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Abstract— Traffic control has proven an effective measure to
reduce traffic congestion on freeways. In order to determine
appropriate control actions, it is necessary to have information
on the current state of the traffic. However, not all traffic
states can be measured (such as the traffic density) and so
state estimation must be applied in order to obtain state
information from the available measurements. Linear state
estimation methods are not directly applicable, as traffic models
are in general nonlinear. In this paper we propose a nonlinear
approach to state estimation that is based on a Takagi–
Sugeno (TS) fuzzy model representation of the METANET traffic
model. By representing the METANET traffic model as a TS
fuzzy system, a structured observer design procedure can be
applied, whereby the convergence of the observer is guaranteed.
Simulation results are presented to illustrate the quality of the
estimate.

I. I NTRODUCTION

Significant amounts of time and fuel are wasted due to
traffic jams, which also contribute to the deterioration of
the air quality and environment. Hence, effective traffic
control on freeways is necessary to reduce congestion. In
this context, traffic control is an important component of the
traffic management system that aims at making a better use
of the available infrastructure.

Appropriate traffic control actions must be based on the
actual traffic state, which, however, is not always available
at any point in the traffic network. Not all relevant state
variables can be measured due to technical limitations, such
as the sparse arrangement of sensors or the occurrence of
sensor failures. Moreover, the available measurements are
corrupted by noise. For these reasons, traffic state estimation
is a very relevant topic with regard to effective traffic control.

Designing a state estimator requires a traffic model. Traffic
models are generally classified into microscopic, mesoscopic,
and macroscopic models [1]. In the case of on-line model-
based traffic control, it is common to use the macroscopic
traffic flow model, see, e.g., [2]–[4]. Such a model is typ-
ically nonlinear and captures the average traffic behavior
through aggregated variables at different locations in the
network [1]. The variables used in macroscopic models
include the flow, density, and speed. The model used in this
paper is the well-known METANET model [5].

Among the methods applied traffic state estimation are the
extended Kalman filter (KF) [6], the unscented Kalman filter
[7] and the particle filter [8]. In [9] an adaptive approach
to the extended Kalman filter was used. In [10] different
filter configurations are compared for the case of traffic flow
estimation and parameter estimation.
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A common limitation of the above approaches is the lack
of convergence guarantees. Although a well-tuned extended
KF, unscented KF, or particle filter can perform well in
simulations, there is no guarantee that they will perform
equally well in real-life situations. In this paper we propose
an alternative approach that is based on transforming the
METANET traffic model into a Takagi–Sugeno (TS) fuzzy
model representation and consequently applying a systematic
observer design method with stability guarantees. The TS
model [11] is a general function approximator that can
exactly represent or approximate to an arbitrary degree of
accuracy a large class of nonlinear systems. The TS model
consists of fuzzy if–then rules. The rule antecedents partition
a given subspace of the model variables into fuzzy regions.
The consequents of the rules are linear or affine models that
are valid locally in the corresponding fuzzy region.

In the literature, there are several approaches to design
TS fuzzy observers for continuous-time systems [12] and
for discrete-time systems [13]. The design of TS fuzzy
observers is formulated as a feasibility problem of Linear
Matrix Inequalities (LMI), which can be solved by convex
optimization algorithms.

In this paper, we develop a TS fuzzy observer for the
METANET traffic flow model. The design starts by transform-
ing the METANET model into the TS fuzzy model. Then a
discrete-time fuzzy observer is designed by applying stability
and robustness conditions. This method is the discrete-time
counterpart of the approach proposed in [14]. While in [14]
the METANET model was first transformed into a continuous-
time model, here we design the TS observer directly in the
discrete-time setting. This is a much more realistic approach,
as the METANET model is in its essence a discrete-time
model validated for sampling times that are typically in the
order of 10 s. In addition, the measurements are available at
discrete time instants as well. It is also important to note
that discrete-time design for the TS observer is substantially
different from its continuous-time counterpart.

This paper is organized as follows. After the introduction
in Section I, the TS fuzzy model and the METANET model
are briefly presented in Section II. The TS representation of
the METANET model is derived in Section III. The observer
design for a TS fuzzy system is addressed in Section IV.
Section V illustrates the proposed approach through a simple
case and Section VI concludes the paper.

