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Abstract— Traffic control has proven an effective measure to A common limitation of the above approaches is the lack
reduce traffic congestion on freeways. In order to determine of convergence guarantees. Although a well-tuned extended
appropriate control actions, it is necessary to have information KF, unscented KF, or particle filter can perform well in

on the current state of the traffic. However, not all traffic . . . .
states can be measured (such as the traffic density) and so simulations, there is no guarantee that they will perform

state estimation must be applied in order to obtain state edqually well in real-life situations. In this paper we prego
information from the available measurements. Linear state an alternative approach that is based on transforming the
estimation methods are not directly applicable, as traffic models METANET traffic model into a Takagi—-Sugeno (TS) fuzzy
are in general nonlinear. In this paper we propose a nonlinear model representation and consequently applying a sysiemat

approach to state estimation that is based on a Takagi— . . e
Sugeno (TS) fuzzy model representation of the MTANET traffic observer design method with stability guarantees. The TS

model. By representing the METANET traffic model as a TS ~model [11] is a general function approximator that can
fuzzy system, a structured observer design procedure can be exactly represent or approximate to an arbitrary degree of

applied, whereby the convergence of the observer is guaranteed accuracy a large class of nonlinear systems. The TS model
Simulation results are presented to illustrate the quality of the . 4sists of fuzzy if-then rules. The rule antecedents tjiarti
estimate. . . . .

a given subspace of the model variables into fuzzy regions.

[. INTRODUCTION The consequents of the rules are linear or affine models that

Significant amounts of time and fuel are wasted due tare valid locally in the corresponding fuzzy region.
traffic jams, which also contribute to the deterioration of In the literature, there are several approaches to design
the air quality and environment. Hence, effective trafficTS fuzzy observers for continuous-time systems [12] and
control on freeways is necessary to reduce congestion. for discrete-time systems [13]. The design of TS fuzzy
this context, traffic control is an important component af th observers is formulated as a feasibility problem of Linear
traffic management system that aims at making a better ultatrix Inequalities (LMI), which can be solved by convex
of the available infrastructure. optimization algorithms.

Appropriate traffic control actions must be based on the In this paper, we develop a TS fuzzy observer for the
actual traffic state, which, however, is not always avadablMeTANET traffic flow model. The design starts by transform-
at any point in the traffic network. Not all relevant stateing the METANET model into the TS fuzzy model. Then a
variables can be measured due to technical limitationd) sudiscrete-time fuzzy observer is designed by applying btabi
as the sparse arrangement of sensors or the occurrenceandl robustness conditions. This method is the discrete-tim
sensor failures. Moreover, the available measurements areunterpart of the approach proposed in [14]. While in [14]
corrupted by noise. For these reasons, traffic state estimatthe METANET model was first transformed into a continuous-
is a very relevant topic with regard to effective traffic aoht time model, here we design the TS observer directly in the

Designing a state estimator requires a traffic model. Traffidiscrete-time setting. This is a much more realistic apgpa
models are generally classified into microscopic, mesasgcopas the METANET model is in its essence a discrete-time
and macroscopic models [1]. In the case of on-line modemodel validated for sampling times that are typically in the
based traffic control, it is common to use the macroscopiorder of 10s. In addition, the measurements are available at
traffic flow model, see, e.g., [2]-[4]. Such a model is typdiscrete time instants as well. It is also important to note
ically nonlinear and captures the average traffic behaviehat discrete-time design for the TS observer is substntia
through aggregated variables at different locations in thdifferent from its continuous-time counterpart.
network [1]. The variables used in macroscopic models This paper is organized as follows. After the introduction
include the flow, density, and speed. The model used in thig Section I, the TS fuzzy model and theEMANET model
paper is the well-known MTANET model [5]. are briefly presented in Section Il. The TS representation of

Among the methods applied traffic state estimation are thfe MeTANET model is derived in Section Il. The observer
extended Kalman filter (KF) [6], the unscented Kalman filtegesign for a TS fuzzy system is addressed in Section IV.

