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Abstract—This paper presents a discrete-time Takagi-Sugeno
fuzzy observer design approach for a class of nonlinear systems.
Instead of including all the nonlinear terms in the membership
functions, some of them are kept as nonlinear consequents,
and they need to fulfill a globally Lipschitz condition. The
form considered permits nonlinear consequents that depend on
nonscalar inputs. The design conditions are defined in terms
of linear matrix inequalities, and they are less restrictive than
previous conditions from the literature. Two numerical examples
highlight the advantages obtained.

I. INTRODUCTION

For systems where direct measurements of relevant state
variables are not physically possible or the measurement
sensors are too expensive, estimation is used. This research
field has started with the seminal works [1] and [2], and has
been explored in depth for both linear and nonlinear systems.

An influential nonlinear observer design approach is pre-
sented in [3], where a slope-bound condition is used to
handle the nonlinearities, assuming that each nonlinearity is
a function of a given linear combination of the states. A
generalization of this approach is given in [4], where less
conservative design conditions are developed. Furthermore, in
[5], the restriction that the nonlinearities must be a function
of the same linear combination of the states is removed. They
define a more general form of the nonlinearities that may
depend on nonlinear combinations of the states, for example,
nonlinearities like cos(x1x2). Several extensions of this work
can be found, see e.g. [6], [7], [8], [9], [10], [11].

In particular, the discrete-time observer design problem
when the dynamics of the system contain such nonlinearities is
presented in [11], which is the starting point of our paper. From
the structural point of view, we consider a similar model to
the one in [11]. There, the models used are Linear Parameter
Varying (LPV), which are in direct analogy to the Takagi-
Sugeno (TS) fuzzy models that we consider.

Specifically, we present in this paper nonlinear observer
design approaches for a class of nonlinear systems represented
as TS models with nonscalar-input nonlinear consequents. We
provide the following improvements compared to the results
in [11].

First, we decouple the direct dependency of the observer
gains on the Lyapunov function by adding an extra degree of
freedom with a non-symmetric fuzzy matrix, Qz . Second, to
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further relax the design conditions, we consider a fuzzy Lya-
punov function instead of a quadratic one. Finally, in [11] the
design conditions in the main theorem are presented as bilinear
matrix inequalities (BMIs). There, two options are presented
to obtain sufficient LMI conditions. In this paper, next to the
two options of [11], we propose an alternative approach to
obtain LMIs. The design conditions in this approach are in
certain cases less restrictive than in the other two approaches.

On the other hand, there are also related works in the
TS fuzzy literature, see e.g. [12], [13], [14], [15], [16]. For
example, in [12] the following Lipschitz condition is used
for observer design: ‖φi(x(k)) − φi(x̂(k))‖ ≤ θi‖Ri(x(k) −
x̂(k))‖. The above inequality uses the norm of the nonlinearity,
and an upper bound is defined for this norm, while the
present results are based on the mean-value theorem and are
less restrictive. Moreover, our approach handles each state
dependency separately for every nonlinearity, and for each
such state dependency a different upper bound is defined,
which adds flexibility to the design conditions. In [14] the
nonlinear consequents can handle only scalar inputs, while
the present work can tackle multiple inputs in the nonlinear
consequents.

In the sequel, following some notations, the TS fuzzy
system with nonlinear consequents and the estimation problem
are introduced in Section II. Section III presents the main
theoretical results. To highlight the novelty of the paper
two numerical examples are provided in Section IV. Finally,
conclusions and future directions are presented in Section V.

