulated:

5



Theorem 2. The periodic TS system (1) with periods p1, p2, . . . , pns is asymptotically stable,
if there exist Pj,i = P T

j,i > 0, Mj,l,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj, l = 1, 2, . . . , α, such
that the following condition is satisfied:



−Pj,z (∗) . . . (∗) (∗) . . . (∗) (∗)
Γ1,0 −Mj+1,1,z + (∗) . . . (∗) (∗) . . . (∗) (∗)
...

...
...

...
...

...
...

...
0 0 . . . Γ2,pj+1 −Mj+1,2,z+pj+1 + (∗) . . . (∗) (∗)
...

...
...

...
...

...
...

...
0 0 . . . 0 0 . . . Mj+1,α,z+t−1Aj+α,z+t−1 Ωj+α,j+α




< 0

(6)
for j = 1, 2, . . . , ns, where t =

∑α
i=1 pj+i, Ωj+α,j+α = −Mj+1,α,z+t−1−MT

j+1,α,z+t−1+Pj+α,z+t−1

and Γk,l = Mj+1,k,z+lAj+k,z+l.

Proof: The proof is similar to that of Theorem 4, Section 4.1.

Remark: Similarly to the 1-sample variation, more general conditions may be obtained
by using a general matrix M in Lemma 1.

3.2. Examples and discussion

First, let us discuss how exactly the conditions derived in Section 3.1 are applied. For
simplicity, consider the switching TS model (3), consisting of two subsystems, each with
period 2.

The switching in the system and in the Lyapunov function have been depicted in Figure 1.
For this system the conditions of Theorem 1 correspond to there exist Pj,i = P T

j,i > 0, Mj,i,
j = 1, 2, i = 1, 2, . . . , rj, so that the following conditions are satisfied:




−P1,z (∗) (∗)
M2,zA2,z −M2,z + (∗) (∗)

0 M2,z+1A2,z+1 −M2,z+1 + (∗) + P2,z+2


 < 0




−P2,z (∗) (∗)
M1,zA1,z −M1,z + (∗) (∗)

0 M1,z+1A1,z+1 −M1,z+1 + (∗) + P1,z+2


 < 0

(7)

Relaxed LMI conditions can be formulated using Lemma 2, e.g.,

Corollary 1. The system (3) is asymptotically stable if there exist Pj,i = P T
j,i > 0, Mj,i,

j = 1, 2, i = 1, 2, . . . , rj, so that

2

rl+1 − 1
Γliimno + Γljimno + Γlijmno < 0

i, j, l, m, n, o = 1, 2, where

Γlijmno =




−Pl,i (∗) (∗)
Ml+1,iAl+1,j −Ml+1,i + (∗) (∗)

0 Ml+1,mAl+1,n −Ml+1,m + (∗) + Pl+1,o
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Let us now consider a 2-sample variation of the Lyapunov function. The conditions of
Theorem 2 become there exist Pj,i = P T

j,i > 0, Mj,l,i, j, l = 1, 2, i = 1, 2, . . . , rj, so that the
following conditions are satisfied:




−P1,z (∗) (∗) (∗) (∗)
M2,1,zA2,z −M2,1,z + (∗) (∗) (∗) (∗)

0 M2,1,z+1A2,z+1 −M2,1,z+1 + (∗) (∗) (∗)
0 0 M2,2,z+2A1,z+2 −M2,2,z+2 + (∗) (∗)
0 0 0 M2,2,z+3A1,z+3 −M2,2,z+3 + (∗) + P1,z+4




< 0




−P2,z (∗) (∗) (∗) (∗)
M1,1,zA1,z −M1,1,z + (∗) (∗) (∗) (∗)

0 M1,1,z+1A1,z+1 −M1,1,z+1 + (∗) (∗) (∗)
0 0 M1,2,z+2A2,z+2 −M1,2,z+2 + (∗) (∗)
0 0 0 M1,2,z+3A2,z+3 −M1,2,z+3 + (∗) + P2,z+4




< 0

Similarly to the 1-sample variation, relaxed LMI conditions can be formulated.
Although the number of samples to be used in the variation of the Lyapunov function can

be chosen as ns, this is not necessary. On the other hand, by increasing α, the number and
the dimension of the LMIs to be solved increases.