II. PRELIMINARIES

In this section, we briefly review the fuzzy TS model and
the METANET model.



A. TS fuzzy models

The Takagi-Sugeno fuzzy model [11] is a mathematical
model that can be used to represent nonlinear systems by
fuzzy if–then rules with local linear or affine consequents.

Model rule i:
If

z1(k) is Mi1 and · · · andzp(k) is Mip

Then
{

x(k+1) = Aix(k)+Biu(k)+ai

y(k) = Cix(k)
i = 1, . . . , r

wherer denotes the number of rules,Mi j are fuzzy sets, and
Ai ∈R

n×n, Bi ∈R
n×m, Ci ∈R

q×n, andai ∈R
n are parameters

of the local models.
The state and the output of the TS fuzzy system are

computed as follows:

x(k+1) =
r

∑
i=1

hi(z){Aix(k)+Biu(k)+ai}

y(k) =
r

∑
i=1

hi(z)Cix(k)

(1)

with

hi(z) =
wi(z)

∑r
i=1wi(z)

and

wi(z) =
p

∏
j=1

µi j (zj(k))

whereµi j (zj(k)) denotes the membership function ofMi j .
In Section III we show how the parameters of the TS

fuzzy model can be computed such that it exactly represents
a given nonlinear system.

B. TheMETANET traffic model

In this section, we present the METANET traffic flow
model developed in [5]. The METANET model is one of
the existing macroscopic traffic flow models. Macroscopic
models express the average behavior of vehicles at a specific
location and time instant. Three state variables reflect the
behavior of the traffic, namely [5]

• traffic densityρ : the number of vehicles per length unit.
• space-mean speedv: the instantaneous average speed of

vehicles in a length increment.
• traffic volume or flowq: the number of vehicles pass-

ing/leaving a specific location in each time step.

The METANET model represents a freeway network as a
directed graph whose links are associated with stretches in
the freeway network. Each link in the graph corresponds to
a stretch that has uniform characteristics. A node is placed
in the graph when there is change in the geometry, such as
an on-ramp or a split.

The METANET model is discrete in time and space. In
the model, them-th link of a freeway is divided intoN
segments of lengthLm. For each linkm and segmenti, the
state variables of the traffic as described above are expressed

as the average densityρm,i(k), the space-mean speedvm,i(k),
and flow qm,i(k). The definitions of the variables that are
used in the METANET model are shown in Table I while the
parameters and their typical values (as used in this paper) are
given in Table II. The values of the parameters have been
adapted from [15].

In segmenti of link m, the flow at time stepk is determined
by the speed, the density, and the number of the lanes for
the same time stepk:

qm,i(k) = ρm,i(k) ·vm,i(k) ·λm (2)

where λm is the number of lanes in the corresponding
segment. At time stepk + 1, the density of segmenti is
influenced by the density at time stepk, the number of
vehicles entering from segmenti−1 (inflow), and the number
of vehicles leaving the segmenti (outflow). This relationship
can be expressed as

ρm,i(k+1) = ρm,i(k)+
T

Lmλm
(qm,i−1(k)−qm,i(k)) (3)

whereT is the sampling time, which typically has a value of
10 s. The space-mean speed on segmenti at time stepk+1 is
influenced by three terms, expressing relaxation, convection,
and anticipation. The relaxation term expresses the speed
change in order to achieve a desired equilibrium speed
V(ρm,i(k)) corresponding to the densityρm,i(k). This term
is proportional to the difference between the current space-
mean speed andV(ρm,i(k)). The convection term expresses
the speed difference between the segmenti and the upstream
segmenti − 1. The anticipation term is the speed change
due to the density change when moving from the upstream
segmenti − 1 to the downstream segmenti. Using these
terms, the space-mean speed at time stepk+1 can be written
as

vm,i(k+1) = vm,i(k)+
T
τ

[V(ρm,i(k))−vm,i(k)]

+
T
Lm

vm,i(k)(vm,i−1(k)−vm,i(k))

−
ν ·T
τ ·Lm

ρm,i+1(k)−ρm,i(k)
ρm,i(k)+κ

(4)

where

V(ρm,i(k)) = vf,m ·exp

[

−
1

am

(

ρm,i(k)
ρcr,m

)am
]

(5)

Note that the METANET model (2)–(5) presented above
is the basic model without geometry changes such as on-
ramps, off-ramps, splits, or merges. However, the model can
be extended to include those cases (see [5] for details). In
the sequel, for the sake of simplicity but without loss of
generality, we consider only one link, and therefore the index
m is dropped.