Notations. Let F = FT ∈ Rn×n be a real symmetric
matrix; F > 0 and F < 0 mean that F is positive definite and
negative definite, respectively. I denotes the identity matrix
and 0 the zero matrix of appropriate dimensions. The symbol
∗ in a matrix indicates a transposed quantity in the symmetric

position, for instance
(
P ∗
A P

)
=

(
P AT

A P

)
, A + ∗ =

A+AT , and AP ∗ = APAT . The notation bdiag(f1, ..., fm),
where fi ∈ Rni for all i = 1, ...,m, stands for the diagonal
matrix, whose diagonal components are f1, ..., fn matrices.
The set Co(x, y) = {λx+ (1−λ)y, 0 ≤ λ ≤ 1} is the convex
hull of {x, y}. The notation en(i) ∈ Rn refers to a column
vector, which is 0 in every point except the i-th location:

en(i) = [0 ... 0

i−th︷︸︸︷
1 0 ... 0]T︸ ︷︷ ︸

n elements



II. PRELIMINARIES AND PROBLEM STATEMENT

The classic discrete-time TS fuzzy model is a convex
combination of linear models, having the form:

x(k + 1) =

s∑
l=1

hl(z(k))(Alx(k) +Blu(k))

y(k) =

s∑
l=1

hl(z(k))Clx(k),

(1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the
control input, y(k) ∈ Rny is the measured output vector, s is
the number of rules, z(k) ∈ Rnz is the premise vector, and
hl, l = 1, ..., s are nonlinear functions with the property

hl ∈ [0, 1], l = 1, ..., s,

s∑
l=1

hl(z) = 1. (2)

These nonlinear functions are called the membership func-
tions. Matrices Al, Bl, and Cl represent the l-th local model.
Throughout this paper, the following shorthand notations are
used to represent convex sums of matrix expressions:

Fz =

s∑
l=1

hl(z(k))Fl, Fz+ =

s∑
l=1

hl(z(k + 1))Fl. (3)

Based on this notation, (1) can be rewritten as

x(k + 1) =Azx(k) +Bzu(k)

y(k) =Czx(k).
(4)

A. Lemmas and properties

In order to develop our results we will use the following
properties and lemmas.

Property 1 ([17]): Let T and R be matrices of appropriate
dimensions and ranks, with R = RT > 0. Then
−TTR−1T ≤ −T − TT +R.
Property 2 ([17]): (Schur complement). Let M = MT =[
M11 M12

MT
12 M22

]
, with M11 and M22 square matrices of appro-

priate dimensions. Then:

M < 0⇔

{
M22 < 0

M11 −M12M
−1
22 M

T
12 < 0

(5)

Lemma 1 ([17]): (Congruence) Given matrix P = PT and
a full column rank matrix Q, it holds that
P > 0 ⇒ QPQT > 0.

Estimation and control problems are often defined as triple-
sum negativity problems having the form

Fzzz+ =

s∑
l1=1

s∑
l2=1

s∑
l3=1

hl1(z)hl2(z)hl3(z+)Fl1l2l3 < 0, (6)

with symmetric matrices Fl1l2l3 and nonlinear functions hl
satisfying the convex sum property in (2).

Lemma 2 ([18]): Equation (6) is satisfied if the following
conditions hold

Fl1l1l3 <0

2

s− 1
Fl1l1l3 + Fl1l2l3 + Fl2l1l3 <0,

for all l1, l2, l3 = 1, ..., s, l1 6= l2.
A useful inequality was presented in [8], which provides a
powerful condition for the LMI problem.

Lemma 3 ([8]): Let X and Y be two given matrices of
appropriate dimensions. Then, for any symmetric positive
definite matrix S of appropriate dimension, the following
inequality holds:

XTY + Y TX ≤ 1

2

(
X + SY

)T
S−1

(
X + SY

)
. (7)

We also use a slightly different form of (7):

XTY + Y TX ≤ 1

2

(
S−1X + Y

)T
S
(
S−1X + Y

)
. (8)

For globally Lipschitz functions we use the following lemma.
Lemma 4 ([11]): Let φ : Rn → Rq be a differentiable

function on Rn. Then the following items are equivalent:

• φ is globally Lipschitz
• there exist finite scalar constants aij and bij , so that for

all v, r ∈ Rn there exist ζi ∈ Co(v, r), ζi 6= v, ζi 6= r
and functions ψij : Rn → R satisfying the following:

