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A B S T R A C T

In order to meet the performance requirements of permanent magnet synchronous motor
(PMSM) systems with time-varying model parameters and input constraints under step load, this
paper proposes a dynamic prescribed performance fuzzy-neural backstepping control approach.
Firstly, a novel finite-time asymmetric dynamic prescribed performance function (FADPPF)
is proposed to tackle the issues of exceeding predefined error, control singularity, and system
instability that arise in the traditional prescribed performance function under load changes.
To address model accuracy degradation and control quality deterioration caused by nonlinear
time-varying parameters and input constraints in the PMSM system, a backstepping controller is
designed by combining the speed function (SF), fuzzy neural network (FNN), and the proposed
FADPPF. The FNN approximates nonlinear uncertain functions in the system model; the SF,
as an error amplification mechanism, works together with FADPPF to ensure the transient and
steady-state performance of the system. The stability of the devised control strategy is proved
using Lyapunov analysis. Finally, simulation results demonstrate the dynamic self-adjusting
ability and effectiveness of FADPPF under step load. In addition, the feasibility and superiority
of the proposed control scheme are validated.

1. Introduction
Permanent Magnet Synchronous Motors (PMSMs) are characterized by their strong performance, high efficiency,

and simple structure, playing a pivotal role in fields such as electric vehicles and robotics. However, the inherent
nonlinearities of PMSM systems, coupled with multi-source disturbances under complex operating conditions, pose
two challenges to the collaborative optimization of control system robustness and dynamic performance. On the
one hand, parameter variations caused by motor temperature rise and abrupt changes in load torque necessitate
controllers with strong anti-disturbance compensation capabilities. On the other hand, the interplay between control
input saturation and model uncertainties makes the quantitative assurance of dynamic response quality a critical
research focus. Adaptive fuzzy/neural network control [1], [2], [3], [4], [5] or active disturbance rejection control
[6], [7] or sliding mode control [8], [9] has proven effective in enhancing system disturbance rejection capabilities.
To address input saturation, auxiliary systems can be designed to suppress output oscillations or instability caused
by saturated inputs [10], [11], or alternatively, control inputs can be directly formulated within unsaturated ranges
through saturation-aware designs [12], [13]. To tackle the challenges arising from coupled effects of parameter
perturbations, uncertain disturbances, and input saturation, improved control strategies have been developed, including
backstepping control methods [14], [15], [16], non-recursive adaptive control approaches [17], [18], and sliding mode
control techniques [19], [20]. These stability-oriented control schemes have effectively addressed parametric/model
uncertainties, load torque disturbances, and input saturation constraints. Nevertheless, their schemes predominantly
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focus on ensuring asymptotic convergence (e.g., lim𝑡→∞ 𝑒(𝑡) = 0 or ‖𝑒(𝑡)‖ ≤ 𝑒) and state boundedness (‖𝑥(𝑡)‖ ≤ �̄�),
while failing to impose quantitative constraints on transient performance metrics such as overshoot and convergence
rate. This limitation may result in insufficient dynamic performance in practical applications, such as degraded
trajectory tracking accuracy during high-speed operations of industrial robots.

Prescribed Performance Control (PPC) achieves quantitative constraints on tracking errors by constructing time-
varying performance boundary functions, providing a breakthrough solution to the aforementioned problems [21],
[22]. Its core lies in strictly restricting the error trajectory within a preset time-varying envelope, thereby explicitly
regulating the transient response process. In recent years, the integration of PPC with adaptive fuzzy/neural control
[23], [24], sliding mode control [25], and adaptive backstepping control [26], [27], [28] has demonstrated significant
advantages in scenarios such as aircraft attitude control and vehicle path tracking. In response to the differentiated
requirements for transient performance across various dynamic systems and engineering application scenarios, a
variety of performance prescribed functions (PPFs) with different derivative forms and characteristics have been
successively proposed, including homogeneous fractional-type [21], polynomial-type [29], exponential-type [22],
fractional power-type [30], hyperbolic tangent function-type [31], sinusoidal-type [32], and cosine-type [33]. Existing
methods employ symmetric constraint boundaries (|𝑒(𝑡)| < 𝜌𝑙(𝑡) = 𝜌𝑢(𝑡) ) or proportional constraint boundaries
(𝜌𝑙(𝑡) = 𝑘𝜌𝑢(𝑡), 𝑘 ∈ (0, 1)) for enveloping control of error trajectories. However, research results indicate that
tracking errors still exhibit unexpected overshoots. To address this, Bu et al. [34] proposed tunnel-type PPF (TPPF),
which dynamically reconstructs asymmetric constraint boundaries through an event-triggered mechanism. Unlike static
designs with fixed proportional coefficients 𝑘 in asymmetric constraint strategies [27], [29], [31], the TPPF constructs
an initial co-sided asymmetric constraint band satisfying sgn(𝜌𝑢(0)) = sgn(𝜌𝑙(0)) based on the sign characteristics
of the initial error 𝑒(0). Under the TPPF constraints, overshoot behavior can be perfectly suppressed. However, the
zero-overshoot characteristic of TPPF comes at the cost of sacrificing dynamic response speed, thereby limiting the
convergence rate of errors.

Moreover, the PPFs involved in the aforementioned research lack self-adjustment capability. When input saturation
is present, strategies that impose such "rigid" PPF constraints on error trajectories may cause control singularity. Input
saturation is not a new research problem. For instance, previous studies such as [14], [15], [16], [17], [18], [19], [20]
have effectively addressed instability caused by input saturation. However, these strategies are not directly applicable
to control singularity phenomena induced by input saturation in the PPC. The core challenge in resolving control
singularity in the PPC lies in preventing errors from crossing constraint boundaries under input saturation. When
the reference trajectory changes rapidly, input saturation may occur, leading to boundary-crossing errors. To address
this, Wang and Hu [35] introduced the rate of reference trajectory variation into PPF design, proposing a predictive
performance control strategy where constraint boundaries adapt to the reference trajectory’s slope. However, under
system disturbances, this strategy may still fail to prevent boundary-crossing errors due to its inability to rapidly detect
disturbance variations. To overcome this limitation, Bu et al. [36] developed a self-adjusting PPF strategy based on
the derivative of tracking errors. Nevertheless, this approach requires assumptions that both disturbances and tracking
errors are continuously differentiable. Furthermore, Ji et al. [37] designed a saturation-tolerant prescribed performance
function (SPPF) that employs the control input signal as an independent variable to construct an auxiliary system for
real-time expansion or recovery of error constraint boundaries, thereby effectively preventing tracking errors from
crossing the constraint envelope. However, the SPPF may exhibit unnecessary constraint envelope expansion during
self-adjustment, leading to a slower error convergence rate. Bu et al. [38] proposed a dynamic adjustment strategy
for the PPF by designing an auxiliary system with the error signal as the independent variable. Nevertheless, such
auxiliary systems, which generate self-adjustment signals through multiple integrations, may introduce lag in envelope
self-adjustment, resulting in boundary-crossing errors.

Inspired by the above methods, this paper proposes a dynamic prescribed performance fuzzy-neural backstepping
control method for PMSM systems subject to parameter perturbations, uncertain disturbances, and input saturation. The
method integrates a finite-time asymmetric dynamic prescribed performance function (FADPPF), speed function (SF),
and fuzzy neural network (FNN) within the framework of backstepping technique. The FADPPF is designed to address
control singularity phenomena induced by input saturation and insufficient dynamic disturbance adaptation. The SF
amplifies the tracking error to improve system sensitivity to the tracking error. The FNN deals with the parameter and
model uncertainty. The main contributions of this paper can be summarized as follows:

(1) To address the control singularity phenomenon and boundary adjustment lag issues of traditional PPFs under
input saturation and dynamic disturbances, the FADPPF is proposed. This PPF consists of the basic constraint
and the self-adjusting additional constraint.
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(a) Distinct from [21], [22], [26], [29], [31], [32], [33] and [34], the PPFs in these studies lack self-adjustment
capability. Except for [34], existing schemes struggle to effectively suppress transient overshoot. Although
[34] avoids overshoot, it significantly sacrifices error convergence speed. The proposed scheme strictly
limits overshoot amplitude while maintaining satisfactory error convergence speed.

(b) Compared with the adjustment scheme in [35], the FADPPF eliminates the requirement of derivatives of
disturbances and tracking errors. Compared with the schemes in [36], [37] and [38], the FADPPF requires
no auxiliary system, enables rapid self-adjustment, and eliminates envelope adaptation lag.

(c) Unlike the synchronized boundary adjustment in [35], [36], [37] and [38], the proposed FADPPF allows
independent adjustment of upper and lower constraint boundaries. This asymmetric design enhances the
capability to constrain error trajectories, achieving superior transient performance.