III. TS FUZZY REPRESENTATION OF THEMETANET

MODEL

In this section, a TS fuzzy model that exactly represents
the METANET model presented in the previous section is
developed. Before the TS model is derived, the set of



TABLE I

VARIABLES IN THE TRAFFIC MODEL.

Symbol Variable Units
k time step –
i segment index –
ρm,i(k) traffic density veh/km/lane
vm,i(k) space-mean speed km/h
qm,i(k) traffic volume or flow veh/h

TABLE II

PARAMETERS OF THE TRAFFIC MODEL.

Symbol Parameter Value Units
Lm length of segment 0.5 km
λm number of lanes 3 –
vf,m free flow speed 102 km/h
ρcr,m critical density 30 veh/km/lane
τ time constant 18 s
ν anticipation constant 60 km2/h
κ constant 40 veh/km
am parameter 2.34 –
vmin minimum velocity 7.4 km/h
vmax maximum velocity 200 km/h
ρmin minimum density 0 veh/km/lane
ρmax maximum density 150 veh/km/lane
T sampling time 10 s

equations of the METANET model, i.e., equations (2), (3),
(4), and (5), have to be written as a state space representation
of a nonlinear system. Since in general TS fuzzy models
do not use algebraic equations,qi(k) in (2) is eliminated,
by substituting it into (3). The information needed from the
neighboring segments, namelyρi+1(k) andvi−1(k), is treated
as input to the model. After some algebraic manipulations,
the METANET model can be expressed as a state equation
with an affine term as follows
(

ρi(k+1)
vi(k+1)

)

=

(

1− T
L vi(k) 0

νT
τ ·L

1
ρi(k)+κ 1− T

τ − T
L vi(k)

)

(

ρi(k)
vi(k)

)

+

(

T
L ρi−1(k) 0

T
L vi(k) − νT

τ ·L
1

ρi(k)+κ

)

(

vi−1(k)
ρi+1(k)

)

+

(

0
T
τ V(ρi(k))

)

(6)

V(ρi) = vf ·exp
[

−
1

am

( ρi

ρcr

)am
]

The expression above exactly represents the METANET

model. Now we can proceed with the development of the
TS fuzzy representation of this model.

A. TS fuzzy model construction

Consider a nonlinear system described by the following
state space model1:

x(k+1) = f (z)x(k)+g(z)u(k)+a(z)

y(k) = hout(z)x(k)
(7)

Here, f , g, and a are smooth nonlinear matrix and vector
functions, respectively,x ∈ R

n is the state vector,u ∈ R
m

1In the output equation we usehout to denote the nonlinear function and
not h as could be expected, since the symbolh is used to denote membership
functions.

the input vector,y ∈ R
q the measurement vector, andz =

[

z1(k) · · · zp(k)
]T

a given vector function2 of x, y, andu;
z is called the vector of scheduling variables. All variablesx,
y, u are assumed to be bounded and to belong to a compact
setCxyu.

There exist several approaches to obtain TS fuzzy models
that exactly represent or approximate a given nonlinear
system. A simple, yet effective approach is to use Taylor
series expansion in several operating points, thereby ob-
taining local linear or affine models [16]. These models
are then combined using fuzzy if–then rules to obtain an
approximation of the nonlinear system. As the number of
linearization points increases, so does the accuracy of the
approximation. However, an increase in the number of local
models implies a larger computational cost when designing
observers. Another shortcoming of the approach is that there
are no general guidelines on how to chose the linearization
points.

A second approach to obtain a TS fuzzy approximation
of a nonlinear model is to approximate the nonlinear matrix-
valued functionsf , g, andhout of (7) over intervals by aggre-
gates of weighted constant matrices [17]. In [17] Gaussian
membership functions have been used, and the number of
operating points and the parameters of the Gaussians have
been computed such that a specified approximation accuracy
is achieved. However, this approach has the same shortcom-
ings as the previous one: for an accurate approximation, a
large number of local models is necessary.