φ(v)− φ(r) =

q∑
i=1

n∑
j=1

ψij(ζi)Hij(v − r)

aij ≤ ψij(ζi) ≤ bij

ψij =
∂φi
∂vj

(ζi), Hij = eq(i) en(j)T ,

where vj refers to the j-th element in the v vector, and en(i) =

[0 ... 0

i−th︷︸︸︷
1 0 ... 0]T︸ ︷︷ ︸

n elements

, eq(j) = [0 ... 0

j−th︷︸︸︷
1 0 ... 0]T︸ ︷︷ ︸

q elements

.

B. Problem statement

The model considered has the following structure:

x(k + 1) =Azx(k) +Gγ(x(k)) + g(y(k), u(k)) + Ew(k)

y(k) =Czx(k) +Dw(k),
(9)

where Az and Cz have the same meaning as in (1). The
disturbance term is denoted with w(k) ∈ Rnw , with E and D
the corresponding matrices. The vector g(y(k), u(k)) ∈ Rnx

contains the terms that depend on the input and the output.
It is assumed that the premise vector z(k) depends only on

measured states and inputs. The nonlinear terms that depend
on unmeasured states are handled by the nonlinear conse-
quents. The quantity γ(x(k)) ∈ Rm contains the nonlinear
consequents. It is an m-dimensional column vector, and the
following can be written:

Gγ(x(k)) =

m∑
i=1

Giγi(

νi︷ ︸︸ ︷
Hix(k)), (10)

where γi(·) is the i-th nonlinear function from the γ(·) vector,
and Gi denotes the i-th column of G. Moreover, Hi ∈ Rni×nx ,
where ni denotes the number of inputs of the i-th nonlinearity,



and νi = Hix(k). The observer we propose has the following
structure:

x̂(k + 1) =Azx̂(k) +

m∑
i=1

Giγi(ν̂i) + g(y(k), u(k))

+Q−1z Lz(y(k)− Czx̂(k)),

ν̂i=Hix̂(k)+Kiz(y(k)−Czx̂(k), Lz=

s∑
l=1

hl(z(k))Ll,

Qz =

s∑
l=1

hl(z(k))Ql, Kiz =

s∑
l=1

hl(z(k))Kil.

(11)
An extra degree of freedom is added via the term Qz . It is
assumed that γ(·) is globally Lipschitz. Based on Lemma 4
the following can be written:

G
(
γ(x(k))− γ(x̂(k))

)
=

m∑
i=1

ni∑
j=1

Φij(ζi)Hij(νi − ν̂i)

Hij = Gieni
(j)T , Φij(ζi) =

∂γi
∂νij

(ζi)

aij ≤ Φij(ζi) ≤ bij ,

(12)

where νij denotes the j-th element from the vector νi. Note
that in (12) the G matrix is included in Hij , so a simpler form
is obtained. The model defined in (9) can be reformulated so
that aij = 0, for all i = 1, ...,m, j = 1, ..., ni. For more
details on these modifications we refer the reader to [3], [7].
In what follows we denote: Φij := Φij(ζi) and we consider
aij = 0, for all i = 1, ...,m, j = 1, ..., ni. We denote the error
with e(k) := x(k)− x̂(k), and based on (9)-(11) we have the
following error dynamics:

e(k+1)=Azx(k)+Gγ(x(k))+g(y(k), u(k))+Ew(k)

−Azx̂(k)−Gγ(x̂(k))− g(y(k), u(k))

−Q−1z Lz(y(k)− Czx̂(k))

=(Az −Q−1z LzCz)e(k)+G
(
γ(x(k))− γ(x̂(k))

)
+ (E −Q−1z LzD)w(k).

(13)
Using (12), we can rewrite

G
(
γ(x(k))−γ(x̂(k))

)
=

m∑
i=1

ni∑
j=1

ΦijHij(νi−ν̂i)

=

m∑
i=1

ni∑
j=1

ΦijHij
(

(Hi −KizCz)e(k)−KizDw(k)
)
.