(2) Compared with the backstepping controllers with PPF in [26], [27], [28], this paper incorporates the SF into the
prescribed performance backstepping control, thereby accelerating the error convergence speed and achieving
better transient performance and steady-state accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the mathematical model of surface-
mounted PMSM and preliminaries. Section 3 designs the FADPPF. Section 4 presents the design and stability analysis
of the dynamic prescribed performance fuzzy-neural backstepping controller. The simulation results are presented and
analyzed in Section 5. Finally, Section 6 draws the conclusions.

2. Mathematical model and preliminaries
2.1. PMSM model

The cross-sectional diagram of the stator and rotor of the surface mounted PMSM is shown in Fig. 1, where the
coordinate axes of the a-b-c three-phase stationary coordinate system are perpendicular to the three-phase axes A-X, B-
Y, C-Z of the stator winding, respectively. The mathematical model of surface mount PMSM in d-q rotating coordinate
system is [39]

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝜃𝑒
𝑑𝑡 = 𝜔𝑒 = 𝑛𝑝𝜔,
𝑑𝜔
𝑑𝑡 = 1

𝐽

(

3
2𝑛𝑝𝜓𝑖𝑞 − 𝑏𝜔 − 𝑇𝐿

)

,
𝑑𝑖𝑞
𝑑𝑡 = 1

𝐿

(

𝑢𝑞 − 𝑅0𝑖𝑞 − 𝑛𝑝𝜔
(

𝐿𝑖𝑑 + 𝜓
))

,
𝑑𝑖𝑑
𝑑𝑡 = 1

𝐿

(

𝑢𝑑 − 𝑅0𝑖𝑑 + 𝑛𝑝𝐿𝜔𝑖𝑞
)

,

(1)

where 𝑢𝑑 , 𝑢𝑞 , 𝑖𝑑 , and 𝑖𝑞 represent the voltage and current on the d-axis and q-axis, respectively. 𝑅0, 𝑛𝑝, 𝜃𝑒, 𝜔𝑒, 𝜔, 𝜓 ,
𝐿, 𝐽 , 𝑇𝐿, 𝑏, and 𝑡 are the stator resistance, number of motor pole pairs, electrical angle, electrical angular velocity,
mechanical angular velocity, permanent magnet flux linkage, inductance, moment of inertia, load torque, damping
coefficient and time, respectively. The physical properties of the stator winding and magnet depend nonlinearly on the
temperature; therefore, 𝑅0, 𝜓 and 𝐿 vary nonlinearly with temperature [40, 41]. 𝑢𝑑 and 𝑢𝑞 are limited by the voltage
of the DC link, that is, there are positive constants �̄�𝑑 and �̄�𝑞 , such that the inputs must satisfy |
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Lemma 1. (See [42]) If the variable 𝑢 satisfies |𝑢| ≤ �̄�, then based on the hyperbolic tangent function 𝑔 (𝑣) =
�̄� tanh (𝑣∕�̄�) and the mean value theorem, 𝑢 can be written as 𝑢 = 𝑔′ (𝛿𝑣) 𝑣 + 𝑑 (𝑣), where 0 < 𝑔′ (𝛿𝑣) = 𝜕𝑔(𝛿𝑣)
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According to Lemma 1, the control input 𝑢𝑥 (𝑥 ∈ {𝑑, 𝑞}) can be written as [17]:
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Fig. 1. The cross-sectional diagram of the stator and rotor of the surface mounted PMSM.

2.2. Fuzzy neural network
The parameters such as𝑅0,𝐿 and𝜓 in the PMSM model will deviate from their nominal values under the influence

of load, temperature, and other factors. In order to ensure the performance of the PMSM control system, FNN is used
to approximate nonlinear uncertainties in the PMSM mathematical model.

A smooth continuous function 𝑌𝑗 can be approximated by FNN [43]

𝑌𝑗 (𝑥) = 𝜛𝑇
𝑗 𝛾𝑗 (𝑥) , (3)
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where 𝑖 = 1,⋯ , 𝐼 , 𝑗 = 1,⋯ , 𝐽 and 𝑛 = 1,⋯ , 𝑁 , 𝛽𝑖𝑛𝑗 (𝑥) represents the 𝑛th membership function (MF) of the 𝑖th input
signal 𝑥𝑖𝑗 of 𝑌𝑗 , as

𝛽𝑖𝑛𝑗 (𝑥) = exp
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, (5)

where 𝛼𝑖𝑛𝑗 and 𝜀𝑖𝑛𝑗 represent the width and center of 𝛽𝑖𝑛𝑗 (𝑥),
[

𝑥1𝑗 ,⋯ , 𝑥𝑖𝑗 ,⋯ 𝑥𝐼𝑗
]

= 𝑋𝑗 is the input signal for FNN to
approximate 𝑌𝑗 .

Lemma 2. (See [44]) For any smooth continuous function 𝑌 (𝑥) on the compact set𝑂𝑥, there exists an optimal weight
vector 𝜛∗ that satisfies

|

|

𝑌 (𝑥) −𝜛∗𝛾 (𝑥)|
|

⩽ 𝜏, (6)

where 𝑥 is the argument of the function, 𝛾 (𝑥) =
[

𝛾1 (𝑥) ,⋯ , 𝛾𝑛 (𝑥) ,⋯ , 𝛾𝑁 (𝑥)
]𝑇 is a normalized membership vector

calculated through fuzzy rules and 𝜏 is an arbitrarily small positive constant.

The parameters of the FNN, including the number of membership functions, along with the centers and widths of
membership degree functions, directly influence both approximation accuracy and computational load. The premise
variables of FNN are selected as measurable states strongly correlated with nonlinear characteristics (e.g., stator current
𝑖𝑞 , rotor angular velocity 𝜔, and error term 𝑒1), forming direct mapping of permanent magnet synchronous motor
(PMSM) nonlinearities. Gaussian membership functions are employed for smooth approximation, with membership
function centers uniformly distributed over the full variable range. The width parameters (set as 1/4-1/2 of center
spacing) ensure 20%-50% overlap ratio to maintain state transition smoothness. The centers and widths of the
membership functions are determined by comprehensively considering the computational burden and approximation
accuracy.
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3. Design of the FADPPF
In order to solve the problems of control singularity and system instability caused by load changes and input

constraints, and effectively constrain the performance of the system under transient and steady-state conditions, a
real-time self-adjusting FADPPF based on the system tracking error is proposed in this section.

In the prescribed performance control, the tracking error 𝑒 (𝑡) of the system is expected to meet

−𝑝 (𝑡) < 𝑒 (𝑡) < �̄� (𝑡) , (7)

where 𝑒 (𝑡) = 𝑦 (𝑡) − 𝑦𝑟 (𝑡), 𝑦𝑟 (𝑡) represents the reference trajectory of 𝑦 (𝑡), �̄� (𝑡) and 𝑝 (𝑡) are the upper and lower
constraint functions to be designed, also known as PPF. �̄� (𝑡) and 𝑝 (𝑡) jointly define the allowable range of 𝑒 (𝑡) to
ensure that the convergence speed and steady-state error of 𝑒 (𝑡) meet the expected requirements.

In classic prescribed performance control, �̄� (𝑡) and 𝑝 (𝑡) are usually the same, that is �̄� (𝑡) = 𝑝 (𝑡) = 𝑝 (𝑡) and
−𝑝 (𝑡) < 𝑒 (𝑡) < �̄� (𝑡). A function that satisfies the classical definition of PPF [22] is a monotone decreasing nonlinear
function. And the pseudo-exponential type PPF is written as

𝑝 (𝑡) =

{𝜆0−𝜆∞
1+𝑓0𝑡2

+ 𝜆∞, 𝑡 < 𝑡0,

𝜆∞, 𝑡 ≥ 𝑡0,
(8)

where 𝜆0, 𝜆∞, 𝑓0 and 𝑡0 are design constants. 𝜆0 and 𝜆∞ represent the starting and ending values of 𝑝 (𝑡), respectively.
The size of 𝑓0 affects the slope of 𝑝 (𝑡). 𝑡0 represents the time it takes for 𝑝 (𝑡) to decrease from 𝜆0 to 𝜆∞. The distance
between the 𝑒 (𝑡) and PPF will affect the size of the control input 𝑢 (𝑡). To ensure −𝑝 (0) < 𝑒 (0) < 𝑝 (0), 𝜆0 usually
takes the limit value of the system state. But when |𝑒 (0)| is farther away from 𝜆0, the smaller |𝑢 (0)|, the slower the
convergence rate of 𝑒 (𝑡). When |𝑒 (𝑡)| is large, it is generally desirable for |𝑢 (𝑡)| to be as large as possible in order
for 𝑒 (𝑡) to converge to the desired interval in a shorter time. However, the slope influencing factors of existing PPFs
are constant and cannot be adjusted in real-time based on 𝑒 (𝑡) to obtain larger control signals. Therefore, the slope
adjustment function 𝑓0 (𝑡) is proposed to modify the slope influence factor 𝑓0 in Eq. (8):