In developing the conditions, in Finsler’s lemma we used the same matrices in the multipli-
cation of the same subsystem, i.e., we have M1A1, M2A2, etc., even for different time instants.
Different matrices can be used at each time instant, or even a completely general multiplier
can be used in Lemma 1, but with the cost of significantly increasing the number of decision
variables. As it is, the number of decision variables is

∑ns

i=1 rin
2
x +

∑ns

i=1 rinx(nx +1)/2, where
nx denotes the dimension of the state. It should be noted that the number of decision vari-
ables depends only on the number of the subsystems, the number of rules in each subsystem,
and the dimension of the state. The number and the dimension of the actual LMIs to be
solved depends on the relaxation used.

Note that the conditions do not require that the local matrices of the TS systems or even
the individual subsystems are stable. We illustrate this on the following example.

Example 1. Consider the switching fuzzy system with two subsystems as follows:

x(k + 1) =
2∑

i=1

h1i(z1(k))A1ix(k)

with

A11 =

(−0.44 −0.26
−0.65 0.62

)
A12 =

(
1.1 −0.2
0.53 −0.27

)

with h11 = exp(−x2
1), h12 = 1− h11 and

x(k + 1) =
2∑

i=1

h2i(z1(k))A2ix(k)
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Figure 2: A trajectory of the states of the switching system.

with

A21 =

(
0.02 0.6
−0.22 −0.44

)
A22 =

(
0.32 −0.15
−1 0.8

)

with h21 = cos(x1)
2, h22 = 1− h21.

The local models A12 and A22 are unstable, their eigenvalues being
(
1.0177 −0.1877

)
and(

0.1044 1.0156
)
, respectively.

By switching between the two subsystems with a period p1 = 2 for the first subsystem and
p2 = 2 for the second subsystem, the resulting switching system is asymptotically stable, as
illustrated in Figure 2.

For this switching system it is not possible to find either a quadratic or a nonquadratic
Lyapunov function, common for both subsystems, as the corresponding LMIs are unfeasible.

The conditions of Theorem 1 are those in (6). Solving them using the relaxation of [24],
we obtain

P11 =

(
2.7195 −0.6733
−0.6733 3.7396

)
P12 =

(
3.9735 −1.7562
−1.7562 3.6588

)

M11 =

(
4.4862 0.0610
−0.0699 3.3215

)
M12 =

(
4.2601 0.6030
−0.3073 2.5510

)

P21 =

(
4.3030 0.0691
0.0691 2.1985

)
P22 =

(
5.2906 0.0310
0.0310 1.9130

)

M21 =

(
3.9873 −0.6752
−0.6623 3.5612

)
M22 =

(
3.5420 −1.0998
−0.7195 3.4535

)

4. Controller design

4.1. Design conditions

In the previous section, we have considered stability analysis of periodic systems. Now we
extend the obtained results to controller design for periodic TS systems.
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Consider the switching TS model (2), consisting of ns subsystems, each having the period
(being active for) pi samples, i = 1, 2 . . . , ns. For this system, we use the switching control
input of the form

u(k) = −Fi,zH
−1
i,z x(k) (8)

when the ith subsystem is active, i = 1, 2, . . . , ns. The switching closed-loop dynamics are

x(k + 1) = (Ai,z −Bi,zFi,zH
−1
i,z )x(k) (9)

For (9) the following result can be stated:

Theorem 3. The periodic TS system (1) with periods p1, p2, . . . , pns is asymptotically sta-
bilized by the control input (8), if there exist Pj,i = P T

j,i > 0, Fj,i, Hj,i j = 1, 2, . . . , ns,
i = 1, 2, . . . , rj, such that the following condition is satisfied:




−Hj+1,z −HT
j+1,z + Pj,z (∗) . . . (∗) (∗)

Ωj+1,1 −Hj+1,z+1 + (∗) . . . (∗) (∗)
...