This leads to

e(k + 1) =

(
AL +

m∑
i=1

ni∑
j=1

ΦijHijHKi

)
e(k)

+

(
EL +

m∑
i=1

ni∑
j=1

ΦijHijDKi

)
w(k),

(14)

where

AL =Az −Q−1z LzCz, HKi
= Hi −KizCz,

EL =E −Q−1z LzD, DKi
= KizD.

(15)

We consider the following fuzzy Lyapunov function

V (e(k)) := e(k)TPze(k), (16)

for which the difference across time steps is:

∆V := e(k + 1)TPz+e(k + 1)− e(k)TPze(k). (17)

We add an H∞ performance signal: c(k) = Je(k), µ > 0,
and formulate the following criterion:

Wk := ∆V + ‖c(k)‖2 − µ‖w(k)‖2 ≤ 0. (18)

Now we are ready to present the main results of this paper.

III. MAIN RESULTS

Theorem 1 presents the improvements we provide on Theo-
rem 1 of [11]. Afterwards, Corollaries 1 and 2 give sufficient
LMI conditions to satisfy Theorem 1 following the lines of
conditions in [11], while Theorem 2 provides another approach
to obtain sufficient LMI conditions.

Theorem 1: Consider the error dynamics in (14), and the
H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Sij = STij > 0, and Kil2 ,
Ll2 , for i = 1, ...,m, j = 1, ..., ni and l1, l2, l3 = 1, ..., s, such
that Lemma 2 holds with

Fl1l2l3 =

[
Ml1l2l3 [Ω1l2 ...Ωml2 ]
∗ −ΛS

]
(19)

where

Ml1l2l3 =


−Pl1 +JTJ 0 ATl1Q

T
l2
− CTl1L

T
l2

∗ −µI ETQTl2 −D
TLTl2

∗ ∗ Pl3−Ql2−QTl2



Ωil2 =
[
Πi1l2 ... Πinil2

]
, Πijl2 =


(
HT
i −CTl1K

T
il2

)
Sij(

DTKT
il2

)
Sij

Ql2Hij


Λ=bdiag(Λ1, ...,Λm), Λi=bdiag

(
2

bi1
I, ...,

2

bini

I

)
S =bdiag

(
S1, ...,Sm

)
, Si = bdiag

(
Si1, ...,Sini

)
,

then the H∞ performance condition defined in (18) is satisfied.
Proof: By calculating Wk along the trajectories of e(k),

we obtain:

Wk = e(k)T
[(
AL+M

)T
Pz+

(
AL+M

)
−Pz+JTJ

]
e(k)

+w(k)T
[(
EL+N

)T
Pz+

(
AL+N

)
−µI

]
w(k)

+2e(k)T
[(
AL+M

)T
Pz+

(
EL+N

)]
w(k)

(20)
where

M =

m∑
i=1

ni∑
j=1

ΦijHijHKi , N =

m∑
i=1

ni∑
j=1

ΦijHijDKi . (21)

This can be written as

Wk =

[
e(k)
w(k)

]T
Σ

[
e(k)
w(k)

]
,



where

Σ =

[
−Pz+JTJ 0

0 −µI

]
+

[(
AL + M

)T(
EL + N

)T
]
Pz+

[
AL + M EL + N)

] (22)

Since Σ < 0 implies Wk < 0, in what follows we consider
only Σ. By applying the Schur complement on (22) and using
congruence with bdiag[I I Qz] the following condition is
obtained:−Pz+JTJ 0

(
AL + M

)T
QTz

∗ −µI
(
EL + N

)T
QTz

∗ ∗ −QzP−1z+Q
T
z

 < 0. (23)

Using Property 1 on QPz+QT , the following is obtained:−Pz+JTJ 0
(
AL + M

)T
QTz

∗ −µI
(
EL + N

)T
QTz

∗ ∗ −Qz −QTz + Pz+

 < 0. (24)