𝑓0 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜆21
𝑒(𝑡)2

+ 𝜆2, |𝑒 (𝑡)| > 𝜆∞,
𝜆21
𝜆2∞

+ 𝜆2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(9)

In addition, the function described by Eq. (8) is not continuous at 𝑡 = 𝑡0, which causes the virtual control input
containing PPF in subsequent controller design to be non-differentiable at certain points, leading to controller design
difficulties. To address this problem, we propose the following 𝑝 (𝑡) whose slope can be adjusted in real time according
to 𝑒 (𝑡) and is continuously smooth:

𝑝 (𝑡) =

{
(

𝑡0−𝑡
𝑡0

)𝑎1 𝜆0−𝜆∞
1+𝑓0(𝑡)𝑡2

+ 𝜆∞, 𝑡 < 𝑡0,

𝜆∞, 𝑡 ≥ 𝑡0,
(10)

where 𝜆1 and 𝜆2 are constants to be determined, 𝑎1 is the amplitude adjustment coefficient to be determined.
The 𝑒 (0) can be clearly divided into two possibilities: 𝑒 (0) > 0 and 𝑒 (0) ⩽ 0. Therefore, combining the curve

constraint formed by 𝑝 (𝑡) and the constant constraint, different �̄� (𝑡) and 𝑝 (𝑡) can be obtained by initially selecting the
parameter 𝑎0 to effectively avoid unwanted tracking error overshoot. The PPF can be expressed as

{

𝑝 (𝑡) = 𝑎0𝑝 (𝑡) +
(

1 − 𝑎0
)

𝜆∞,
𝑝 (𝑡) = 𝑎0𝜆∞ +

(

1 − 𝑎0
)

𝑝 (𝑡) ,
(11)

where 𝜆∞ and 𝜆∞ are positive constants to be determined, representing constant constraints for 𝑒 (0) ⩽ 0 and 𝑒 (0) > 0,

respectively. And 𝑎0 =

{

1, 𝑒 (0) > 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Further considering the influence of disturbance mutation and input constraint on 𝑒 (𝑡), the self-adjusting term is
designed to ensure that 𝑒 (𝑡) remains within the limits of �̄� (𝑡) and 𝑝 (𝑡) even in the event of disturbance mutation or
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input saturation, in order to avoid control singularity and system instability. The self-adjusting term corresponding to
the curve constraint is 𝑝Δ1 (𝑡), and the self-adjusting term corresponding to the constant constraint is 𝑝Δ2 (𝑡). Based on
𝑝 (𝑡), the time contraction function 𝑓𝑖 (𝑡) , 𝑖 = 1, 2 and amplitude amplification function 𝑓Δ𝑖 (𝑡) are introduced to design
𝑝Δ𝑖 (𝑡) as:

𝑝Δ1 (𝑡) =

⎧

⎪

⎨

⎪

⎩

(

𝑡0−𝑓1(𝑡)𝑡
𝑡0

)𝑎1 (𝜆0−𝜆∞)𝑓Δ1(𝑡)
1+𝑓0(𝑡)(𝑓1(𝑡)𝑡)2

, 𝑡 < 𝑡0,
(

1 − 𝑓1 (𝑡)
)𝑎1 (𝜆0−𝜆∞)𝑓Δ1(𝑡)

1+𝑓0(𝑡)(𝑓1(𝑡)𝑡0)2
, 𝑡 ≥ 𝑡0,

(12)

𝑝Δ2 (𝑡) =
(

1 − 𝑓2 (𝑡)
)𝑎1

(

𝜆0 − 𝑎0𝜆∞ −
(

1 − 𝑎0
)

𝜆∞
)

𝑓Δ2 (𝑡)

1 + 𝑓0 (𝑡)
(

𝑓2 (𝑡) 𝑡0
)2

. (13)

When the control input is saturated and 𝑒 (𝑡) exceeds the designed safety threshold, the disturbance response part
corresponding to the curve constraint makes the value of 𝑝Δ1 (𝑡) equal to 𝑓Δ1 (𝑡) times the value of 𝑝 (𝑡) at a certain point
in the past through the time contraction function 𝑓1 (𝑡) and the amplitude amplification function 𝑓Δ1 (𝑡). Similarly, the
disturbance response part corresponding to the constant constraint makes the value of 𝑝Δ2 (𝑡) equal to 𝑓Δ2 (𝑡) times the
value of 𝑝 (𝑡) at a certain point in the past through the time contraction function 𝑓2 (𝑡) and the amplitude amplification
function 𝑓Δ2 (𝑡). 𝑓𝑖 (𝑡) and 𝑓Δ𝑖 (𝑡) are functions designed according to desired error convergence speed. Meanwhile,
the amplitude amplification function 𝑓Δ𝑖 (𝑡) should be designed to ensure that 𝑝Δ𝑖 (𝑡) is continuous and differentiable.
In this paper, we use

𝚥1 = 𝜆3𝑝 (𝑡) ∕|𝑒 (𝑡) |, (14)

𝚥2 = 𝜆3
[

(

1 − 𝑎0
)

�̄�∞ + 𝑎0𝜆∞
]

∕||
|

𝑒 (𝑡)||
|

, (15)

𝑓𝑖 (𝑡) =
(

𝚥𝑖
)𝑎𝑖+1 , (16)

𝑓Δ𝑖 (𝑡) = tanh
[

𝜆4
(

𝚥−1𝑖 − 1
)]

tanh
{

𝜆3
(

𝚥−1𝑖 − 1
)

∕
[

𝜆5
(

1 − 𝜆3
)]}

, (17)

where 𝑎2, 𝑎3, 𝜆3, 𝜆4 and 𝜆5 are constants to be determined.
The trigger conditions make use of �̄� (𝑡) and 𝑝 (𝑡) are designed as 𝚥𝑎 = 𝜆3𝑝 (𝑡) ∕𝑒 (𝑡), 𝚥𝑏 = 𝜆3�̄�∞∕𝑒 (𝑡) and

𝚥𝑐 = 𝜆3𝜆∞∕𝑒 (𝑡). Then, the self-tuning selection factors �̄� and 𝑎 of the upper and lower constraint functions are used to
determine whether to trigger self adjustment. The self-tuning trigger conditions are designed as:

(1) When 𝑒 (0) > 0 and 0 < 𝚥𝑎 ⩽ 1, �̄� = 1. When 𝑒 (0) ⩽ 0 and 0 < 𝚥𝑏 ⩽ 1, �̄� = 1. In other cases, �̄� = 0.
(2) When 𝑒 (0) > 0 and 0 < −𝚥𝑐 ⩽ 1, 𝑎 = 1. When 𝑒 (0) ⩽ 0 and 0 < −𝚥𝑎 ⩽ 1, 𝑎 = 1. In other cases, 𝑎 = 0.

The self-tuning trigger conditions of the upper and lower constraint functions are independent and do not affect each
other.

The constant constraint formed by �̄�∞ or 𝜆∞ and the curve constraint formed by 𝑝 (𝑡) are collectively referred to as
basic constraint. The nonlinear constraints generated by 𝑝Δ𝑖 (𝑡) , 𝑖 = 1, 2 are called self-adjusting additional constraint.
The FADPPF consists of basic constraint and self-adjusting additional constraint, expressed as:

{

�̄� (𝑡) = 𝑎0
(

𝑝 (𝑡) + �̄�𝑝Δ1 (𝑡)
)

+
(

1 − 𝑎0
) (

�̄�∞ + �̄�𝑝Δ2 (𝑡)
)

,
𝑝 (𝑡) = 𝑎0

(

𝜆∞ + 𝑎𝑝Δ2 (𝑡)
)

+
(

1 − 𝑎0
) (

𝑝 (𝑡) + 𝑎𝑝Δ1 (𝑡)
)

.
(18)

If self-adjustment is triggered, �̄� = 1 or 𝑎 = 1, �̄� (𝑡) or 𝑝 (𝑡) is not belong to the monotonic function.
The parameter characteristics of the FADPPF and their control performance impacts are summarized as follows:

(1) Initial boundary parameter (𝜆0): Determines the starting point and maximum self-adjustment amplitude of the
PPF. Excessively high values can reduce response speed, while too low values risk control singularity.

(2) Steady-state boundary parameters (𝜆∞, �̄�∞, 𝜆∞): Overly large values degrade steady-state accuracy, while too
small settings require stronger control inputs and may exacerbate chattering.
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(3) Self-adjustment trigger threshold factor (𝜆3): Critical for the PPF’s dynamic performance. 𝜆3 ⩾ 1 causes
adjustment hysteresis (increasing constraint violation risk), while 𝜆3 < 0.8 produces overly conservative
adjustments (impairing transient response speed). Recommended range: 0.8 < 𝜆3 < 1.