The methods presented above can be used to construct TS
models that are approximations of a given nonlinear system.
An exact TS representation of a nonlinear system can be
obtained using the sector nonlinearity approach [18]. The
basic idea of the sector nonlinearity approach is to represent
each of the non-constant terms in the matrix functionsf ,
g, and hout, and the vector functiona of the model as the
convex combination of two constant terms and to build the
set of fuzzy rules as all combinations of the so-obtained
terms. Therefore, in this approach, the number of rules is
determined by the number of non-constant terms in the
matrix functions.

The multiplications of the state variables have the follow-
ing effect: compared to the sector nonlinearity approach,
a larger number of operating points is needed to obtain
a TS model that accurately approximates the METANET

model when the first two approaches discussed above are
used. As already mentioned, using more operating points
leads to a larger number of local models and a greater
computational load when designing the observers. Therefore,
we use the sector nonlinearity approach to construct the TS
fuzzy representation of the METANET model. This goes as
follows.

First consider the state equation of the nonlinear system
(7). The sector nonlinearity approach requires the nonlinear

2Each element of the vectorz is time-dependent, i.e.,z should be denoted
as z(k). For the simplicity of notation, the explicit time-dependence is
omitted in this paper.



functions to be bounded. Therefore, we consider the non-
constant terms in eitherf , g, or a of (7), and we represent
them by nlj(·) ∈ [nl j ,nl j ], j = 1,2, . . . , p where nlj and nl j

are respectively the lower and upper bound of thej-th term.
Now, for each nonlinearity nlj , we construct two weighting
functions as follows

w j
0(·) =

nl j −nl j(·)

nl j −nl j
w j

1(·) = 1−w j
0(·)

for j = 1, 2, . . . , p

(8)

We can see that for each non-constant term, the two weight-
ing functionsw j

0 and w j
1 are normalized, i.e.,w j

0(nl j(·)) +

w j
1(nl j(·)) = 1, for any nlj(·). To define the membership

functions we consider all possible products of the weight
functionsw j

ℓ for j ∈ {1,2, . . . , p} andℓ ∈ {0,1}. This results
in 2p membership functions of the form

hi(z) =
p

∏
j=1

w j
ℓ(zj) (9)

for i = 1, 2, · · · ,2p, ℓ ∈ {0,1}. These membership functions
are normal, i.e.,hi(z) ≥ 0 and∑r

i=1hi(z) = 1, r = 2p, where
r is the number of rules. Then the fuzzy representation of
(7) is given as

x(k+1) =
r

∑
i=1

hi(z)(Aix(k)+Biu(k)+ai) (10)

whereAi , Bi , andai , i = 1,2, . . . , r are matrices and vectors
of proper dimensions, obtained by substituting the nonlinear
terms nlj(·) by either nlj or nl j depending on whetherw j

0 or
w j

1 is selected in the membership functionhi of rule i.
The TS representation of the output function can be

obtained in a similar way.

B. TS fuzzy representation of theMETANET model

To construct the TS fuzzy representation of (6) using
the sector nonlinearity approach, it is necessary to assume
that the values of the variablesρi−1(k), ρi(k), andvi(k) are
bounded,ρi−1(k)∈ [ρi−1,min, ρi−1,max], ρi(k)∈ [ρi,min, ρi,max],
and vi(k) ∈ [vi,min, vi,max], for all k. This assumption is
reasonable since a freeway segment always has capacity
limits. Furthermore, when the segment is in congestion, the
space-mean speed will be very small, while there is always
an upper limit of the speed of a car on a freeway.

First, we consider the state equation of (6). There are
four non-constant terms in the matrix functionsf , g, anda,
based on which the weighting functions are defined as
follows

1) For the term 1− T
L vi(k), the space-mean speedvi(k)

has a maximum and minimum value ofvi,max and
vi,min respectively. Applying (8), one obtains

w1
0(vi(k)) =

vi,max−vi(k)
vi,max−vi,min

andw1
1(vi(k)) = 1−w1

0(vi(k));

note that the nonlinearities 1− T
L vi(k) and

1− T
τ − T

L vi(k) lead to the same weighting functions;
2) Similarly to the above, 1

ρi(k)+κ leads to

w2
0(ρi(k)) =

ρi(k)−ρi,min
ρi(k)+κ

ρi,max+κ
ρi,max−ρi,min

,

w2
1(ρi(k)) = 1−w2

0(ρi(k));