...
...

...
...

0 0 . . . Ωj+1,pj+1
−Pj+1,z+pj+1


 < 0 (10)

for j = 1, 2, . . . , ns, where Ωj+1,l = Aj+1,z+l−1Hj+1,z+l−1 −Bj+1,z+l−1Fj+1,z+l−1.

Proof: Consider the switching Lyapunov function, defined only in the instants when a
switching takes place in the system:

V (x(k)) = x(k)T P−1
j,z x(k)

if the active subsystem was j, j = 1, 2 . . . , ns.
The difference in the Lyapunov function is

V (x(k + pj+1))− V (x(k)) =
(

x(k)
x(k + pj+1)

)T (−P−1
j,z 0

0 P−1
j+1,z+pj+1

)(
x(k)

x(k + pj+1)

)

The closed-loop system dynamics during the pj+1 samples are




Υj+1,1 −I . . . 0 0
0 Υj+1,2 −I . . . 0
...

...
...

...
...

0 0 . . . Υj+1,pj+1−1 −I







x(k)
x(k + 1)

...
x(k + pj+1)


 = 0

with
Υj+1,i = Aj+1,z+i −Bj+1,z+iFj+1,z+iH

−1
j+1,z+i

9



for i = 1, 2 . . . , pj+1 − 1.

Choosing M =




0 0 . . . 0 0
H−T

j+1,z+1 0 . . . 0 0

0 H−T
j+1,z+2 . . . 0 0

...
...

...
...

...
0 0 . . . HT

j+1,z+pj+1−1 0

0 0 . . . 0 P−1
j+1,z+pj+1




and applying Lemma 1

leads to 


−P−1
jz (∗) . . . (∗) (∗)

Ωj+1,1 −H−1
j+1,z+1 + (∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . Ωj+1,pj+1

−P−1
j+1,z+pj+1


 < 0

with Ωj+1,i = H−T
j+1,z+i(Aj+1,z+i−1 − Bj+1,z+i−1Fj+1,z+i−1H

−1
j+1,z+i−1) for i = 1, 2, . . . , pj+1 − 1,

Ωj+1,t = P−T
j+1,z+t(Aj+1,z+t−1 −Bj+1,z+t−1Fj+1,z+t−1H

−1
j+1,z+t−1).

Congruence with




HT
j+1,z 0 . . . 0 0

0 HT
j+1,z+1 . . . 0 0

...
...

...
...

...
0 0 . . . HT

j+1,z+pj+1−1 0

0 0 . . . 0 Pj+1,z+pj+1




and applying Property 1 leads directly to (10). ¤
In what follows, we extend the above result to α-sample variation [10]. When α-sample

variation of the Lyapunov function is considered, the following result can be stated.

Theorem 4. The periodic TS system (1) with periods p1, p2, . . . , pns is asymptotically stable,
if there exist Pj,i = P T

j,i > 0, Fj,i, and Hj,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj, l = 1, 2, . . . , α,
such that the following condition is satisfied:




−Hj+1,z −HT
j+1,z + Pj,z (∗) . . . (∗) (∗)

Ωj+1,1 −Hj+1,z+1 + (∗) . . . (∗) (∗)
...

...
...

...
...

0 0 . . . Ωj+α,pj+1
−Pj+α,z+t


 < 0 (11)

for j = 1, 2, . . . , ns, where Ωj+i,l = Aj+i,z+l−1Hj+i,z+l−1−Bj+i,z+l−1Fj+i,z+l−1, i = 1, 2, . . . , α,
l = 1, 2, . . . , t, and t =

∑α
i=1 pj+i.