(4) Slope influence factor (𝜆1, 𝜆2, 𝜆4, 𝜆5, 𝑎1, 𝑎2, 𝑎3, 𝑡0): Collectively determine error convergence rate. Their synergy
governs convergence speed and transient response quality.

Remark 1. Using Eq. (10) as an example to explain the function of parameter 𝑎1. In Eq. (10),
(

𝑡0−𝑡
𝑡0

)𝑎1
ensures that the

function is continuous at 𝑡 = 𝑡0, where the larger 𝑎1 is, the faster
(

𝑡0−𝑡
𝑡0

)𝑎1
decreases as 𝑡 increases, approaching 0 from

1 more rapidly. If the value of 𝑎1 is large, combined with the influence of 𝑓0 (𝑡) on the slope of 𝑝 (𝑡), unexpected input
saturation and triggering unnecessary function self adjustment may occur. Therefore, it is not recommended to take
the value of 𝑎1 as more than 4𝜆0

𝑒(0) . Moreover, in controller design, the differentiation of p (t) is involved. To reduce the
computational complexity of the controller, it is recommended to take an integer for 𝑎1. In summary, we recommend
𝑎1 to be an integer within

[

1, 4⌊ 𝜆0
𝑒(0)⌋

]

, where ⌊⋅⌋ represents the floor function.

Remark 2. The upper and lower boundaries described by the existing asymmetric PPFs are both nonlinear functions,
and the constrained boundary formed is like a funnel, and there may still be unwanted overshoot. The basic constraint
boundary of FADPPF proposed in this paper is like a semi-funnel. For example, when 𝑒 (0) is negative, the lower
boundary is a monotone rising nonlinear curve, and the upper boundary is the constant value, which is the upper limit
of the steady-state interval. The time when 𝑒 (𝑡) first enters the steady-state interval is the time to reach the expected
accuracy, and there will be no unexpected overshoot behavior.

Remark 3. The FADPPF realizes dynamic self-adjustment based on the idea of event triggering. When the error is
within the boundary of the basic constraint, the self-adjusting additional constraint part is 0. When the error exceeds
the designed threshold 𝚥𝑎, 𝚥𝑏, or 𝚥𝑐 , the constraint boundary is triggered to dynamically self adjust according to the error
situation, and this self-adjustment is only to adjust the single boundary corresponding to the exceeded threshold, rather
than adjusting the upper and lower boundaries simultaneously as shown in the existing PPFs.

Remark 4. In practice, to avoid division by zero when 𝑒 (𝑡) = 0, the constant 𝑎4 is introduced, and 0≪ 𝑎4 < 𝜆3 < 1.
𝚥𝑎, 𝚥𝑏 and 𝚥𝑐 are modified to

𝚥𝑎 =

{

𝜆3𝑝 (𝑡) ∕
(

𝑎4𝜆∞
)

, |𝑒 (𝑡)| < 𝑎4𝜆∞,
𝜆3𝑝 (𝑡) ∕𝑒 (𝑡) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(19)

𝚥𝑏 =

{

𝜆3∕𝑎4, 𝑒 (𝑡) < 𝑎4�̄�∞,
𝜆3�̄�∞∕𝑒 (𝑡) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(20)

𝚥𝑐 =

{

−𝜆3∕𝑎4, 𝑒 (𝑡) > −𝑎4𝜆∞,
𝜆3𝜆∞∕𝑒 (𝑡) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(21)

4. Controller design and stability analysis
Considering the nonlinear time-varying parameters and constrained control inputs in the PMSM, a dynamic

prescribed performance fuzzy-neural backstepping controller is constructed. The controller is based on the proposed
FADPPF, combined with the error amplification mechanism SF, to ensure the transient and steady-state performance
of the PMSM. The unknown functions in the PMSM model and the complex differential functions in the backstepping
process are estimated by FNN. The control scheme is shown in Fig. 2.
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Fig. 2. Diagram of the control scheme.

4.1. Controller design
The errors of the PMSM system are defined as

𝑒1 = 𝜔 − 𝜔𝑟, (22)

𝑒2 = 𝑖𝑞 − 𝑢𝜈 , (23)

𝑒3 = 𝑖𝑑 , (24)

wherein 𝜔𝑟 represents the reference trajectory of 𝜔 and 𝑢𝜈 is the virtual control input. To ensure that the tracking error
𝑒1 remains within the range defined by FADPPF, 𝑒1 is transformed into a new variable 𝑒𝑝 as [33, 45]:

𝑒𝑝 =
𝑒1

(

�̄� (𝑡) − 𝑒1
) (

𝑝 (𝑡) + 𝑒1
)
. (25)

To improve the convergence speed of the tracking error, the SF is introduced into the controller design. When 𝑡 ≥ 0,
the SF ℏ (𝑡) is continuous and differentiable, as [46]

ℏ (𝑡) =

{

𝑘42𝛿 (𝑡) ∕
[

(

1 − 𝑘1
) (

𝑘2 − 𝑡
)4 + 𝑘1𝑘42𝛿 (𝑡)

]

, 0 ⩽ 𝑡 < 𝑘2,

1∕𝑘1, 𝑡 ≥ 𝑘2,
(26)

where 𝑘1 ∈ (0, 1] and 𝑘2 ∈ (0,∞) are design parameters. 𝛿 (𝑡) is a smoothing function, which requires 𝛿 (0) = 1
and �̇� (𝑡) ≥ 0. 𝑘1 requires balance between dynamic adjustment demands and stability - dynamic regulation capability
diminishes when 𝑘1 approaches 1. 𝑘2 demands careful trade-off between response speed and overshoot suppression,
as excessive 𝑘2 values may prolong transient processes. In this paper, 𝛿 (𝑡) = 𝑡2 + 1.

Based on the SF, the acceleration errors 𝑒ℏ𝑗 are considered

𝑒ℏ𝑗 =

{

ℏ (𝑡) 𝑒𝑝, 𝑗 = 1,
ℏ (𝑡) 𝑒𝑗 , 𝑗 = 2, 3.

(27)

The specific design process of the dynamic prescribed performance fuzzy-neural backstepping controller is divided
into the following three steps.

Step 1: The time derivative of 𝑒ℏ1 is

�̇�ℏ1 = ℏ̇ (𝑡) 𝑒𝑝 + ℏ (𝑡)
[

𝑝𝑎
(

𝑌1 + 𝑒2 + 𝑢𝜈 − �̇�𝑟
)

+ 𝑝𝑏
]

, (28)
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where 𝑝𝑎 =
�̄�(𝑡)𝑝(𝑡)+𝑒21

(�̄�(𝑡)−𝑒1)2
(

𝑝(𝑡)+𝑒1
)2 , 𝑝𝑏 = −

(

�̄�(𝑡)�̇�(𝑡)+ ̇̄𝑝(𝑡)𝑝(𝑡)
)

𝑒1+
(

̇̄𝑝(𝑡)−�̇�(𝑡)
)

𝑒21

(�̄�(𝑡)−𝑒1)2
(

𝑝(𝑡)+𝑒1
)2 , 𝑌1 =

[(

1.5𝑛𝑝𝜓−𝐽
)

𝑖𝑞−𝑏𝜔−𝑇𝐿
]

𝐽 . Since 𝐽 , 𝜓 and 𝑇𝐿 are

uncertain and time-varying, 𝑌1 is approximated by a FNN. According to (3) and (6), 𝑋1 =
[

𝜔, 𝑖𝑞
]

, 𝑌1 can be written
as

𝑌1 ⩽ 𝜛∗𝑇
1 𝛾1 + 𝜏1, (29)

Ewhere 𝜏1 is the estimation error. Calculate 𝛾1 according to (4) and (5). The estimated value �̂�1 of 𝜛∗
1 is calculated

by the adaptive law designed later.
Design the first Lyapunov function 𝑉1 as

𝑉1 = 𝑒2ℏ1∕2. (30)

The derivative of 𝑉1 is

�̇�1 = ℏ̇ (𝑡) 𝑒𝑝𝑒ℏ1 + ℏ (𝑡) 𝑒ℏ1
[

𝑝𝑎
(

𝑌1 + 𝑒2 + 𝑢𝜈 − �̇�𝑟
)

+ 𝑝𝑏
]

. (31)

The virtual control input 𝑢𝜈 and the adaptive law of �̂�1 are constructed as

𝑢𝜈 = �̇�𝑟 − 𝑐1𝑒𝑝 − �̂�𝑇
1 𝛾1 − 0.5ℏ (𝑡) 𝑝𝑎𝑒ℏ1 −

ℏ̇ (𝑡) 𝑒𝑝
𝑝𝑎ℏ (𝑡)

−
𝑝𝑏
𝑝𝑎
, (32)

̇̂𝜛1 = 𝜐1
(

ℏ
(

𝑡
)

𝑝𝑎𝑒ℎ1𝛾1 − 𝑏1�̂�1
)

, (33)

where 𝑐1, 𝜐1 and 𝑏1 are positive parameters to be determined.
Substituting (29) and (32) into (31) gives

�̇�1 = 𝑝𝑎ℏ (𝑡) 𝑒ℏ1
(

𝑌1 − �̂�𝑇
1 𝛾1 + 𝑒2 − 𝑐1𝑒𝑝 − ℏ (𝑡) 𝑝𝑎𝑒ℏ1∕2

)

⩽ 𝑝𝑎𝑒ℏ1𝑒ℏ2 − 𝑐1𝑝𝑎𝑒2ℏ1 + 𝑝𝑎ℏ (𝑡) 𝑒ℏ1�̃�
𝑇
1 𝛾1 + 𝜒1,

(34)

where �̃�1 = 𝜛∗
1 − �̂�1 and 𝜒1 = 𝜏21∕2.

