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Abstract—This paper considers the design of observer based
guaranteed cost control of time-delay nonlinear systems repre-
sented by TS fuzzy models. We consider that both the states and
the inputs are affected by time varying delay, which is assumed
to be known. We propose conditions for observer and controller
design with the aim that the closed-loop is asymptotically stable
and the cost is minimized. The conditions are bilinear and we
solve them in two steps. We also give different possibilities for
minimizing the cost function along with a performance compar-
ison between them. The results are validated on a numerical
example.

Index Terms—observer design, controller design, fuzzy model,
guaranteed cost

I. INTRODUCTION

Most of the systems that are found in the environment
surrounding us are nonlinear. Conventional control approaches
that are widely applied use a linear approximation of them.
Linearized systems present the drawback of failing to com-
pletely reproduce highly nonlinear plants. Based on linear
control theory, a control law is computed for the system
linearized around an equilibrium point. However, this is a
disadvantage for recent applications that require control over a
large operating range. This led to an increased interest research
in control of nonlinear systems.

Regarding nonlinear systems, [1] describes procedures to
analyze stability and design a control law. Nonlinear systems
may also present a time delay when the distance between the
sensor and the actuator is significant. This delay was observed
in biological and chemical systems [2], management of the air-
fuel ratio [3], networked control systems [4], etc. Time delay
has a large impact on the stability of the system. Neglecting
delays when designing the control law can lead to instability.
Also, the closed-loop system performance is affected when
delays appear at the input of a networked control system [5].
An increased use of distributed network systems [6] lea to a
rise of researches regarding stability analysis and control of
systems with time delay.

In order to reduce the energy consumption needed to sta-
bilize a nonlinear system, the guaranteed cost control strategy
[7] can be used. Guaranteed cost control of linear systems
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with uncertain discrete delays was investigated in [8] where
the authors considered all the states being available. This
research was extended in [9], where a linear system subject
to uncertain delays have been investigated. These delays have
a known nominal part and a perturbation. The added terms
vanish when the perturbations in the delay approach zero. [10]
studied the case of a nonlinear system with mixed time-delays
in states and assumed that all the states are measured. [11]
also considered the case of nonlinear systems with time-delay
and used a Lyapunov-Krasovskii functional with adjustable
parameters to design the controller. The approach in [7] uses
a model that predicts the upcoming trajectory of the plant
across a prediction horizon. The control signal is computed
by solving an optimization problem at each step during the
prediction horizon.

In some cases, states needed to compute the control input
are not available to be measured, thus, they must be estimated.
This leads to an observer based controller. An introduction into
designing observer-based linear controllers for network control
systems is presented by [12]. [13] conducted a research on
developing an observer based controller to improve the air-
fuel ratio of engines. They also compared the results with
a sliding mode control concluding that the proposed method
reduces the chattering considerably. [14] modeled the delays
as Markov chains and developed a predictive observer-based
controller.

In this paper we consider the problem of designing observer-
based guaranteed cost control for Takagi-Sugeno (TS) fuzzy
systems where both the states and the inputs are affected
by delay. Although several results regarding linear systems
exists, to our best knowledge, the problem of observer-based
control of TS system with both inputs and states affected by
delay has not been investigated in the literature. A minimal
order control for linear uncertain time-delay systems using
LMIs has been developed in [15]. Non-fragile control for
Lipschitz nonlinear systems with the delay affecting the states
has been investigated in [16]. [17] considered uncertain linear
neutral systems with time-varying delays and computed delay-
dependent conditions for stabilization, but observer-based con-
trol has not been studied. [18] computed a decentralized
control for uncertain large-scale interconnected systems where
the time-delay only affects the states.



In our previous research, [19] and [20], we have investigated
stabilization and estimation problems for a specific class of
time-delay TS fuzzy models. In this paper we propose a two
step method for designing an observer based controller while
guaranteeing a minimal cost for time-delay nonlinear systems
represented by Takagi-Sugeno fuzzy models. We organize the
paper as follows: Section 2 presents the problem statement and
assumptions. Section 3 describes the structure of the proposed
controller, observer and their design. Section 4 presents the
simulation results. Conclusions and future work are given in
Section 5.

