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Abstract: 
This paper provides conditions for H∞ control of 

discrete-time nonlinear descriptor models. The 
nonlinear model is represented by a Takagi-Sugeno one. 
Conditions are given in terms of linear matrix 
inequalities. Relaxed conditions are obtained via 
delayed Lyapunov functions and delayed control laws. 
Such an approach allows adding extra decision variables 
without increasing the number of LMI conditions. The 
benefits of the proposed approach are verified via a 
numerical example.  
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1 Introduction 
 
The interest in Takagi-Sugeno (TS) models [1]  
has increased since the introduction of the 
sector nonlinearity approach [2]. This 
approach allows obtaining an exact TS 
representation of a nonlinear system; therefore 
the designed controller/observer applies 
directly to the nonlinear plant. The TS model 
is a collection of linear models blended 
together by nonlinear membership functions 
(MFs).  
Due to their structure, TS models are studied 
via the direct Lyapunov method; conditions 
are usually given in terms of linear matrix 
inequalities (LMIs). These LMIs can be 
efficiently solved via convex optimization 
techniques [3], [4]. 
In the continuous-time case, the non-quadratic 
(NQ) approach is difficult to deal with. On the 
other hand, in the discrete-time case, important 

improvements using the NQ approach have 
been achieved [5]–[8]; in recent years the 
inclusion of delays in the controller/observer 
design has been used to relax LMI conditions 
without increasing the computational cost [9], 
[10]. 
TS descriptor models have been introduced in 
[11] to deal with nonlinear descriptor models 
which naturally appear in mechanical systems 
[12]. A TS descriptor model separates the 
nonlinear terms in both sides of the equation. 
This fact helps to reduce the computational 
burden since the number of local models is 

2 pr =  , where p  is the number of nonlinear 
terms [13]. 
Works related to TS descriptor models in the 
continuous-time case include [13]–[15], while 
for the discrete-time case can be found in [16], 
[17]. 
This work aims to design controllers for 
disturbed TS descriptor models in discrete-
time. It is based on the latest results in the 
literature and the well-known Finsler’s Lemma 
[18]. Via Finsler’s Lemma it is possible to 
separate the Lyapunov matrix from the 
controller gains, as well as handling the 
descriptor structure. 
The paper is organized as follows: Section 2 
introduces the problem to be studied, some 
useful shorthand notations and a motivating 
example; Section 3 provides the main results 
for disturbance attenuation; Section 4 
illustrates the advantages of the approaches via 
a numerical example.  



2 Notations and problem statement 
 
Consider the following nonlinear discrete-time 
model in the descriptor form [12]  
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where nx∈\  is the state vector, mu∈\  is the 
control input vector, oy∈\  is the output 
vector, and κ  is the current sample. Matrices 
( )A x , ( )B x , ( )C x , and ( )E x  are assumed 

to be smooth in a compact set of the state 
space Ω . Moreover matrix ( )E x  is assumed 

to be nonsingular for all ( )x κ  in the compact 
set Ω .  
Using the sector nonlinearity approach [19], in 
case of nonlinear descriptors, the p  nonlinear 
terms in right hand-side of (1) are grouped in 

( )( )ih z κ , { }1, , 2 pi∈ … , thus generating 

2 pr =  linear models. In a similar way, the ep  
nonlinearities in the left hand-side of (1), i.e., 
the nonlinearities in ( )E x , are captured in 

( )( )kv z κ , { }1, ,2 epk∈ … ; they generate 

2 ep
er =  linear models.  

The MFs hold the convex-sum property, i.e.,  
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Moreover, the MFs depend on the premise 
vector ( )z κ , which is assumed to be known. 
Notation: The following shorthand notation is 
employed to represent convex sums of matrix 
expressions: 
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An asterisk ( )∗  is used in matrix expressions 
to denote the transpose of the symmetric 
element; for in-line expressions it denotes the 
transpose of the terms on its left side. 
Arguments will be omitted when their 
meaning is obvious. In what follows, xκ +  and 
xκ  stand for ( )1x κ +  and ( )x κ  respectively.  
Based on the definitions above, the TS 
descriptor model  
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exactly represents the nonlinear one (1); where 
matrices iA  , iB , iC  { }1, ,i r∈ …  represent the 
i-th linear right-hand side model (2) and kE , 

{ }1, , ek r∈ …  represent the k-th linear left-hand 
side model of the TS descriptor model. Recall 
that (2) is an exact rewriting of (1). 
When dealing with TS models, the MFs must 
be dropped off in order to obtain LMI 
constraints. The following relaxation scheme 
will be employed due to its good compromise 
between effectiveness and computational 
complexity. 
Relaxation Lemma [20]: Let k

ijϒ  be matrices 

of proper dimensions. Then 0hh
vϒ <  holds if 
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for { }1, , ,i j r∈ … , { }1, , ek r∈ … . 