[7] and the particle filter [8]. In [9] an adaptive approachSection V illustrates the proposed approach through a simpl
to the extended Kalman filter was used. In [10] differentase and Section VI concludes the paper.

filter configurations are compared for the case of traffic flow
estimation and parameter estimation. Il. PRELIMINARIES

The authors are with Delft Center for Systems and Control,ftDel In thi . briefl . he f TS del d
University of Technology, Mekelweg 2, 2628 CD Delft, The Netands n this section, we briefly review the fuzzy model an
Email: z.hidayat@tudelft.nl the METANET model.



A. TS fuzzy models as the average densiph,(K), the space-mean speegd;(k),

The Takagi-Sugeno fuzzy model [11] is a mathematicaind ﬂpw Omi(K). The definitions of the_ variables th_at are
model that can be used to represent nonlinear systems $§ed in the MTANET model are shown in Table I while the

fuzzy if-then rules with local linear or affine consequents. Parameters and their typical values (as used in this paper) a
given in Table Il. The values of the parameters have been

Model rulei: adapted from [15].
If ) _ In segment of link m, the flow at time stef is determined
z1(k) is Miz and - -- andzy(k) is Mip by the speed, the density, and the number of the lanes for
Then the same time stek:
x(kt1) =Axk)+BUK) +a Ami (K) = Pmi (K) - Vimi (K) - Am )
y(k) = Cix(k) C where A, is the number of lanes in the corresponding

wherer denotes the number of ruleld; are fuzzy sets, and S€9ment. At time stefx+ 1, the density of segmeritis
A € R™N B € R™™ G € R9", anda € R" are parameters influenced by the density at time stdp the number of
of the local models. ’ vehicles entering from segmeint 1 (inflow), and the number

The state and the output of the TS fuzzy system at%f vehicles leaving the segmeinfoutflow). This relationship
computed as follows: can be expressed as

r T
x(k+1) = Zlhi(z){Aix(k) +Biu(k) +a} Pm; (k+ 1) = Pm; (k) + m(qm,i—l(k) — Omji (k)) 3)
e (1)  whereT is the sampling time, which typically has a value of
y(k) = Zhi(Z)QX(k) 10s. The space-mean speed on segmantime stegk+ 1 is
i= influenced by three terms, expressing relaxation, cormecti
with and anticipation. The relaxation term expresses the speed
hi(z) = Wi (2) change in order to achieve a desired equilibrium speed
Si_1Wi(2) V(pmi(k)) corresponding to the densiymi(k). This term
and is proportional to the difference between the current space
4 mean speed and(pm;i(k)). The convection term expresses
wi(z) = 11“” (z(k)) the speed differen(ce b(et)v)veen the segniemid the upstream
= segmenti — 1. The anticipation term is the speed change
where (i (zj(k)) denotes the membership functionMfi.  due to the density change when moving from the upstream

In Section Ill we show how the parameters of the TSegmenti — 1 to the downstream segmeit Using these
fuzzy model can be computed such that it exactly representsrms, the space-mean speed at time kteft can be written

a given nonlinear system. as -
B. TheMETANET traffic model Vi (K+1) = Vi (K) + — [V (Pmi (K)) — Vi (K)]
In this section, we present the BMANET traffic flow T
' —Vmi(K)(Vmi—1(K) —vmi(k
model developed in [5]. The ETANET model is one of - mi(K) (i —2(k) = Vini (K)) )
the existing macroscopic traffic flow models. Macroscopic V-T Pmit1(K) — pm,i(K)
models express the average behavior of vehicles at a specific CT-Ly Pmi(K) + K
location and time instant. Three state variables reflect t%h ;
behavior of the traffic, namely [5] ere o
« traffic densityp: the number of vehicles per length unit. V (omi(K)) = Vi m- €xp {_1 (pm.(k)> ] (5)
« space-mean speedthe instantaneous average speed of ’ ’ 8n \ Perm
vehicles in a length increment. _ Note that the MTANET model (2)-(5) presented above
« traffic volume or flowgq: the number of vehicles pass- s the basic model without geometry changes such as on-
ing/leaving a specific location in each time step. ramps, off-ramps, splits, or merges. However, the model can