Notations. We use standard notations, same as in [19].
Consider a real symmetric matrix F = FT ∈ Rn×n; F > 0
or F < 0 denotes that F is positive or negative definite,
respectively. We denote with I the identity matrix, and with
0 the zero matrix of appropriate dimensions. A transposed
quantity in the symmetric position in a matrix is denoted

with the symbol ∗, for example
(
Q ∗
B R

)
=

(
Q BT

B R

)
, and

B + ∗ = B + BT . The Euclidean norm of x is denoted with
∥x∥, ∀ x ∈ Rnx .

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider TS fuzzy models with time-delay of the form:

ẋ(t) =

s∑
i=1

s∑
j=1

hi(z(t))hj(z(t− τ))

(Aijx(t) +Dijx(t− τ)) +Biju(t− τ(t))

y(t) =

s∑
i=1

s∑
j=1

hi(z(t))hj(z(t− τ))Cijx(t)

x(t) =ϕ(t), t ≤ τ

(1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the control
input, Aij , Bij , Cij and Dij , are local models matrices. ϕ(t)
represents the initial condition of the states. ϕ(t) may be
unknown but it is bounded with a known bound and z denotes
the premise variables. The time-delay is denoted with τ , the
number of rules is denoted by s and hi, i = 1, .., s, are
nonlinear membership functions with the property hi(z) ∈
[0, 1], i = 1, ..., s,

∑s
i=1 hi(z) = 1.

The goal is to develop a fuzzy observer based controller that
stabilises the system (1) while guaranteeing a minimal cost.

Assumption 1. τ(t) is the time varying delay which is
supposed to be exactly known. Also, τ is differentiable, τ̇ ≤ d,
d ∈ [0, 1), where d is the maximum speed change of the delay.
In this paper we assume a single delay, multiple delays are left
for future work.

To simplify the notation, in what follows, all the sums
present in the equations are denoted by the matrix name
present in the sum and subscripts that denote the dependence
on the current state or delayed one. For instance, Fzzτ =∑s

i=1 hi(z(t))
∑s

j=1 hj(z(t− τ))Fij .
Using such notations, (1) can be written as:

ẋ(t) =Azzτx(t) +Dzzτx(t− τ(t)) +Bzzτu(t− τ(t))

y(t) =Czzτx(t)
(2)

Results are developed using the following lemma and prop-
erty:

Lemma 1. (Congruence) Having the matrix P = PT and a
full column rank matrix Q, it holds that:

P > 0 =⇒ QPQT > 0

Property 1. (Schur complement) Let M = MT =(
M11 M12

MT
12 M22

)
with M11 and M22 square matrices of appro-

priate dimensions. Then:

M < 0 ⇐⇒

{
M11 < 0

M22 −MT
12M

−1
11 M12 < 0

⇐⇒

{
M22 < 0

M11 −M12M
−1
22 MT

12 < 0

(3)

We consider a state-feedback controller

u(t) = −Kzx(t) (4)

where Kz =
∑s

k=1 hk(z(t))Kk contains the controller gains.
Due to the fact that not all states are measured, we use the
control law:

u(t) = −Kzx̂(t) (5)

where x̂ represents the estimated state vector. The observer
has the form:

˙̂x(t) =Azzτ x̂(t) +Dzzτ x̂(t− τ(t))

+Bzzτu(t− τ(t)) + Lzzτ (y − ŷ)

ŷ(t) =Czzτ x̂(t)

(6)

where Lzzτ is the observer gain. In order to implement this
observer, we consider the assumption – generally used in
observer design –:

Assumption 2. The scheduling variables are exactly known
at all time.

III. MAIN RESULT

Our target is to design Kz and Lzzτ and minimize the cost
function:

J(t) =

∫ ∞

0

[
xT (t)R1x(t) + uT (t)R2u(t)

]
dt (7)

where R1 = RT
1 > 0 and R2 = RT

2 > 0 are given symmetric
positive matrices of appropriate dimensions.