Finsler’s Lemma [18]: Let ,nx∈\  
T n nQ Q ×= ∈\ , and m nR ×∈\  such that 
( )rank R n< ; the following expressions are 

equivalent: 
a) 0Tx Qx < , { }: 0, 0nx x x Rx∀ ∈ ∈ ≠ =\ . 

b) : 0n m T TM Q MR R M×∃ ∈ + + <\ . 
Property 1. Let 0TX X= >  and Y  matrices 
of appropriate sizes. The following expression 
holds: 
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The following Example 1 points out the 
importance of keeping the descriptor form 
instead of computing the classical state space: 

( ) ( )x A x x B x uκ κ κ+ = + .  
Example 1. Consider the following system in 
nonlinear descriptor form (1)  with 
 

 

( ) ( )
( )

( ) ( )

( ) ( )

1

1

2

2

1.4 0.7 cos
,

0.7cos 2.3

0.9 0.6
,

1 cos 2.5

0.40.5
, .

0.51

T

x
E x

x

A x
x

B x C x
x

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

−⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

  

 
Via the sector nonlinearity approach, a TS 
descriptor models results with 2er =  and 

4r =  due to the number of nonlinearities on 
the left-hand side and on the right-hand side. 
To compute the classical TS model, it is 
necessary to calculate ( )1E x− , resulting in 

( ) ( ) ( )( )1E x A x x B xx uκ κ κ
−

+ += , with 
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This means that four different nonlinearities 
have to be considered, which results in 16r =  
local models. One can see that the number of 
LMI conditions for classical TS models can 
grow quickly and may be leading to a 
numerical intractability. ◊  
Throughout this paper, we consider a TS 
descriptor model under external disturbances, 
i.e., 
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where qw∈\  is the vector of external 
disturbances. Matrices hD  and hJ  share the 
same definition as hA . The controller design 
with disturbance attenuation is presented in the 
following section. 
 
3 Main results 
 
For controller design, the following non-PDC 
control law is used 
  
 ( ) ( )

1Hu F xκ κ
−= i i ,  (5) 

 
where ( )F i  and ( )H i  will be defined later on. 
Note that the state is available for control 
purposes.  
The TS descriptor model (4) together with the 
control law (5) writes 
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Note that the closed-loop model (6) can be 
rewritten as  
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A system performs disturbance attenuation 
with a factor 0γ >  if the following well-
known condition holds [21] 
 
 ( ) 2 0T TV x y y w wκ κ κ κ κγΔ + − <   (8) 
 

 
3.1 Non-quadratic approach 
 
In what follows, conditions for stabilization 
are given via the non-quadratic Lyapunov 
function 
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with 0hh

TP P= > , 1
h hP X− = . 

 
Theorem 1 (NQ): The TS descriptor model 
(6) is asymptotically stable with disturbance 
attenuation at least γ  if there exist matrices 

0T
h hP P= > , hvH , and hvF  such that the 

following inequality holds 
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with ( )2,2 T

v vh h h
E E PP P+ + += − −Γ + . 

Proof: The variation of the Lyapunov function 
(9) is  
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The expression ( )V xκΔ  together with 
condition (8) can be written as 
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Via Finsler’s Lemma, inequality (12)  under 
constraint (7) results in 
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where the matrix ( )2n q nM + ×∈\  can be 
arbitrarily selected. By selecting ( ) hvH H=i  
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By using the congruence property with the 
full-rank matrix ( ), ,T

hv h
diag P IH + , (14) yields 
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Applying Property 1 over the position (1,1) 
and the Schur complement it yields (10).,  
Remark 1: Note that (10) can be written in 
terms of LMI conditions via the Relaxation 
Lemma since 2γ  is not multiplied by any 
decision variable. Thus the optimal value can 
searched by minimizing 2γ . 
 



3.2 Delayed non-quadratic approach 
  
A way to obtain more relaxed results by 
augmenting the number of decision variables 
while the number of LMI constraints remains 
the same has been shown in [9]. The main idea 
is to introduce a delay in the Lyapunov 
function. This new Lyapunov function allows 
changing the structure of the controller gains. 
Therefore, two options can be taken:  
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With OP1 the new structure of the controller 
gains can include an extra MF 
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the future state is needed, thus OP1 is not 
suitable.  OP2 allows introducing 
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implementable. The following Theorem 
establishes conditions for disturbance 
attenuation with these ideas. 
 