3) The term exp
[

− 1
am

(

ρi(k)
ρcr

)am
]

appearing inV(ρi) is
expressed using the weighting functions

w3
0(ρi(k)) =

exp

[

− 1
am

(

ρi,min
ρcr

)am]

−exp

[

− 1
am

(

ρi (k)
ρcr

)am]

exp

[

− 1
am

(

ρi,min
ρcr

)am]

−exp

[

− 1
am

(

ρi,max
ρcr

)am] ,

w3
1(ρi(k)) = 1−w3

0(ρi(k))
4) The termρi−1(k) leads to the weighting functions

w4
0(ρi−1(k)) =

ρi−1,max−ρi−1(k)
ρi−1,max−ρi−1,min

,

w5
1(ρi−1(k)) = 1−w5

0(ρi−1(k)).

Based on the above four non-constant terms, to describe
all possible combinations, a fuzzy system with 24 = 16 rules
is necessary.

Consider now the output equation

y(k) =

(

qi(k)
vi(k)

)

=

(

vi(k)λ 0
0 1

)(

ρi(k)
vi(k)

)

.

(11)

The measurement matrix has one non-constant term, namely
vi(k). But since vi(k) in the measurement matrix is the
same as that of the system equation, the same weighting
function as above can be used. Moreover, the speedvi(k) is
also assumed to be measured, which means the membership
functions of the measurement do not depend on states that
have to be estimated.

Using the weighting functions developed above, the con-
sequent models of the fuzzy rules can be written as

x(k+1) = Aix(k)+Biu(k)+ai

y(k) = Cix(k)
(12)

where

x(k) =

(

ρi(k)
vi(k)

)

u(k) =

(

vi−1(k)
ρi+1(k)

)

and Ai , Bi , ai , andCi are obtained by substituting the min-
imum or maximum values corresponding to the weighting
functions used in rulei into the functionsf , g, hout, anda.

The TS fuzzy model of the METANET is then expressed
as

x(k+1) =
r

∑
i=1

hi(z)(Aix(k)+Biu(k)+ai(k))

y(k) =
r

∑
i=1

hi(z)Cix(k)

(13)

This concludes the TS fuzzy representation of the METANET

model.

IV. OBSERVER DESIGN FOR THETS METANET MODEL

In general, an observer designed for the model (13) has
the form

x̂(k+1) =
r

∑
i=1

hi(ẑ)
[

Ai x̂(k)+Biu(k)+ai

+Ki(y(k)− ŷ(k))
]

ŷ(k) =
r

∑
i=1

hi(ẑ)Ci x̂

(14)



whereẑ denotes the estimated scheduling vector andKi , i =
1, . . . , r, are the observer gains. The observer design problem
is to calculate the values ofKi , i = 1, . . . , r such that the
estimation error converges to zero. The estimation error can
be written as

e(k) = x̂(k)−x(k) . (15)

Substituting (13) and (14) into (15) yields

e(k) =
r

∑
i=1

hi(z)[Aix(k)+Biu(k)+ai ]

−
r

∑
i=1

hi(ẑ)
[

Ai x̂(k)+Biu(k)+ai +Ki(y(k)− ŷ(k))
]

Adding to and subtracting from the right-hand side of the
above equation∑r

i=1hi(ẑ)(Aix(k) + Biu(k) + ai), after some
algebraic manipulations we obtain

e(k+1) =
r

∑
i=1

hi(ẑ)[Aie(k)−Ki(y(k)− ŷ(k))]

+
r

∑
i=1

(hi(z)−hi(ẑ))
[

Aix(k)+Biu(k)+ai(k)
]

(16)

Since the speed is measured, the membership functions of the
measurement model do not depend on the estimated states.
Therefore, we can rewrite (16) as

e(k+1) =
r

∑
i=1

r

∑
j=1

hi(ẑ)h j(z)[Ai −KiCj ]e(k)

+
r

∑
i=1

(hi(z)−hi(ẑ))
[

Aix(k)+Biu(k)+ai(k)
]

(17)

In order for the estimation error to converge to zero, the
observer gainsKi have to be calculated such that the first term
of (17) converges to zero and such that the disturbance due to
the second term,hi(z)−hi(ẑ) becomes zero as ˆzapproachesz.