We start by defining the estimation error e(t) = x(t)− x̂(t)
and the error dynamics:

ė(t) =ẋ(t)− ˙̂x(t)

=
(
Azzτ − LzzτCzzτ

)
e(t) +Dzzτ e

(
t− τ(t)

) (8)

Substituting (5) in (6) results in:

˙̂x(t) =Azzτ x̂(t) + (Dzzτ −BzzτKzτ )x̂(t− τ)

+ LzzτCzzτ e(t).
(9)

Substituting (5) in (2) gives us the closed loop system:



ẋ(t) =Azzτx(t) +
(
Dzzτ −BzzτKzτ

)
x(t− τ(t))

−BzzτKzτ e(t− τ)
(10)

To develop the design conditions, we consider the dynamics
of x̂ and e that yield the augmented dynamics as:[

˙̂x(t)
ė(t)

]
=

[
Azzτ LzzτCzzτ

0 Azzτ − LzzτCzzτ

] [
x̂(t)
e(t)

]
+

[
Dzzτ −BzzτKzτ 0

0 Dzzτ

] [
x̂(t− τ)
e(t− τ)

] (11)

Note that if
[
x̂
e

]
→ 0 as t → ∞ then

[
x
e

]
→ 0 as t → ∞.

We make the following notations:

x̃(t) =

[
x̂(t)
e(t)

]
Ã =

[
Azzτ LzzτCzzτ

0 Azzτ − LzzτCzzτ

]
D̃ =

[
Dzzτ −BzzτKzτ 0

0 Dzzτ

] (12)

thus, (11) can be rewritten as:

˙̃x(t) = Ãx̃(t) + D̃x̃(t− τ) (13)

We use the following candidate Lyapunov–Krasovskii func-
tional:

V (t) = x̃T (t)P̃ x̃(t) +

∫ t

t−τ

x̃T (t)Q̃x̃(t)ds (14)

where P̃ =

[
P1 0
0 P2

]
, Q̃ =

[
Q1 0
0 Q2

]
, Pi = PT

i > 0 and

Qi = QT
i > 0 for i ∈ {1, 2} and denote:

V1(t) = x̃T (t)P̃ x̃(t) V2(t) =

∫ t

t−τ

x̃T (s)Q̃x̃(s)ds (15)

Assume that the derivative of the Lyapunov function in
respect with time has an upper limit such that V̇ (t) ≤ −J0 or

V̇ (t) + J0 ≤ 0 (16)

where J0 = xT (t)R1x(t) + uT (t)R2u(t). To obtain J(t),
equation (16) is integrated from t to ∞:∫ ∞

0

xT (t)R1x(t) + uT (t)R2u(t)dt ≤ −
∫ ∞

0

V̇ (t)dt

= V (0)− V (∞)

(17)

If the closed loop system is stable, V (∞) = 0. Then, the cost
function is bounded by V (0) so, to minimize that, we consider
the following:

J0 = J1 + J2 (18)

and impose
V1(0) = x̃T (0)P̃ x̃(0) ≤ J1 (19)

V2(0) =

∫ 0

−τ

x̃T (s)Q̃x̃(s)ds ≤ J2 (20)

Imposing x̂(t) = 0 for t ∈ [−τ, 0] the error of estimation is:

e(t) = x(t)− x̂(t) = x(t), ∀t ∈ [−τ, 0] (21)

Replacing x̃ in V1(0) and using (21) gives:

x̃T (0)P̃ x̃(0) = xT (0)P2x(0) ∀t ∈ [−τ, 0] (22)

We assume that:

∥x(t)∥2 ≤ nmax, ∀t ∈ [−τ, 0] (23)

and nmax is known. This is a reasonable assumption, as in
practical cases, the state variables are bounded. Then, (19)
holds if:

P2 ≤ J1
nmax

I; (24)

Replacing x̃ in (20) and using (21) gives:

x̃T (t)Q̃x̃(t) = xT (t)Q2x(t) ∀t ∈ [−τ, 0] (25)

For the integral we consider:∫ 0

−τ

xT (s)Q2x(s)ds ≤
∫ 0

−τ

J2
τmax

ds (26)

where τ(t) ≤ τmax. (26) is satisfied if:

xT (t)Q2x(t) ≤
J2

τmax
, ∀t ∈ [−τ, 0] (27)

It is known that:

xT (t)Q2x(t) ≤ ∥x(t)∥2λmax(Q2), ∀t ∈ R (28)

where λmax(Q2) is the largest eigenvalue of Q2.
Using (23) results in

xT (t)Q2x(t) ≤ nmaxλmax(Q2) (29)

Imposing :

nmaxλmax(Q2) ≤
J2

τmax
(30)

gives:

λmax(Q2) ≤
J2

τmaxnmax
(31)

which is satisfied if

Q2 ≤ J2
τmaxnmax

I (32)

Next we compute the derivative of V1(t):