Theorem 2 (DNQ): The TS descriptor model 
(6) is asymptotically stable and the disturbance 
attenuation is at least γ  if there exist matrices 
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with ( )2,2 T

v h h v hE PE P PΓ = +− − . 
Proof: Consider the Lyapunov function 
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The expression (17) together with condition 
(8) can be written as 
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Via Finsler’s Lemma, inequality (18)  under 
constraint (7) results in 
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Applying the Schur complement and Property 
1 over the position (1,1), it yields (16).,  
A more relaxed result can be obtained if the 
congruence property with ( ), ,T

hh v hhh
Tdiag H G I−−  

is applied to (19). This result is summarized in 
Corollary 1. 
 



Corollary 1 (DNQ): The TS descriptor model 
(6) is asymptotically stable and the disturbance 
attenuation is at least γ  if there exist matrices 
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the following inequality holds 
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Using the Property 1 on block (1,1) and twice 
the Schur complement, (22) gives the desired 
result (21), thus concluding the proof. ,  
Remark 2: In Corollary 1, the choice for 
matrix 

hhh
G −  allows obtaining extra degrees of 

freedom without increasing the number of 
LMIs to be satisfied. The number of extra free 
matrices is 3r . 
Remark 3: The classical TS model is a special 
case of the TS descriptor one when vE I= . 
Table 1 summarizes the proposed approaches 
in terms of number of decision variables, 

where n  stands for the number of states, m the 
number of inputs, r  the number of linear 
models in the right-hand side, and er  the 
number of linear models in the left-hand side.  
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4 Example 
 
The results are illustrated via the following 
numerical example.  
Example 2. Recall the nonlinear descriptor 
model in Example 1 when it is under external 
perturbations ( )w κ . Considering the compact 

set { }1 2: , 1x x xΩ ∈= ≤\ , the representation 

in the form (4) gives 2er =  and 4r =  with 
local matrices as follows 
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The MFs are defined as follows: 
( )1

1

cos 1
2
x

v =
+

, 12 1v v= − , 1 2
1 0 0h ω ω= , 

2 0
2
1

1h ω ω= , 3 1
2
0

1h ω ω= , and 4 1
2
1

1h ω ω= ; their 
corresponding weighting functions are 

( )21
0

cos 1
2
x

ω =
+

, 01
1 11ω ω= − , 2

0
2 1

2
xω +

= , and 

0
2
1

21ω ω= − .  The MFs hold the convex-sum 
property on the compact set Ω .  
Employing conditions given in this work the 
minimal value for 2γ  is calculed for 

[ ]2,0α ∈ − .  
Figure 1 shows the results for Theorem 1 (○ ), 
Theorem 2 (× ), and Corollary 1 (+ ). 
Note that for this example, the number of 
decision variables in Theorem 1 is 60, in 
Theorem 2 is 204, while for Corollary 1 is 
460. The number of linear models for the 
classical TS representation is 16r = , recall 
Example 1, thus similar conditions as in [9] 
lead to 3 4112r r+ =  LMI conditions; while 
for any of the proposed approaches the number 
of LMI is 132 . This fact shows why is 
important to keep the descriptor form and to 
construct the TS descriptor model. 
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Figure 1. 2γ  values in Example 2. 

 
 
 
 
 
 

Acknowledgements: 
This work is supported by the Ministry of Higher 

Education and Research, the National Center for 
Scientific Research, the Nord-Pas-de-Calais Region, a 
grant of the Romanian National Authority for Scientific 
Research, CNCS- UEFISCDI, project number PN-II-
RU-TE-2011-3-0043, contract number 74/05.10.2011, 
and a grant of the Technical University of Cluj-Napoca. 
The authors gratefully acknowledge the support of these 
institutions. 
 
References 
 

[1] T. Takagi and M. Sugeno, “Fuzzy identification of 
systems and its applications to modeling and 
control,” IEEE Transactions on Systems, Man and 
Cybernetics, vol. 15, no. 1, pp. 116–132, 1985. 

[2] H. Ohtake, K. Tanaka, and H. Wang, “Fuzzy 
modeling via sector nonlinearity concept,” in Joint 
9th IFSA World Congress and 20th NAFIPS 
International Conference, Vancouver, Canada, 
2001, pp. 127–132. 

[3] S. Boyd, L. El Ghaoul, E. Feron, and V. 
Balakrishnan, Linear matrix inequalities in system 
and control theory. Philadelphia, PA: Society for 
Industrial and Applied Mathematics, 1994. 