Proof: The proof follows the same line as that of Theorem 3.
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4.2. Examples and discussion

Let us discuss first how exactly the controller design conditions derived in Section 4.1 are
applied. Consider a switching TS model consisting of two subsystems, each with period 2,
and each having two rules, i.e., we have:

x(k + 1) =

{∑2
i=1 h1i(z1(k))(A1ix(k) + B1iu(k)) if k = 4m, 4m + 1∑2
i=1 h2i(z2(k))(A2ix(k) + B2iu(k)) if k = 4m + 2, 4m + 3

(12)

For the system (12) the conditions of Theorem 3 correspond to there exist Pj,i = P T
j,i > 0,

Hj,i, and Fj,i, j, i = 1, 2, so that the following conditions are satisfied:



−H2,z + (∗) + P1,z (∗) (∗)
A2,zH2,z −B2,zF2,z −H2,z+1 + (∗) (∗)

0 A2,z+1H2,z+1 −B2,z+1F2,z+1 −P2,z+2


 < 0



−H1,z + (∗) + P2,z (∗) (∗)
A1,zH1,z −B1,zF1,z −H1,z+1 + (∗) (∗)

0 A1,z+1H1,z+1 −B1,z+1F1,z+1 −P1,z+2


 < 0

(13)

The conditions of Theorem 4, e.g., for a 2-sample variation become there exist Pj,i = P T
j,i >

0, Hj,i, and Fj,i, j, i = 1, 2, so that the following conditions are satisfied:




−H2,z + (∗) + P1,z (∗) (∗) (∗) (∗)
Ω21 −H2,z+1 + (∗) (∗) (∗) (∗)
0 Ω22 −H1,z+2 + (∗) (∗) (∗)
0 0 Ω13 −H1,z+3 + (∗) (∗)
0 0 0 Ω14 −P1,z+4




< 0




−H1,z + (∗) + P2,z (∗) (∗) (∗) (∗)
Ω11 −H1,z+1 + (∗) (∗) (∗) (∗)
0 Ω12 −H2,z+2 + (∗) (∗) (∗)
0 0 Ω23 −H2,z+3 + (∗) (∗)
0 0 0 Ω24 −P2,z+4




< 0

Ωji = Aj,z+i−1Hj,z+i−1 −Bj,z+i−1Fj,z+i−1

As illustrated in the above conditions, for each subsystem we have a matrix inequality. In the
ith matrix inequality, the first line corresponds to Pi,z, the next pi+1 lines correspond to the
i + 1th subsystems, etc.

As can be expected based on the stability conditions, in order to the closed-loop switching
system to be stable it is not necessary that each subsystem is stabilized. We illustrate this
on the following example, adopted from [20].
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Example 2. Consider the periodic fuzzy system, composed of two subsystems, with the local
matrices:

A11 =

(
1.5 10
0 0.5

)
A12 =

(
0.5 10
0 0

)

A21 =

(
1 + a 1

0 0.5

)
A22 =

(
1 10
0 0.5

)

B11 = B12 =

(
0
0

)
B21 = B22 =

(
1
0

)

where ‘a’ is a real-valued parameter.
The control design for this system cannot be performed using a Lyapunov function that

is common for both subsystems, be that quadratic or nonquadratic. In the switching system
above, the first subsystem is not stabilizable, as B11 = B12 = 0, and the first local model A11

is unstable.
With the approach of [20], the maximum interval for ‘a’ that can be obtained is [−250, 250].