The observer gainsKi are usually computed using stability
conditions developed for TS systems. The estimation error
dynamics (17) is asymptotically stable, i.e., the estimation
error converges to zero if there exists a positive definite
matrix P such that [13]

GT
ii PGii −P < 0

(Gi j +G ji )
T

2
P

(Gi j +G ji )

2
−P < 0

for all i, j such thati < j and∃z s.t. hi(z)h j(z) 6= 0

(18)

whereGi j = Ai −KiCj . The inequalities above can be trans-
formed into the following LMI problem:

Find a positive definite matrixP and matricesMi , where
Mi = PKi , i = 1, . . . , r, such that

(

P 2LT
ii

2Lii P

)

> 0
(

P (Li j +L ji )
T

(Li j +L ji ) P

)

> 0

for all i, j such thati < j and∃z s.t. hi(z)h j(z) 6= 0

(19)

whereLi j = (PAi −MiCj)/2.

The condition (19) above ensures the asymptotic stability
of the first term of the right-hand side of (17). The asymptotic
stability of (17) can be guaranteed using stability conditions
for uncertain fuzzy systems (see [19]). Since (19) are robust
stability conditions and provided the initial estimate is close
enough to the true state, (17) is stable [20].

The LMIs above can e.g. be solved using the Sedumi
solver of YALMIP [21]. Next the values ofKi are substituted
into the observer model.

The approach presented above can easily be extended to
include the node equations of the METANET model, which
implies that the proposed approach is not only also applicable
to freeway stretches but also to (complex) freeway networks.

Note that the fuzzy model is also observable if only the
flow is measured, (i.e., the speed is not measured), as long
as neither the flow nor the speed on a segment is zero.
Moreover, under these conditions it is possible to design a
fuzzy observer similar to (14) that can estimate both the
speed and the density. This indicates that it is possible
to design observers in a distributed fashion for a whole
stretch or even a whole network, given that the neighboring
observers communicate the estimated states among them.

V. SIMPLE CASE STUDY

Now the proposed approach is illustrated for simple case
study in which we consider one particular segmenti. The
true initial state of the segment isx =

[

10 20
]T

. The
boundary inputs for the segment were constructed such that
the downstream speed was equal to the initial speed of
the segment plus a random uniform noise signal with an
amplitude of 15 km/h, and such that the upstream density
was equal to the initial density of the segment plus a random
uniform noise signal with an amplitude of 15 veh/km/lane.
The observer has been simulated using the initial estimate
x =

[

20 100
]T

. The output of the TS fuzzy representation
of the METANET model is shown in Figure 1. The estimation
error using the observer is shown in Figure 2. As expected,
the estimation error converges to zero.

The simulation and estimation reported here have been
performed on a PC with an Intel T9300 2.5 GHz processor
and 3GB RAM. The total computation time, including the
computation of the observer gains (1.75 s, done offline,
before the actual estimation), simulation of the model and
estimation of the states was 2.26 s. To compute the estimate
in one time step on average requires 0.0042 s, with 0.008 s
being the maximum time that was encountered. These values
are well below the typical sampling times for freeway traffic
networks (which currently are typically in the range of
several tens of seconds to minutes). This clearly indicates
that the proposed observer is applicable online.

VI. CONCLUSIONS

A discrete-time Takagi–Sugeno (TS) fuzzy observer has
been proposed in this paper for the METANET traffic model.
An exact TS representation of the METANET model has been
obtained using the sector nonlinearity approach. The observer
has been designed based on the TS fuzzy representation of
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Fig. 1. Output of the TS fuzzy model of the METANET model.
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Fig. 2. Estimation error using the TS fuzzy observer.

the METANET model for one segment of highway stretch.
The designed observer is able to estimate the non-measurable
traffic states.

In our future research, we will investigate how the perfor-
mance of proposed observer compares to that of other types
of observers that can be applied to the METANET model
such as extended Kalman filters, unscented Kalman filters,
or particle filters (see also [6]–[10]), in particular for models
of real-life networks and using real measurement data as
input. We will also consider robust TS fuzzy observer design
in order to handle uncertainties in the METANET model, as
well as TS fuzzy observers for other traffic flow models.
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