Step 2: The time derivative of 𝑒ℏ2 is

�̇�ℏ2 = ℏ̇ (𝑡) 𝑒2 + ℏ (𝑡)
[

𝑢𝑞 − 𝑅0𝑖𝑞 − 𝑛𝑝𝜔
(

𝐿𝑖𝑑 + 𝜓
)]

∕𝐿 − ℏ (𝑡) �̇�𝜈 . (35)

Let 𝐿𝑡 =
1
𝐿 , �̄�𝑡 =

1
𝐿min

, 𝐿𝑡 =
1

𝐿max
, 𝐿min and 𝐿max represent the minimum and maximum values of 𝐿 within the

operating temperature range of the PMSM. Define the second Lyapunov function 𝑉2 as

𝑉2 = 𝑉1 + 𝑒2ℏ2∕2. (36)

Taking the derivative of 𝑉2:

�̇�2 = �̇�1 + ℏ (𝑡) 𝑒ℏ2
(

𝑌2 − 𝑝𝑎𝑒𝑝 − ℏ (𝑡) 𝑒ℏ2 + 𝐿𝑡𝑢𝑞
)

, (37)

where 𝑌2 = −𝐿𝑡𝑅0𝑖𝑞 − 𝐿𝑡𝑛𝑝𝜔
(

𝐿𝑖𝑑 + 𝜓
)

+
(

ℏ2(𝑡)
2 + ℏ̇(𝑡)

ℏ(𝑡)

)

𝑒2 − �̇�𝜈 + 𝑝𝑎𝑒𝑝.
Using the FNN to estimate 𝑌2, 𝑋2 =

[

𝜔, 𝑖𝑑 , 𝑖𝑞 , 𝑒1, 𝑒2
]

, 𝑌2 can be written as

𝑌2 ⩽ 𝜛∗𝑇
2 𝛾2 + 𝜏2, (38)

where 𝜏2 is the estimation error. Calculate 𝛾2 according to (4) and (5). The estimated value �̂�2 of 𝜛∗
2 is calculated by

the adaptive law designed later.
Considering the limitation of q-axis control input 𝑢𝑞 , 𝑢𝑞 is designed as

𝑢𝑞 =

{

�̄�𝑞𝑠𝑖𝑔𝑛
(

𝑣𝑞
)

, ||
|

𝑣𝑞
|

|

|

⩾ �̄�𝑞 ,

𝑣𝑞 ,
|

|

|

𝑣𝑞
|

|

|

< �̄�𝑞 ,
(39)
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𝑣𝑞 = −�̂�𝑇2 𝛾2 − 𝑐2𝑒2 − 0.5ℏ (𝑡) 𝑒ℏ2, (40)

where 𝑐2 is the design parameter, �̂�2 is an auxiliary variable and �̂�2 = �̂�2∕
(

𝐿𝑡𝐺𝑞
)

. The adaptive law of �̂�2 is designed
as

̇̂𝜃2 = 𝜐2
(

ℏ (𝑡) 𝑒ℏ2𝛾2 − 𝑏2�̂�2
)

, (41)

where 𝜐2 and 𝑏2 are positive parameters to be determined.
Substituting Eqs. (38)-(40) and (2) into (37), �̇�2 can be updated as

�̇�2 = �̇�1 + ℏ (𝑡) 𝑒ℏ2
(

𝑌2 − 𝑝𝑎𝑒𝑝 − ℏ (𝑡) 𝑒ℏ2 + 𝐿𝑡𝑣𝑞
)

+ 𝐿𝑡ℏ (𝑡) 𝑒ℏ2𝑑
(

𝑣𝑞
)

⩽ −𝑐1𝑝𝑎𝑒2ℏ1 − 𝑐2𝐿𝑡𝑒
2
ℏ2 + 𝑝𝑎ℏ (𝑡) 𝑒ℏ1�̃�

𝑇
1 𝛾1 + ℏ (𝑡) 𝑒ℏ2�̃�

𝑇
2 𝛾2 + 𝜒2,

(42)

where 𝜒2 = 𝜒1 + 𝜏22∕2 + 𝐿𝑡𝑓
2 (𝑣𝑞

)

∕2, �̃�2 = 𝜛∗
2 − �̂�2, 𝜃∗2 = 𝜛∗

2∕
(

𝐿𝑡𝐺𝑞
)

and 𝜃2 = 𝜃∗2 − �̂�2.
Step 3: The time derivative of 𝑒ℏ3 is

�̇�ℏ3 = ℏ̇ (𝑡) 𝑒3 + ℏ (𝑡)
(

𝐿𝑡𝑢𝑑 + 𝐿𝑡𝑛𝑝𝐿𝜔𝑖𝑞 − 𝐿𝑡𝑅0𝑖𝑑
)

. (43)

Design the third Lyapunov function 𝑉3 as

𝑉3 = 𝑉2 + 𝑒2ℏ3∕2. (44)

Taking the derivative of 𝑉3 yields

�̇�3 = �̇�2 + ℏ (𝑡) 𝑒ℏ3
(

𝑌3 − ℏ (𝑡) 𝑒ℏ3∕2 + 𝐿𝑡𝑢𝑑
)

, (45)

where 𝑌3 = 𝐿𝑡𝑛𝑝𝐿𝜔𝑖𝑞 − 𝐿𝑡𝑅0𝑖𝑑 +
(

ℏ2(𝑡)
2 + ℏ̇(𝑡)

ℏ(𝑡)

)

𝑒3. And according to FNN, 𝑋3 =
[

𝜔, 𝑖𝑑 , 𝑖𝑞 , 𝑒3
]

, 𝑌3 is approximated
as

𝑌3 ⩽ 𝜛∗𝑇
3 𝛾3 + 𝜏3, (46)

where 𝜏3 is the estimation error. Calculate 𝛾3 according to (4) and (5). The estimated value �̂�3 of 𝜛∗
3 is calculated by

the adaptive law designed later.
Construct the d-axis control input 𝑢𝑑 and adaptive law of �̂�3 as

𝑢𝑑 =

{

�̄�𝑑𝑠𝑖𝑔𝑛
(

𝑣𝑑
)

, |
|

𝑣𝑑|| ⩾ �̄�𝑑 ,
𝑣𝑑 , ||𝑣𝑑|| < �̄�𝑑 ,

(47)

𝑣𝑑 = −�̂�𝑇3 𝛾3 − 𝑐3𝑒3 − 0.5ℏ (𝑡) 𝑒ℏ3, (48)

̇̂𝜃3 = 𝜐3
(

ℏ (𝑡) 𝑒ℏ3𝛾3 − 𝑏3�̂�3
)

, (49)

where 𝑐3, 𝜐3 and 𝑏3 are positive parameters to be determined, and �̂�3 = �̂�3∕
(

𝐿𝑡𝐺𝑑
)

.
�̇�3 can be updated to

�̇�3 = �̇�2 + ℏ (𝑡) 𝑒ℏ3
(

𝑌3 − 0.5ℏ (𝑡) 𝑒ℏ3 + 𝐿𝑡𝑣𝑑
)

+ 𝐿𝑡ℏ (𝑡) 𝑒ℏ3𝑑
(

𝑣𝑑
)

⩽ −𝑐1𝑝𝑎𝑒2ℏ1 − 𝑐2𝐿𝑡𝑒
2
ℏ2 − 𝑐3𝐿𝑡𝑒

2
ℏ3 + 𝑝𝑎ℏ (𝑡) 𝑒ℏ1�̃�

𝑇
1 𝛾1 + ℏ (𝑡) 𝑒ℏ2�̃�

𝑇
2 𝛾2 + ℏ (𝑡) 𝑒ℏ3�̃�

𝑇
3 𝛾3 + 𝜒3,

(50)

where 𝜒3 = 𝜒2 + 𝜏23∕2 + 𝐿𝑡𝑓
2 (𝑣𝑑

)

∕2, �̃�3 = 𝜛∗
3 − �̂�3, 𝜃∗3 = 𝜛∗

3∕
(

𝐿𝑡𝐺𝑑
)

and 𝜃3 = 𝜃∗3 − �̂�3.
Based on the above three steps, control inputs (39) and (47), along with the adaptive laws (33), (41), and (49), are

derived. The detailed block diagram of the control framework is shown in Fig. 3.
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Fig. 3. The Proposed control framework.