The METANET model represents a freeway network as &e extended to include those cases (see [5] for details). In
directed graph whose links are associated with stretchestie sequel, for the sake of simplicity but without loss of
the freeway network. Each link in the graph corresponds tgenerality, we consider only one link, and therefore theind
a stretch that has uniform characteristics. A node is placet is dropped.
in the graph when there is change in the geometry, such as
an on-ramp or a split. [1l. TS FUZZY REPRESENTATION OF THEMETANET

The METANET model is discrete in time and space. In MODEL
the model, them-th link of a freeway is divided intoN In this section, a TS fuzzy model that exactly represents
segments of lengthy,. For each linkm and segment, the the METANET model presented in the previous section is
state variables of the traffic as described above are exqutessleveloped. Before the TS model is derived, the set of



TABLE |

the input vectory € RY the measurement vector, ad=
VARIABLES IN THE TRAFFIC MODEL.

T, . .
[z(k) -+ 2zp(k)] agiven vector functichof x, y, andu;
Symbol | Variable Units zis called the vector of scheduling variables. All variabtes
:‘ EdemsetﬁPindex - y, u are assumed to be bounded and to belong to a compact
pmi(k) | traffic density veh/km/lane set Cuyu-
Vmi(k) | space-mean speed | km/h There exist several approaches to obtain TS fuzzy models
9mi(k) | traffic volume or flow | veh/h that exactly represent or approximate a given nonlinear
TABLE Il system. A simple, yet effective approach is to use Taylor
PARAMETERS OF THE TRAFFIC MODEL series expansion in several operating points, thereby ob-
taining local linear or affine models [16]. These models
Symbol | Parameter Value | Units are then combined using fuzzy if-then rules to obtain an
Lm length of segment | 0.5 km ; ; ;
hy number of lanes 3 approximation of the nonlinear system. As the number of
m - . . . . .
Vem free flow speed 102 | km/h linearization points increases, so does the accuracy of the
Perm critical density 30 veh/km/lane approximation. However, an increase in the number of local
r time constant 18 s models implies a larger computational cost when designing
1% anticipation constant 60 km?/h - .
K constant 40 veh/km observers. Another shortcoming of the approach is thaether
am parameter 234 | - are no general guidelines on how to chose the linearization
Vimin minimum velocity 7.4 km/h points
Vmax maximum velocity 200 km/h ) . . .
Omin minimum density 0 veh/km/lane A second approach to obtain a TS fuzzy approximation
Pmax maximum density | 150 | veh/km/lane of a nonlinear model is to approximate the nonlinear matrix-
T sampling time 10 S

valued functiondsf, g, andhgy; of (7) over intervals by aggre-

gates of weighted constant matrices [17]. In [17] Gaussian

equations of the MTANET model, i.e., equations (2), (3), memb_ershlp_functlons have been used, and the n_umber of
operating points and the parameters of the Gaussians have

(4), and (5), have to be written as a state space represental o L
. . . een computed such that a specified approximation accuracy
of a nonlinear system. Since in general TS fuzzy modelS

do not use algebraic equationg(K) in (2) is eliminated IS achieved. However, this approach has the same shortcom-

by substituting it into (3). The information needed from th Ings as the previous one: for an accurate approximation, a

. . : eIarge number of local models is necessary.
neighboring segments, namedy, 1 (k) andvi_1(k), is treated
as input to the model. After some algebraic manipulations, The methods presented above can be used to construct TS

the METANET model can be expressed as a state equati(SHOdels that are approximations of a given nonlinear system.
with an affine term as follows An exact TS representation of a nonlinear system can be

T obtained using the sector nonlinearity approach [18]. The
(pi(k+ 1>> _(i-fuk o (pi<
vi(k+1) faww -1tk )\
)

) basic idea of the sector nonlinearity approach is to reptese
each of the non-constant terms in the matrix functidns

T (K 0 g, and hgy, and the vector functiom of the model as the
+ ff'fllg ) vT 1 <Vi1(k ) convex combination of two constant terms and to build the
vk —rp pi(K)+K pi+1(k) set of fuzzy rules as all combinations of the so-obtained
0 terms. Therefore, in this approach, the number of rules is
+ (TV(pi(k))) 6)  determined by the number of non-constant terms in the

T . .
1/ pi\an matrix functions.