Next, by following the steps in the proof of [11] we can
separate (24) as:−Pz+JTJ 0 ATL QTz

∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz


+

m∑
i=1

ni∑
j=1

Φij

( 0
0

QzHij

 [HKi
DKi

0
]

+ ∗

)
< 0

(25)

We denote

Xij =
[
0 0 HTijQTz

]
, Yi =

[
HKi

DKi
0
]
, (26)

based on Lemma 4 the following inequality holds:

XTijYi+XijYTi ≤
1

2

(
Xij+SijYi

)TS−1ij (Xij+SijYi
)

(27)

Since 0 ≤ Φij ≤ bij , see (12), (25) holds if:−Pz+JTJ 0 ATL QTz
∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz


+

m∑
i=1

ni∑
j=1

(
Xij+SijYi

)T( 2

bij
Sij
)−1(

Xij+SijYi
)
< 0

(28)
Next, by applying the Schur complement on (28) the fol-

lowing is obtained:[
Mzzz+ [Ω1z ...Ωmz]
∗ −ΛS

]
< 0

Mzzz+ =


−Pz+JTJ 0 ATz Q

T
z − CTz LTz

∗ −µI ETQTz −DTLTz

∗ ∗ Pz+−Qz−QTz

 (29)

By applying Lemma 2 we obtain (19).
To highlight the advantages of the presented approach, first we
focus on Xij in (26). In [11] the term Xij depends on HTijPT ,
where P must be a positive definite symmetric matrix, andHij
is a nx × ni matrix, in which the j-th column is Gi and the

rest of the columns are 0. Since P has to be symmetric, the
Xij term makes the design conditions restrictive.

This restrictive form is relaxed in our design. We use a
non-symmetric fuzzy matrix Qz =

∑s
l=1 hl(z(k))Ql, which

introduces unconstrained decision variables in Xij . Matrix Qz
also helps in Mzzz+ in (29), since the observer is completely
decoupled from the Lyapunov function, while in Theorem 2 in
[11] the observer gains are computed as Lz = P−1Xz , where
is P is from the Lyapunov function.

On the other hand, in the Lyapunov synthesis, instead
of the quadratic Lyapunov function e(k)TPe(k) we use a
fuzzy Lyapunov function, having the form: eT (k)Pze(k).
This makes the design conditions less restrictive, see [19].
In Theorem 1, if we take a quadratic Lyapunov function, so
Pl = P for all l = 1, ..., s, and constant Q, with Q = P , then
we obtain Theorem 2 of [11]. We can conclude that the design
condition presented in Theorem 2 of [11] is a special case of
Theorem 1.

Although the conditions defined in (19) are less restrictive
than those in Theorem 2 in [11], they are still bilinear due
to the terms Kil2Sij for all i = 1, ...,m, j = 1, ..., ni. The
change of variables, like X = Kil2Sij , is not possible since
Sij depends on both i and j. Two solutions are proposed in
[11] to obtain sufficient LMI conditions in form of corollaries.
The first corollary imposes Sij = Si, so that a variable change
can be used: Yi = KT

i Si, while the second corollary considers
Ki = 0. In what follows we also formulate two corollaries for
the options mentioned above.

Corollary 1: Consider the error dynamics in (14), and the
H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Si = STi > 0, and Yil2 , Ll2 , for
i = 1, ...,m and l1, l2, l3 = 1, ..., s, such that Lemma 2 holds
with (19), where

Si =bdiag
(
Si, ...,Si︸ ︷︷ ︸

ni

)
(30)

then the H∞ performance condition defined in (18) is satisfied,
and the observer gains can be recovered from Kil1 = S−1i YTil1 .

Proof: The proof is the same as that of Theorem 1.
Corollary 2: Consider the error dynamics in (14), and the

H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Sij = STij > 0, for i = 1, ...,m,
j = 1, ..., ni and l1, l2, l3 = 1, ..., s, such that Lemma 2 holds
with (19), then the H∞ performance condition defined in (18)
is satisfied.