4.2. Stability analysis
Theorem 1. For the PMSM (1) with nonlinear unknown parameters, control input constraints and loads, the dynamic
prescribed performance fuzzy-neural controller incorporates control inputs (39) and (47) and adaptive laws of (33),
(41) and (49). This controller not only ensures that all signals of the closed-loop system are bounded, but also that the
transient and steady-state performance of PMSM can meet the time-varying and asymmetric preset requirements.

Proof 1. The global Lyapunov function is designed as

𝑉 =
3
∑

𝑗=1
𝑒2ℏ𝑗∕2 + �̃�

𝑇
1 �̃�1∕

(

2𝜐1
)

+
3
∑

𝑗=2
�̃�𝑇
𝑗 𝜃𝑗∕

(

2𝜐𝑗
)

. (51)

Taking the derivative of 𝑉 yields

�̇� = �̇�3 + �̃�𝑇
1
̇̃𝜛1∕𝜐1 + �̃�𝑇

2
̇̃𝜛2∕

(

𝐿𝑡𝐺𝑞𝜐2
)

+ �̃�𝑇
3
̇̃𝜛3∕

(

𝐿𝑡𝐺𝑑𝜐3
)

= �̇�3 − �̃�𝑇
1
(

ℏ (𝑡) 𝑝𝑎𝑒ℏ1𝛾1 − 𝑏1�̂�1
)

−
3
∑

𝑗=2
�̃�𝑇
𝑗
(

ℏ (𝑡) 𝑒ℏ𝑗𝛾𝑗 − 𝑏𝑗 �̂�𝑗
)

⩽ −𝑐1𝑝𝑎𝑒2ℏ1 − 𝑐2𝐿𝑡𝑒
2
ℏ2 − 𝑐3𝐿𝑡𝑒

2
ℏ3 + 𝑏1�̃�

𝑇
1 �̂�1 +

3
∑

𝑗=2
𝑏𝑗�̃�

𝑇
𝑗 �̂�𝑗 + 𝜒3.

(52)

Due to �̃�𝑇
𝑗 �̂�𝑗 ⩽ 𝜛∗𝑇

𝑗 𝜛∗
𝑗 − �̃�

𝑇
𝑗 �̃�𝑗∕4, (52) is updated to

�̇� ⩽ −𝑐1𝑝𝑎𝑒2ℏ1 − 𝑐2𝐿𝑡𝑒
2
ℏ2 − 𝑐3𝐿𝑡𝑒

2
ℏ3 + 𝑏1

(

𝜛∗𝑇
𝑗 𝜛∗

𝑗 − �̃�
𝑇
𝑗 �̃�𝑗∕4

)

+ 𝑏2
(

�̃�∗𝑇
2 �̃�∗

2 − �̃�𝑇
2 �̃�2∕4

)

∕
(

𝐿𝑡𝐺𝑞
)

+ 𝑏3
(

�̃�∗𝑇
3 �̃�∗

3 −𝜛𝑇
3 �̃�3∕4

)

∕
(

𝐿𝑡𝐺𝑑
)

+ 𝜒3

≤ −𝑘𝑉 + 𝜒,

(53)

where
When 𝑡 ⩾ 0, 𝑉 satisfies

𝑉 ⩽ 𝑉 (0) + 𝜒∕𝑘 = 𝜒𝑉 . (54)
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Define the compact set℘0 =
{

𝑋 |

|

𝑉 (𝑋) ⩽ 𝜒𝑉
}

. All signals of closed-loop system are bounded,
(

𝑒ℏ𝑗 , �̃�𝑗
)𝑇 ∈ ℘0,

𝑗 = 1, 2, 3. Furthermore, since 𝑒ℏ1 (𝑡) is bounded, combining (25) and (27), it can be inferred that 𝑒𝑝 (𝑡) is bounded.
According to the properties of the barrier function, if 𝑒𝑝 (𝑡) is bounded and the initial state 𝜔 satisfies −𝑝 (0) < 𝑒1 (0) <
�̄� (0), then there must be two time-varying functions𝐹𝑢 (𝑡) and𝐹𝑑 (𝑡) that satisfy−𝑝 (𝑡) < 𝐹𝑑 (𝑡) ⩽ 𝑒1 (𝑡) ⩽ 𝐹𝑢 (𝑡) < �̄� (𝑡).

Parameter perturbations and external disturbances may drive the error trajectory close to the constraint boundary.
If the setting of 𝜆3 ensures 𝑣𝑥 (𝑡) ⩽ �̄�𝑥, 𝑥 ∈ {𝑞, 𝑑}, then |

|

|

𝑓
(

𝑣𝑥
)

|

|

|

= |

|

|

𝑑
(

𝑣𝑥
)

|

|

|

⩽ 𝐷𝑥. If 𝜆3 allows 𝑣𝑥 to exceed �̄�𝑥,
|

|

|

𝑓
(

𝑣𝑥
)

|

|

|

may temporarily surpass𝐷𝑥. However, due to the self-adjustment triggering conditions of FADPPF, ||
|

𝑓
(

𝑣𝑥
)

|

|

|

remains bounded. Let 𝐷𝑣
𝑥 denote the bound of 𝑣𝑥 when self-adjustment is triggered, then |𝑓 (𝑣𝑥)| ≤ max{𝐷𝑣

𝑥, 𝐷𝑥}.
Combined with Eq. (53), if parameter perturbations, unmodeled dynamics, or disturbances (e.g., torsional vibrations,
sensor noise) exceed the approximation capability of the FNN, 𝜒 may surpass 𝑘𝑉 . Additionally, the 𝜆3 closer to 1 leads
to larger |𝑓 (𝑣𝑥)|, further increasing 𝜒 . Therefore, the selection of FADPPF parameters (e.g., 𝜆3) and FNN membership
function parameters must balance transient/steady-state performance and robustness against perturbations, unmodeled
dynamics, and disturbance magnitudes/frequencies in specific applications.

5. Simulation results
In this section, three simulations are provided to demonstrate the effectiveness and superiority of the proposed

dynamic prescribed performance fuzzy-neural backstepping control scheme. First, to visually show the advantages of
FADPPF, Case 1 compares the simulation results under different PPFs without considering SF. Then, Case 2 provides a
comparison of simulation results for control schemes with and without SF. Finally, to further demonstrate the superior
performance of the PMSM under the combined action of SF and FADPPF, Case 3 provides simulation results under
different PMSM parameters.

To make the description more concise, FAD, S, A, FP, and DE are used as subscripts or superscripts to denote
simulation results based on FADPPF, SPPF [37], APPF [27], FPPPF [30], and DEPPF [38], respectively. For example,
the tracking error obtained from FADPPF-based simulation is expressed as 𝑒1−𝐹𝐴𝐷.

Case 1: A comparison of prescribed performance fuzzy-neural backstepping control schemes based on FADPPF,
SPPF, APPF, FPPPF, and DEPPF without SF is presented.

The relevant parameters of the PMSM model are 𝐿 = 2.95mH, 𝐽 = 0.04457kg.m2, 𝑏 = 0.005N.ms∕rad,
𝑛𝑝 = 5, 𝜓 = 91.45mWb, 𝑅0 = 0.59Ω. The voltage of the DC-link is 𝑈𝑑𝑐 = 200V. �̄�𝑞 and �̄�𝑑 are determined as
�̄�𝑞 = 0.99𝑈𝑑𝑐∕

√

3V and �̄�𝑑 = 0.1𝑈𝑑𝑐∕
√

3V. The reference trajectory of 𝜔 is 𝜔𝑟 = 10 sin (2𝑡) − 6 cos (2𝑡) + 25.
In FNN, the centers and widths of MFs for 𝜔, 𝑖𝑞 , 𝑖𝑑 , 𝑒1, 𝑒2 and 𝑒3 are [−80 ∶ 1.6 ∶ 80], [−13 ∶ 0.26 ∶ 13],

[−5 ∶ 0.1 ∶ 5], [−160 ∶ 3.2 ∶ 160], [−26 ∶ 0.52 ∶ 26], [−10 ∶ 0.2 ∶ 10], 0.6, 0.1, 0.03, 1, 0.2 and 0.06, respectively.
The initial values of 𝜔, 𝑖𝑞 , 𝑖𝑑 and FNN weights 𝜛𝑗 , 𝑗 = 1, 2, 3 are all 0. The parameters of the controller are 𝑐𝑗 = 2,
𝜐𝑗 = 6 and 𝑏𝑗 = 0.001, 𝑗 = 1, 2, 3 . The parameters of FADPPF are designed as 𝜆0 = 25, 𝜆∞ = 0.6, �̄�∞ = 0.3,
𝜆∞ = 0.5, 𝑡0 = 0.5, 𝑎1 = 2, 𝑎2 = 1, 𝑎3 = 1 , 𝜆1 = 1, 𝜆2 = 10, 𝜆3 = 0.9, 𝜆4 = 1.5 and 𝜆5 = 0.4.