V(pi) =Vt EXP{— 2 (Pcr) } The multiplications of the state variables have the follow-

) ing effect: compared to the sector nonlinearity approach,
The expression above exactly represents the€TANET  , 51qer number of operating points is needed to obtain

model. Now we can_proceed_ with the development of thg +5™ model that accurately approximates theTWNET
TS fuzzy representation of this model. model when the first two approaches discussed above are
A. TS fuzzy model construction used. As already mentioned, using more operating points
Consider a nonlinear system described by the followinéea(JIS o a larger number O.f I(_)cal models and a greater
state space model omputational load whgn de_S|gn|ng the observers. Therefor
we use the sector nonlinearity approach to construct the TS
x(k+1) = f(2)x(k) + 9(2)u(k) +a(2) @) fuzzy representation of the TANET model. This goes as
y(K) = hout(2)x(K) follows.
Here, f, g, anda are smooth nonlinear matrix and vector First consider the. statg equation of the _nonlinear sy;tem
functions, respectivelyx ¢ R is the state vectory € R™ (7). The sector nonlinearity approach requires the noatine

1in the output equation we udg, to denote the nonlinear function and 2Each element of the vectaris time-dependent, i.ez,should be denoted
noth as could be expected, since the synibid used to denote membership as z(k). For the simplicity of notation, the explicit time-dependenis
functions. omitted in this paper.



() @m
functions to be bounded. Therefore, we consider the non-3) The term ex —%(%) } appearing iV (o) is

constant terms in eithef, g, or a of (7), and we represent expressed using the weighting functions
them by n|(-) € [nl;,nlj],j = 1,2,...,p where_n| and nl| oxp |1 ( PLmin ool 1 (e
are respectively the lower and upper bound of jkl term. w3 (pi(K)) = Xp[ a”‘(‘pf’ )am} EXp[ am(“’ﬂ ) am] ,
Now, for each nonlinearity n we construct two weighting exp[fﬁ(pw”) }7exp{7% (p'b@fx) }
functions as follolvs ) W%(Pi(k)) = 1(_k\),v§md(k)) ) SR

i nlj —nlj(-) i i 4) The termp;_1(k) leads to the weighting functions

WA( ) = ————— 2 W (1) =1—wa(- i~ 1max—Pi—1(K
O, MOTENO g e - 2t
for j=1,2,...,p W3 (pi-1(K)) = 1—w3(pi—1(K)).

We can see that for each non-constant term, the two weight-Based on the above four non-constant terms, to describe
ing functionsw(‘) and le are normalized, i.e.wé)(nlj(-)) + gll possible combinations, a fuzzy system with=216 rules
wi(nlj(-)) = 1, for any nj(-). To define the membership 'S NeceSSary. .

functions we consider all possible products of the weight Consider now the output equation

functionsw} for j €{1,2,...,p} andZ € {0,1}. This results (k) — qi (K)
in 2P membership functions of the form o= vi(K)

hi(2) = J|£|1w}ﬁ<zj> ©) N (Vi (g)A (D (Fv)((:g)

fori=1,2,---,2°, ¢ € {0,1}. These membership functions The measurement matrix has one non-constant term, namely
are normal, i.e.hj(z) >0 andy!_;hi(2) = 1, r = 2P, where vi(K). But sincev;(k) in the measurement matrix is the
r is the number of rules. Then the fuzzy representation &me as that of the system equation, the same weighting
(7) is given as function as above can be used. Moreover, the spgédl is
; also assumed to be measured, which means the membership
X(k+1) = Z\hi (2)(Aix(K) +Biu(k) + &) (10) functions of the measurement do not depend on states that
i= have to be estimated.
whereA, Bj, anda;, i = 1,2,...,r are matrices and vectors Using the weighting functions developed above, the con-
of proper dimensions, obtained by substituting the noaline sequent models of the fuzzy rules can be written as
terms nj(-) by either n| or nlj depending on whethem(’) or x(k+1) = Ax(K) + Biu(K) +a