Proof: The proof is as above with Kil2 = 0.

Next, we provide a novel approach as an alternative to obtain
sufficient LMI conditions.

Theorem 2: Consider the error dynamics in (14), and the
H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Sij = STij > 0, where the j-th

column of Sij is [0 ... 0

j−th︷︸︸︷
αij 0 ... 0]T︸ ︷︷ ︸

ni elements

, with constants αij , and

Kil2 , Ll2 , for i = 1, ...,m, j = 1, ..., ni and l1, l2, l3 = 1, ..., s,
such that Lemma 2 holds with

Fl1l2l3 =

[
Ml1l2l3 [Ω1l2 ...Ωml2 ]
∗ −ΛS

]
(31)



where

Ml1l2l3 =


−Pl1 +JTJ 0 ATl1Q

T
l2
− CTl1L

T
l2

∗ −µI ETQTl2 −D
TLTl2

∗ ∗ Pl3−Ql2−QTl2



Ωil2 =
[
Πi1 ... Πini

]
, Πij =


HT
i − CTl1K

T
il2

DTKT
il2

αijQl2Hij


Λ=bdiag(Λ1, ...,Λm), Λi=bdiag

(
2

bi1
I, ...,

2

bini

I

)
S =bdiag

(
S1, ...,Sm

)
, Si = bdiag

(
Si1, ...,Sini

)
,

(32)
then the H∞ performance condition in (18) is satisfied.

Proof: We follow the line of the proof of Theorem 1,
equations (20)-(26). After that, we consider inequality (8), and
the following is obtained:

XTijYi+XijYTi ≤
1

2

(
S̃−1ij Xij+Yi

)T S̃ij(S̃−1ij Xij+Yi
)
. (33)

which leads to−Pz+JTJ 0 ATL QTz
∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz


+

m∑
i=1

ni∑
j=1

(
S̃−1ij Xij+Yi

)T( 2

bij
S̃−1ij

)−1(
S̃−1ij Xij+Yi

)
< 0

(34)
We denote Sij := S̃−1ij . Now we examine

SijXij+Yi =
[
HKi

DKi
SijHTijQTz

]
(35)

The bilinear term is SijHTijQTz , which can be written as

SijHTijQTz = Sijeni(j)G
T
i Q

T
z , (36)

where the multiplication of Sijeni(j) results in the j-th
column of Sij . The j-th column is αijeni

(j), and the following
is obtained:−Pz+JTJ 0 ATL QTz

∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz



+

m∑
i=1

ni∑
j=1


HTKi

DTKi

αijQzHij

(2Sij
bij

)−1[
HKi DKi HTijQTz αij

]
<0

(37)
Using the Schur complement, we obtain:[

Mzzz+ [Ω1z ...Ωmz]
∗ −ΛS

]
< 0

Ωiz =
[
Πi1z ... Πiniz

]
, Πijz =

HT
i − CTz KT

iz

DTKT
iz

αijQzHij

 , (38)

and the rest of the elements are as in Theorem 1. Sufficient
LMI conditions are obtained applying Lemma 2.

The main advantage of Theorem 2 is that even if it imposes
a restrictive structure, still every Hij term has a corresponding

Sij matrix, and not a single Si for all the j-s like in Corol-
lary 1. If we have a good initial guess for the parameters
αij , the problem becomes a simple LMI. On the other hand,
if we have many αij parameters the problem can become
computationally intractable.

IV. COMPARISON WITH THE STATE OF THE ART

In order to highlight the advantages obtained by our ap-
proach, we compare Corollary 1 and 2 from [11] with our
approaches presented in Corollary 1 and 2, and Theorem 2 on
a numerical example.