The APPF in [27] is 𝜇1 =
(

𝜇1,0 − 𝜇1,∞
)

exp
(

−𝑎1𝑡
)

+ 𝜇1,∞, and −𝛿1,min𝜇1 < 𝑒1 (𝑡) < 𝛿1,max𝜇1. The parameters of
APPF are selected as 𝜇1,0 = 25, 𝜇1,∞ = 0.6, 𝑎1 = 15, 𝛿1,min = 1 and 𝛿1,max = 0.5.

The FPPPF in [30] is 𝜌 (𝑡) =
(

𝜌𝑎10 − 𝑎1𝑎2𝑡
)

1
𝑎1 + 𝜌∞ if 0 ⩽ 𝑡 < 𝑡𝑓 , and 𝜌 (𝑡) = 𝜌∞ otherwise, −𝜌 (𝑡) < 𝑒1 (𝑡) < 𝜌 (𝑡).

The parameters of FPPPF are selected as 𝜌0 = 24.4, 𝜌∞ = 0.6, 𝑡𝑓 = 0.5, 𝑎1 = 0.4 and 𝑎2 = 𝜌𝑎10 ∕
(

𝑎1𝑡𝑓
)

.
The SPPF from [37] is 𝑒𝑙 = 𝜌𝑡𝑓 sign

(

𝑒1 (0)
)

+
[

𝛿𝑙 − sign
(

𝑒1 (0)
)]

𝜌𝑡 and 𝑒𝑢 = −𝜌𝑡𝑓 sign
(

𝑒1 (0)
)

+
[

𝛿𝑢 + sign
(

𝑒1 (0)
)]

𝜌𝑡,
wherein 𝜌𝑡 =

(

𝜌0 − 𝜌𝑡𝑓
)

exp (−𝜛) + 𝜌𝑡𝑓 if 0 ⩽ 𝑡 ⩽ 𝑡𝑓 , and 𝜌𝑡 = 𝜌𝑡𝑓 otherwise, wherein 𝜛 = 𝑘𝑡𝑓 𝑡∕
(

𝑡𝑓 − 𝑡
)

.
And −𝐸𝑙 < 𝑒1 (𝑡) < 𝐸𝑢, wherein 𝐸𝑙 = 𝑒𝑙 + 𝛾𝑙 and 𝐸𝑢 = 𝑒𝑢 + 𝛾𝑢. The parameters of SPPF are selected as
𝜌0 = 25, 𝜌𝑡𝑓 = 0.6, 𝑘 = 500, 𝑡𝑓 = 0.5, �̄�𝑙 = 5, �̄�𝑢 = 5, 𝛿𝑙 = 1 and 𝛿𝑢 = 0.5. The transformation errors
𝑧1, 𝑧2 and 𝑧3 in [22] include auxiliary system state variables, which are different from 𝑒𝑝, 𝑒2 and 𝑒3 in this paper.
𝑣𝑞−𝐹𝑇 and 𝑣𝑑−𝐹𝑇 based on SPPF are: 𝑣𝑞−𝐹𝑇 = −�̂�𝑇2−𝐹𝑇 𝛾2 − 𝑐2𝑧2 − 𝑧2∕2 − sign

(

𝜂2,𝑢 − 𝜂2,𝑙
)

𝛤2
(

𝜂2,𝑢 − 𝜂2,𝑙
)

∕𝛤 𝑡,
𝑣𝑑−𝐹𝑇 = −�̂�𝑇3−𝐹𝑇 𝛾3 − 𝑐3𝑧3 − 𝑧3∕2 − sign

(

𝜂3,𝑢 − 𝜂3,𝑙
)

𝛤3
(

𝜂3,𝑢 − 𝜂3,𝑙
)

∕𝛤 𝑡, wherein 𝜂𝑗,𝑢 and 𝜂𝑗,𝑙 (𝑗 = 1, 2, 3) are the
state variables of the auxiliary system. The parameters of the auxiliary system are chosen as 𝛤1 = 1, 𝛤2 = 5 and
𝛤2 = 5.

The DEPPF in [38] is 𝜇 (𝑡) = 𝜇0−𝜇∞
(

1−𝑒−𝑎1𝑇
)2

(

𝑒−𝑎1𝑡 − 𝑒−𝑎1𝑡𝑓
)2 + 𝜇∞ if 𝑡 ⩽ 𝑡𝑓 , and 𝜇 (𝑡) = 𝜇∞ otherwise. The auxiliary

system for dynamic adjustment of DEPPF is �̇� (𝑡) = −𝑎2𝑥 (𝑡)+ |𝑒 (𝑡)| if 𝛿 < Λ, and �̇� (𝑡) = −𝑎2𝑥 (𝑡) otherwise, wherein
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𝑥 (0) = 0, 𝛿 = min {|𝜇 (𝑡) − 𝑒 (𝑡)| , |𝜇 (𝑡) + 𝑒 (𝑡)|}, and Λ = 𝜇(𝑡)
𝑎3

. Then −𝜇 (𝑡) − 𝑥 (𝑡) < 𝑒1 (𝑡) < 𝜇 (𝑡) + 𝑥 (𝑡). The
parameters of FPPPF are selected as 𝜇0 = 25, 𝜇∞ = 0.6, 𝑡𝑓 = 0.5, 𝑎1 = 1.5, 𝑎2 = 20 and 𝑎3 = 1.1.
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Fig. 4. The load torque trajectory, tracking trajectories, tracking errors and corresponding FADPPFs of Case 1.
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Fig. 5. The PPF self-adjustment amplitude.

Fig. 4 shows the load torque 𝑇𝐿 (𝑡), tracking trajectories, tracking errors and corresponding PPFs. Fig. 5 is the
self-adjusting amplitudes of FADPPF and SPPF. Fig. 6 shows the control signals. Although the five basic constraint
functions are set with identical initial and asymptotic values, there is a significant difference in the values of the
five PPFs at 𝑡 = 0s, and the slopes of each PPF as time progresses are different. Therefore, 𝜔𝐹𝐴𝐷, 𝜔𝑆 , 𝜔𝐴, 𝜔𝐹𝑃
and 𝜔𝐷𝐸 have different transient behaviors in [0.5, 5) s. As shown in Fig. 4, the APPF, FPPPF, and DEPPF exhibit
larger overshoot tolerance, and significant error overshoot occurs under their constraints. The overshoot of 𝜔𝐹𝐴𝐷 is
approximately 0.03 rad/s, 𝜔𝑆 shows negligible overshoot ( 0 rad/s), while 𝜔𝐴, 𝜔𝐹𝑃 , and 𝜔𝐷𝐸 demonstrate overshoots
of approximately 1 rad/s, 2.6 rad/s, and 2.45 rad/s, respectively. The overshoot of 𝜔𝐴 is about 33 times that under
FADPPF-based control. The overshoot of 𝜔𝐹𝑃 is about 86 times that under FADPPF-based control. The overshoot of
𝜔𝐷𝐸 is about 81 times that under FADPPF-based control.

X. Hu et al. Page 13 of 19



-150

-100

-50

0

50

100

150

u q
 (

V
)

FAD
S
A
FP
DE

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-12

-10

-8

-6

-4

-2

0

u d
 (

V
)

FAD
S
A
FP
DE

0 0.01 0.02 0.03 0.04
-50

0
50

100

8 8.005

-50
0

50
100

5 5.005 5.01
-50

0
50

100

0 0.02 0.04

-10

-5

0

7.9 8 8.1

-6
-4
-2
0

4.99 5 5.01 5.02

-3

-2

-1

0

Fig. 6. The control signal trajectories of Case 1.

During [0.03, 0.3] s, the trajectory of 𝑒𝑆1 closely follows the upper envelope of SPPF, and the design of the upper
envelope of SPPF forces a decrease in the transient performance of the system. 𝜔𝑆 has the longest rise time under
SPPF-based control, which is approximately 9 times that under FADPPF-based control and 19 times that under
APPF-based control. In 𝑡 ∈ [0.5, 5) s, the tracking errors under different PPF controls all meet the constraints, and
𝑒1 ∈ [−0.6, 0.3] rad∕s.