11)

w} is selected in the membership functibnof rule i. (12)
The TS representation of the output function can be y(k) =Cix(k)

obtained in a similar way. where

B. TS fuzzy representation of tMETANET model X(k) = (pi(k)> u(k) = <Vi_1(k)>
' y rep vi(k) pi+1(K)

To construct the TS fuzzy representation of (6) using

the sector nonlinearity approach, it is necessary to assufigd: Bi, &, andGi are obtained by substituting the min-

that the values of the variablgs_1(K), pi(k), andvi(k) are imum or maximum values corresponding to the weighting

boundedpi_1(K) € [0 1.min, Pi—1max» £ (K) € [Or.min, Pi.ma functions used in rulé into the functlons_f, 0, hout, anda.
and Vi(K) € [Vimin, Vimad, for all k. This assumption is The TS fuzzy model of the FITANET is then expressed
reasonable since a freeway segment always has capa@ﬁ/ r
limits. Furthermore, when the segment is in congestion, the x(k+1) = Zhi(z)(AiX(k)+BiU(k) +ai(k))
space-mean speed will be very small, while there is always i:r
an upper limit of the speed of a car on a freeway. _ , _
First, we consider the state equation of (6). There are y(k) = i;h(Z)CIX(k)
four non-constant terms in the matrix functiohsg, anda,
based on which the weighting functions are defined as
follows
1) For the term & Tvi(k), the space-mean speedk) IV. OBSERVER DESIGN FOR THETS METANET MODEL
has a maximum and minimum value @fmax and
Vi min respectively. Applying (8), one obtains

(13)

This concludes the TS fuzzy representation of theETWNET
model.

In general, an observer designed for the model (13) has

1 Vi max—Vi (K) 1 1 . the form
Wo (Vi (K) = v @ndwy (vi(K)) = 1—wg(vi(k)); r
note that the nonlinearities-1Tvi (k) and X(k+1) = Zlhi (2) {Aif((k) +Biu(k) + &
1— T —Tvi(k) lead to the same weighting functions; =
2) Similarly to the abovewl)ﬂ leads to +Ki(y(k) —V(k))} (14)
Pi(K)=Pimin _ Pi.maxtK
w5 (pi(k)) = A (KK B max—Pimin’ (k) = r hi (2)Ci%
wi(pi(K) = 1—wj(ai(K)): 2,



whereZ denotes the estimated scheduling vector Knd= The condition (19) above ensures the asymptotic stability
1,...,r, are the observer gains. The observer design probleofithe first term of the right-hand side of (17). The asymgtoti

is to calculate the values df,i = 1,...,r such that the stability of (17) can be guaranteed using stability condisi
estimation error converges to zero. The estimation error cdor uncertain fuzzy systems (see [19]). Since (19) are robus
be written as stability conditions and provided the initial estimate isse
e(k) = X(k) —x(k) . (15) enough to the true state, (17) is stable [20].
o ] ] The LMIs above can e.g. be solved using the Sedumi
Substituting (13) and (14) into (15) yields solver of YALMIP [21]. Next the values ok; are substituted

into the observer model.

The approach presented above can easily be extended to
r include the node equations of theEWANET model, which
- Zlhi (2) [Aif((k) + Biu(k) +a; + Ki (y(k) — y(k)) implies that the proposed approach is not only also apgécab
1= to freeway stretches but also to (complex) freeway networks
Adding to and subtracting from the right-hand side of the Note that the fuzzy model is also observable if only the
above equatiory|_; hi(2)(Aix(k) + Biu(k) + &), after some flow is measured, (i.e., the speed is not measured), as long

e(k) = iihi (2)[Ax(k) + Bju(k) + &]

algebraic manipulations we obtain as neither the flow nor the speed on a segment is zero.
r Moreover, under these conditions it is possible to design a

ek+1)= Zhi (2)[Ae(k) — Ki(y(k) —y(k))] fuzzy observer similar to (14) that can estimate both the

i= (16) speed and the density. This indicates that it is possible

to design observers in a distributed fashion for a whole
stretch or even a whole network, given that the neighboring

) ) ) ) observers communicate the estimated states among them.
Since the speed is measured, the membership functions of the