Using the conditions of Theorem 3, we obtain for a = 1500

H11 =

(
240.8746 −33.2523
−34.5795 10.3966

)
H12 =

(
239.2061 −37.6113
−11.2734 7.4435

)

H21 =

(
374.8946 8.7529
0.0039 33.2571

)
H22 =

(
374.8945 8.7468
−0.0039 33.2570

)

P11 =

(
561.3074 8.7531
8.7531 18.2803

)
P12 =

(
561.3065 8.7466
8.7466 18.2802

)

P21 =

(
295.0400 −45.1654
−45.1654 9.8090

)
P22 =

(
300.2630 −38.8747
−38.8747 7.7637

)

F21 = 105
(
5.6272 0.1325

)
F22 =

(
374.8512 417.8578

)

which stabilizes the system. Moreover, the value of ‘a’ can still be increased. Trajectories of
the closed-loop system for a = 1500 are shown in Figure 3. The membership functions used
were h11 = exp(−x2

1), h12 = 1− h11 and h21 = cos(x1)
2, h22 = 1− h21.

To illustrate the efficiency of the proposed method, consider now a more complex example.

Example 3. Consider the periodic fuzzy system, composed of 5 subsystems, with the local
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Figure 3: Trajectories of the closed-loop system – example 2.

matrices:

A11 =

(
2 0
0 2

)
A12 =

(
2 0
0 2

)
B11 =

(
0
0

)
B12 =

(
1
0

)

A21 =

(
1.5 1
0 1.5

)
A22 =

(
1.5 1
0 1.5

)
B21 =

(
0
1

)
B22 =

(
0
0

)

A31 =

(
1 0
0 2

)
A32 =

(
1.5 0
0 .5

)
B31 =

(
1
2

)
B32 =

(
1
2

)

A41 =

(−0.44 −0.26
−0.65 0.62

)
A42 =

(
1.1 −0.2
0.53 −0.27

)
B41 =

(
1
0

)
B42 =

(
1
0

)

A51 =

(
1.32 −0.15
−1 0.8

)
A52 =

(
0.02 1.6
−0.22 −0.44

)
B51 =

(
1
−1

)
B52 =

(
1
−1

)

and periodicity p = [1, 1, 1, 2, 2].
Again, several local models are not controllable and not stable, and consequently the control

design cannot be performed using a Lyapunov function that is common for both subsystems,
be that quadratic or nonquadratic. However, by using a switching control law, with a 1-sample
variation, the system is stabilized. A trajectory of the closed-loop system is shown in Figure 4.
To design the controller, 18 4×4 and 36 6×6 LMIs have been solved, and 90 decision variables
have been computed.

Similarly to the results in Section 3, relaxed LMI conditions can be obtained. The number
of decision variables in the LMIs for the 1-sample variation is

∑ns

i=1 ri(n
2
x+nx(nx+1)/2+nxnu),

where nx denotes the dimension of the state and nu the dimension of the input.
Compared to the possibility in case of stability conditions, the freedom in choosing the

multiplier in Lemma 1 is much smaller. This is because the controller is fixed for each
subsystem. Also in this case, the number of decision variables depends only on the number
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Figure 4: A trajectory of the closed-loop system – example 3.

of the subsystems, the number of rules in each subsystem, and the dimension of the state
and input. The number and the dimension of the actual LMIs to be solved depends on
the relaxation used and on the sample-variation used, as by increasing α, the number and
dimension of the LMIs to be solved increases.

Let us illustrate this on the following example:

Example 4. Consider a periodic fuzzy system consisting of 3 subsystems, each with 2 rules,
2 states, and 1 input. A comparison of the number and dimension of the LMIs to be solved
for controller design for different periodicity of the subsystems and different sample variation,
using the relaxation of [24] on all possible pairs is given in Table 1. The number of decision
variables is

∑ns

i=1 ri(n
2
x + nx(nx + 1)/2 + nxnu) = 54, in all the cases.

As can be seen, with a higher α-sample variation used, the number of LMIs and their
dimension quickly increases.

5. Conclusions

In this paper we have developed conditions for the stability analysis and stabilization of
periodic TS systems. We considered a periodic controller and we used a periodic Lyapunov
function, defined in the points where the subsystems switch. Using the developed conditions,
one is able to design a controller for a system where the local models are not stable and not
controllable. In our future work, we will reduce the conservatism of the developed conditions.
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