𝑇𝐿 (𝑡) undergoes a step change at 𝑡 = 5s. In the FADPPF-based simulation, due to 0 < 𝜆1𝑝 (𝑡) ∕𝑒 (𝑡) ⩽ 1, the
self-adjustment of �̄� (𝑡) is triggered. The lower envelope of FADPPF undergoes self adjustment, while the upper
envelope remains unchanged. In 𝑡 ∈ [5, 6.5) s, max

(

|

|

|

𝑒𝐹𝐴𝐷1 (𝑡)||
|

)

= 0.583113rad∕s and max
(

|

|

𝑝Δ1 (𝑡)||
)

= 0.004677 at
𝑡 = 5.00068s. The asymmetry of FADPPF is not only reflected in the basic constraint, but also in the self-adjusting
additional constraint. When using the SPPF, max

(

|

|

|

𝑒𝑆1 (𝑡)||
|

)

= 0.583877rad∕s at 𝑡 = 5.00062s. At this point, the
self-adjustment amplitude of SPPF is almost 0. As shown in Fig. 5, the maximum self-adjustment amplitude of the
upper envelope is 0.0181, which occurs at 𝑡 = 5.09098s, and the maximum self-adjustment amplitude of the lower
envelope is 0.00792, which occurs at 𝑡 = 5.39076s, exposing the problem of lagged self-adjustment and reduced the
convergence speed of tracking error.

At 𝑡 = 8s, 𝑇𝐿 (𝑡) changes from 0 to 3. Due to the lack of self-adjustment capability in the APPF and FPPPF, 𝑒𝐴1 (𝑡)
asymptotically approaches the APPF boundary at 𝑡 = 8.00019𝑠, triggering system instability, while 𝑒𝐹𝑃1 (𝑡) converges
infinitely close to the FPPPF constraint at 𝑡 = 8.0002𝑠, also leading to instability. For SPPF, the delayed self-adjustment
causes 𝑒𝑆1 (𝑡) to exceed the range limited by SPPF at 𝑡 = 8.00019s, resulting in system instability. As indicated by Fig.
7, under the self-adjustment mechanism of DEPPF, the dynamic additional term of DEPPF is always greater than
0 throughout the simulation. The constraint envelope is relaxed even without the need for dynamic adjustment. But
the envelope self-adjustment exhibits a delayed response to the load step change from 0 to 3. Consequently, due to
the lagged self-adjustment of DEPPF, 𝑒𝐷𝐸1 (𝑡) violates the DEPPF-restricted range at 𝑡 = 8.0002s, inducing control
singularity. In the simulation based on FADPPF, when 𝑡 ∈ [8, 10] s, the step load causes max

(

|

|

𝑒1−𝐹𝐴𝐷 (𝑡)|
|

)

=
0.64734rad∕s at 𝑡 = 8.00076s. The self-adjustment of 𝑝 (𝑡) is triggered, max

(

|

|

𝑝Δ1 (𝑡)||
)

= 0.0690698 occurs at
𝑡 = 8.00076s. 𝑒1−𝐹𝐴𝐷 (𝑡) consistently meets the constraints, and its transient and steady-state performance meets
the expected requirements.
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Case 2: The control schemes with and without SF are compared. The parameters of SF are 𝑘1 = 0.2 and 𝑘2 = 2.
Other simulation parameters are the same as in Case 1.

Fig. 7. The tracking errors and corresponding FADPPFs of Case 2.

Fig. 8. The control signal trajectories of Case 2.

Fig. 7 shows the tracking errors and the corresponding FADPPFs with and without SF. Fig. 8 shows the control
signals trajectories of Case 2. From Fig. 7, it is evident that the FADPPF exhibits a semi-funnel shape with the opening
facing downwards, and the slope of the opening will self-adjust according to 𝑒1 (𝑡). Within the specified time 𝑡0 = 0.5s,
𝑒1 (𝑡) reaches the expected steady-state requirement. At 𝑡 = 5s, 𝑡 = 6.5s and 𝑡 = 8s, the load undergoes sudden changes.
In the control scheme without SF, the self-adjustments of 𝑝 (𝑡) are triggered at 𝑡 = 5s and 𝑡 = 8s. Based on 𝑝Δ1 (𝑡),
the FADPPF of control scheme without SF self-adjusts quickly, exhibiting non-monotonic characteristics. Under the
control scheme containing SF, the tracking error converges to an interval smaller than the expected steady-state error
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interval, so self-adjustment is not triggered when 𝑇𝐿 (𝑡) suddenly changes. In both cases, the tracking errors are kept
within the constraints formed by FADPPF. However, under the control scheme containing SF, the PMSM system has
smaller overshoot, and exhibits faster error convergence, smaller steady-state error and stronger disturbance rejection.

Case 3: Case 3 presents a simulation comparison of the PMSM under different parameters. According to [40] and
[41], considering the influence of temperature on 𝑅0, 𝜓 and 𝐿, the following three groups of motor parameters are
selected for comparison: the first group, 𝑅0 = 0.5659Ω, 𝜓 = 92.6mWb and 𝐿 = 2.945mH. Group 2, 𝑅0 = 0.59Ω,
𝜓 = 91.45mWb and 𝐿 = 2.95mH. The third group, 𝑅0 = 0.7026Ω, 𝜓 = 84.3mWb and 𝐿 = 2.97mH. To further
verify the switching mechanism and self adjustment mechanism of FADPPF, the reference trajectory in Case 3 is set
as 𝜔𝑟 = −10 sin (2𝑡) − 19, and the parameters of FADPPF are: 𝜆0 = 20, 𝜆∞ = 0.5, 𝑎3 = 1.3, 𝜆4 = 1.3 and 𝜆5 = 1.5.
The other simulation parameters are the same as in Case 2.

Fig. 9. The load torque trajectory and tracking trajectories of Case 3.

Fig. 9 shows 𝑇𝐿 (𝑡) and tracking trajectories. Fig. 10 shows the tracking error and corresponding FADPPF. Among
them, 𝐺𝑖, 𝑖 = 1, 2, 3 in the legend indicate that the result is based on the 𝑖th motor parameters, while SF in the legend
indicates that the result is based on the controller containing the SF. When 𝑒1 (0) > 0, FADPPF is a half-funnel shape
with an upward opening, the upper and lower constraint envelopes are asymmetrical, as shown in Fig. 10. Different
𝑒1 (0) results in different values of 𝑎0 in FADPPF, so the opening direction of FADPPF in Case 3 is different from that
in Case 1-2. And 0 < 𝜆3𝑝 (0) ∕𝑒 (0) ⩽ 1, the self-adjustment of �̄� (𝑡) is triggered at 𝑡 = 0s, 𝑝Δ1 (0) > 0. Thus the starting
point of �̄� (𝑡) of all FADPPFs in Case 3 is greater than the designed 𝜆0 = 20 in Fig. 10. At the same time, the slopes of
each �̄� (𝑡) are time-varying and different from each other. This is because the real-time slope of FADPPF is related to
the tracking error, and the greater 𝑒1 (𝑡), the greater the slope when 𝑡 ⩽ 𝑡0. Therefore, even if the design parameters of
FADPPF are the same, the slope of each �̄� (𝑡) is different for different operating conditions, and the transient constraint
envelope can be adaptively adjusted according to the actual working scenario. This proves its superior applicability in
practical engineering implementation.

The load torque 𝑇𝐿 (𝑡) undergoes step change at 𝑡 = 0.3s, 𝑡 = 1.3s and 𝑡 = 3s, the 𝑝Δ1 (𝑡) or 𝑝Δ2 (𝑡) of
FADPPF quickly self-adjusts in the three simulations without SF. Even if the parameters of PMSM model are different,
𝑒1 (𝑡) is constantly within the bounds formed by FADPPF, and its transient response and steady-state error meet the
predetermined requirements. When using SF and FADPPF, tracking errors converges to a smaller range. For example,
in 𝑡 ∈ [4, 5] s, under the joint action of SF and PPF, the tracking errors of three groups of PMSM model parameters
are all within [−0.02, 0] rad∕s, while in the simulation without SF, the tracking errors are within [−0.3,−0.08] rad∕s.
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Fig. 10. The tracking errors and corresponding FADPPFs of Case 3.

6. Conclusion
A new FADPPF is proposed to address the issues of control singularity and system instability in existing prescribed

performance control strategies. Based on the FADPPF, a dynamic prescribed performance fuzzy-neural backstepping
control approach is proposed for PMSM. The simulation results show that FADPPF can perform self-adjustment
quickly based on the real-time tracking error, effectively avoiding control singularity and system instability. In addition,
in the case of constrained inputs, time-varying model parameters, and step load, the closed-loop PMSM system has
superior transient and steady state performance. Future work will focus on integrating PPC with energy-optimal control
for electric vehicles to ensure transient performance of PMSM-driven electric vehicles while minimizing energy
consumption, thereby harmonizing energy efficiency, thermal management, and dynamic responsiveness across diverse
driving cycles.
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