+ 3 (@) - h(2)[AR(-+ Bk +a (0]

measurement model do not depend on the estimated states. V. SIMPLE CASE STUDY
Therefore, we can rewrite (16) as Now the proposed approach is illustrated for simple case
ror study in which we consider one particular segmenthe
e(k+ 1):.Z|Z hi(2)h;(2)[Ai — KiCjle(k) true initial state of the segment is— [10 2q'. The
) =1=1 (17) boundary inputs for the segment were constructed such that
5 the downstream speed was equal to the initial speed of
+i;(h.(z)—h.(z))[A.x(k)+B.u(k)+a.(k)} the segment plus Z random ur?iform noise signal \[/)vith an

o amplitude of 15 km/h, and such that the upstream density
In order for the estimation error to converge to zero, the - .
) . Was equal to the initial density of the segment plus a random
observer gaing; have to be calculated such that the first term . . : . ;
niform noise signal with an amplitude of 15 veh/km/lane.

?r:e(lsze)cg?:jvti rrggnis(tz(;Eir(();gc;csgg;;hgrt:;::Asturgb;:r;]ceezdu Re observer has been simulated using the initial estimate
! ! bp o x=[20 10qT. The output of the TS fuzzy representation

Th rver gaini; ar I mput ing stabili . - S
_e_obse er gains; are usually computed using s ability of the METANET model is shown in Figure 1. The estimation
conditions developed for TS systems. The estimation err%rrror using the observer is shown in Fiqure 2. As expected
dynamics (17) is asymptotically stable, i.e., the estiorati sINg. 9 ' P '
the estimation error converges to zero.

error converges to zero if there exists a positive definite . . 2
matrix P such that [13] The simulation and estimation reported here have been
performed on a PC with an Intel T9300 2.5 GHz processor

GIPGi—P<0 and 3GB RAM. The total computation time, including the

(Gij +Gji)T _ (Gij + Gj) (18) computation of the observer gains (1.75s, done offline,

> P— —-P<0 before the actual estimation), simulation of the model and
for all i,j such thati < j and3z s.t. h(2)hj(2) £0 estimation of the states was 2.26s. To compute the estimate
in one time step on average requires 0.0042 s, with 0.008 s
whereGijj = A — KiC;. The inequalities above can be transteing the maximum time that was encountered. These values

formed into the following LMI problem: are well below the typical sampling times for freeway traffic

Find a positive definite matri® and matricesM;, where N€tworks (which currently are typically in the range of
M = PKi,i = 1,...,r, such that several tens of seconds to minutes). This clearly indicates

. that the proposed observer is applicable online.
(2Ln p”> >0 VI. CONCLUSIONS
p (Lij +Lj)T (19) A discrete-time Takagi—Sugeno (TS) fuzzy observer has
((Lij +Lj) P ) >0 been proposed in this paper for theENANET traffic model.

An exact TS representation of theBWANET model has been
obtained using the sector nonlinearity approach. The wbser
whereL; = (PA —MCj)/2. has been designed based on the TS fuzzy representation of

for all i, j such that < j and3z s.t. hj(2)hj(z) # 0



o]
o

<
T 60
2 (2]
X
T 40
>
2 20 3]
[}
D O L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Time stefk [4]
=
€ (5]
=,
=
1
e}
8 (6]
Q.
n
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40 45 50
Time stepk [7]
£ 50
g (8]
= or
g [9]
ks
S -50r :
@ [10]
2 ~100 L .
% 5 10 15
Time stepk [11]
£ 50
£
s o 2]
=
©
S -s0f {1 [3
5]
o
_100 1 1
u 0 5 10 15 (14]
Time stepk
Fig. 2. Estimation error using the TS fuzzy observer. [15]

the METANET model for one segment of highway stretch.
The designed observer is able to estimate the non—meaeural%]
traffic states.

In our future research, we will investigate how the perfor-
mance of proposed observer compares to that of other types
of observers that can be applied to theeMNET model [17]
such as extended Kalman filters, unscented Kalman filters,
or particle filters (see also [6]-[10]), in particular for dels (18]
of real-life networks and using real measurement data as
input. We will also consider robust TS fuzzy observer design
in order to handle uncertainties in theEWANET model, as 19]
well as TS fuzzy observers for other traffic flow models.
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