[4] C. Scherer and S. Weiland, Linear Matrix 
Inequalities in Control, Lecture Notes, Dutch 
Institute for Systems and Control. Delft University, 
The Netherlands, 2005. 

[5] T. M. Guerra and L. Vermeiren, “LMI-based 
relaxed nonquadratic stabilization conditions for 
nonlinear systems in the Takagi–Sugeno’s form,” 
Automatica, vol. 40, no. 5, pp. 823–829, 2004. 

[6] A. Kruszewski, R. Wang, and T. M. Guerra, 
“Nonquadratic stabilization conditions for a class 
of uncertain nonlinear discrete time TS fuzzy 
models: a new approach,” IEEE Transactions on 
Automatic Control, vol. 53, no. 2, pp. 606–611, 
2008. 

[7] B. Ding, “Homogeneous polynomially 
nonquadratic stabilization of discrete-time Takagi-
Sugeno systems via nonparallel distributed 
compensation law,” IEEE Transactions on Fuzzy 
Systems, vol. 18, no. 5, pp. 994–1000, 2010. 

[8] D.-H. Lee, J.-B. Park, and Y.-H. Joo, 
“Improvement on nonquadratic stabilization of 
discrete-time Takagi-Sugeno fuzzy systems: 
multiple-parameterization approach,” IEEE 
Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 
425–429, 2010. 

[9] T. M. Guerra, H. Kerkeni, J. Lauber, and L. 
Vermeiren, “An efficient Lyapunov function for 
discrete T–S models: observer design,” IEEE 
Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 
187–192, 2012. 

[10] Zs. Lendek, T. M. Guerra, and J. Lauber, 
“Construction of extended Lyapunov functions and 
control laws for discrete-time TS systems,” in 2012 



IEEE International Conference on Fuzzy Systems 
(FUZZ-IEEE), Brisbane, Australia, 2012, pp. 1–6. 

[11] T. Taniguchi, K. Tanaka, K. Yamafuji, and H. O. 
Wang, “Fuzzy descriptor systems: stability analysis 
and design via LMIs,” in Proceedings of the 
American Control Conference, California, USA, 
1999, vol. 3, pp. 1827–1831. 

[12] D. Luenberger, “Dynamic equations in descriptor 
form,” IEEE Transactions on Automatic Control, 
vol. 22, no. 3, pp. 312–321, 1977. 

[13] T. Taniguchi, K. Tanaka, and H. O. Wang, “Fuzzy 
descriptor systems and nonlinear model following 
control,” IEEE Transactions on Fuzzy Systems, vol. 
8, no. 4, pp. 442–452, 2000. 

[14] K. Guelton, S. Delprat, and T. M. Guerra, “An 
alternative to inverse dynamics joint torques 
estimation in human stance based on a Takagi–
Sugeno unknown-inputs observer in the descriptor 
form,” Control Engineering Practice, vol. 16, no. 
12, pp. 1414–1426, 2008. 

[15] V. Estrada-Manzo, T. M. Guerra, Zs. Lendek, and 
M. Bernal, “Improvements on non-quadratic 
stabilization of continuous-time Takagi-Sugeno 
descriptor models,” in 2013 IEEE International 
Conference on Fuzzy Systems, Hyderabad, India, 
2013, pp. 1–6. 

[16] Z. Wang, Y. Shen, X. Zhang, and Q. Wang, 
“Observer design for discrete-time descriptor 
systems: an LMI approach,” Systems & Control 
Letters, vol. 61, no. 6, pp. 683–687, 2012. 

[17] M. Chadli and M. Darouach, “Novel bounded real 
lemma for discrete-time descriptor systems: 
Application to control design,” Automatica, vol. 
48, no. 2, pp. 449–453, Feb. 2012. 

[18] M. de Oliveira and R. Skelton, “Stability tests for 
constrained linear systems,” Perspectives in Robust 
Control, vol. 268, pp. 241–257, 2001. 

[19] K. Tanaka and H. O. Wang, Fuzzy Control Systems 
Design and Analysis: a Linear Matrix Inequality 
Approach. New York: John Wiley & Sons, Inc., 
2001. 

[20] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. 
Yamamoto, “Parameterized linear matrix inequality 
techniques in fuzzy control system design,” IEEE 
Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 
324–332, 2001. 

[21] K. Tanaka, T. Taniguchi, and H. O. Wang, “Model-
based fuzzy control of TORA system: fuzzy 
regulator and fuzzy observer design via LMIs that 
represent decay rate, disturbance rejection, 
robustness, optimality” in 1998 IEEE International 
Conference on Fuzzy Systems, Anchorage, Alaska, 
1998, pp. 313–318. 

 
 