Example 1: Consider model (9) with two local models and
the following matrices:

A1 =

[
1 0.008
0 0.29

]
, A2 =

[
1 0.008
0 0.96

]
, G =

[
0

0.1

]
C=

[
1 0

]
, H=

[
1 0
0 1

]
, E=

[
0

0.1

]
, D = 0.02,

(39)
Moreover, g(y(k), u(k)) = 0 and we consider one nonlinearity
denoted with γ and it fulfills (12) with a11 = a12 = 0, b12 =
0.5. This example is simple enough so standard LMI solvers
can easily handle, but has a nonlinearity that depends on two
states, so approaches in [20], [3], [4] are not suitable to handle
it.

We study the minimum µ what we can obtain based on
b11. To solve the LMI problem, the sedumi solver is used
in the Yalmip framework. To fit in the framework of the
linear parameter varying models used in [11], we consider the
parameter ρ ∈ [0.03 0.7], and matrices

A0 =

[
1 0.008
0 0.99

]
, A1 =

[
0 0
0 1

]
.

The results obtained are presented in Table I. It can be seen
that Corollaries 1-2 outperform the corollaries presented in
[11] in term of the minimum value of µ. The best results are
obtained with Theorem 2, but with the added computational
complexity of finding a suitable α11 and α12. Regarding
the computational complexity of solving the LMI conditions,
according to [17], page 18, a realistic approximation of the
numerical complexity using the interior-point method used by
sedumi is O(N2.1

d N1.2
l ), where Nd is the number of scalar

decision variables and Nl is the row size of the LMI problem.
For the conditions in Corollary 1 we have Nd = 25, for
Corollary 2 this value is Nd = 24, and for Theorem 2 we
have Nd = 24, and for all the cases Nl = 56.

TABLE I
MINIMUM VALUE OF µ FOR EXAMPLE 1

b11 Cor. 1 [11] Cor. 2 [11] Cor. 1 Cor. 2 Theo. 2
2 1.0203 0.8754 0.8263 0.6544 0.5642

2.2 1.0581 0.9022 0.8517 0.6738 0.5644
2.4 1.0954 0.9287 0.8768 0.6931 0.5646
2.6 1.1324 0.9551 0.9019 0.7122 0.5648
2.8 1.1690 0.9814 0.9270 0.7314 0.5650
3 1.2053 1.0077 0.9520 0.7505 0.5652

To show the advantage of using the fuzzy Qz matrix we
provide another example dedicated only to this purpose.



Example 2: We use (9) with the following matrices:

C1 =C3 =

[
1 0 0 0
0 0 1 0

]
, C2 =C4 =

[
1 0 0 0
0 0 ω1 0

]

A1 =A2 =


1 0.001 0 0

0.1 0.2 0.1 0.3
0 0 1 0.001

0.1 −0.3 0.2 ω2

 , G=


1 −2
−4 7
3 −1
−12 9



A3 =A4 =


1 0.001 0 0

0.1 0.2 0.1 0.3
0 0 1 0.001

0.1 −0.3 0.2 1.1

 ,
(40)

where ω1 and ω2 are two parameters. We consider the follow-
ing two cases:

1.) Corollary 1 with Pz = P , Qz = P , equivalent to [11].
2.) Corollary 1 with Pz = P .

We vary the values of ω1 and ω2 in the range ω1 =
[0.8, 2.2] and ω2 = [−0.2, 1.2], and we look for feasible
solutions with respect to the matrices in (40). The results
obtained can be seen on Fig. 1. We can see that a much wider
range of systems can be handled by adding the extra degree
of freedom with Qz .

Fig. 1. ’.’-Corollary 1 with Pz = P , Qz = P , ’o’-Corollary 1 with Pz = P

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach to observer design for
discrete-time nonlinear systems with nonlinear consequents.
The design exploits the TS fuzzy framework together with
globally Lipschitz nonlinearities. An H∞ performance index
was used, and the conditions were formulated so that the effect
of the disturbance was minimised. To highlight the novelty of
the paper two examples were presented.

There are many future directions, among which we will
focus on extending this work to observer-based controller
design. On the other hand we plan to consider a wider range
of models, for example by considering fuzzy terms also for
the G matrix.
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