V̇1(t) =x̃T (t)ÃT P̃ x̃(t) + x̃T (t− τ)D̃T P̃ x̃(t) + (∗) (33)

Denoting: χ̃ =

[
x̃(t)

x̃(t− τ)

]
, we obtain:

V̇1(t) =χ̃T

[
P̃ Ã+ (∗) P̃ D̃

(∗) 0

]
χ̃ (34)

The derivative of V2 is:

V̇2(t) = x̃T (t)Q̃x̃(t)− (1− τ̇(t))x̃T (t− τ)Q̃x̃(t− τ) (35)

Based on Assumption 2, (35) becomes:



V̇2(t) ≤ χ̃T

[
Q̃ 0

(∗) −(1− d)Q̃

]
χ̃ (36)

Substituting the delayed control law (5) in J0 gives

J0 =
(
e(t) + x̂(t)

)T
R1

(
e(t) + x̂(t)

)
+ x̂T (t− τ)KT

zτR2Kzτ x̂(t− τ)
(37)

Using (12) we have:

J0 =x̃T (t)R̃1x̃(t) + x̃T (t− τ)R̃2x̃(t− τ) (38)

with R̃1 =

[
R1 R1

R1 R1

]
, R̃2 =

[
KT

zτR2Kzτ 0
0 0

]
and (38) can

be rewritten as J0 = χ̃T

[
R̃1 0

0 R̃2

]
χ̃.

Substituting V̇ (t, x) and J0 in (16) gives:

χ̃T

[
P̃ Ã+ (∗) + Q̃+ R̃1 P̃ D̃

(∗) −(1− d)Q̃+ R̃2

]
χ̃ ≤ 0 (39)

which is satisfied if (40) (on the next page) holds.
The main result of this work is summarised in the following

theorem:
Theorem 1. Consider the augmented dynamics (11) and

assume that τ is bounded, τ ≤ τmax with τmax > 0, and
differentiable, τ̇ ≤ d and (23) holds, with d ∈ [0, 1) and nmax

a given constant. If there exist matrices P̃ = P̃T > 0, Q̃ =
Q̃T > 0, Ki, Lij , i, j = 1, ..., s, such that (40), (24), (32) are
satisfied then the augmented dynamics (11) is asymptotically
stable. The upper bound of the cost function is minimised if
J0 = J1 + J2 is minimised.

It can be observed that equation (40) is not a LMI, and
direct sufficient LMI conditions can not be stated, thus we
will solve it in two steps. First we will compute an observer
and then the controller.

We start by computing the observer for model (2). The
observer can be designed by solving the matrix inequality:[
P2

(
Azzτ − LzzτCzzτ

)
+ (∗) +Q2 +R1 P2Dzzτ

(∗) −(1− d)Q2

]
≤ 0

(41)
Denote Nzzτ = P2Lzzτ and rewrite (41) as:[(
P2Azzτ −NzzτCzzτ

)
+ (∗) +Q2 +R1 P2Dzzτ

(∗) −(1− d)Q2

]
≤ 0

(42)
Inequality (42) holds if

2

s− 1
Fijil + Fijkl + Fkjil ≤ 0 ∀i, j, k, l = 1, ..., s (43)

where:
Fijkl =

[
Γ44
11 P2Dij

(∗) −(1− d)Q2

]
≤ 0 (44)

and
Γ44
11 =

(
P2Aij −NijCkl

)
+ (∗) +Q2 +R1 (45)

We solve the LMI (43) and replace the obtained value
for Lzzτ in (40), thus having the decision variables

Kzτ , P1, P2, Q1, Q2. Then, congruence of (40) with
diag(P−1

1 , I, P−1
1 , I) results in (46) where:

Γ46
11 =AzzτP

−1
1 + (∗) + P−1

1 Q1P
−1
1 + P−1

1 R1P
−1
1

Γ46
22 =P2

(
Azzτ − LzzτCzzτ

)
+ (∗) +Q2 +R1

Applying the Schur complement on (46) for P−1
1 R1P

−1
1

and P−1
1 KT

zτR2P
−1
1 Kzτ and making the notations S =

P−1
1 ,W = P−1

1 Q1P
−1
1 and Nzτ = KzτS results in (47).

For (47), sufficient LMI conditions can be established as:

2

s− 1
Fijil + Fijkl + Fkjil ≤ 0 ∀i, j, k, l = 1, ..., s (48)

where Fijkl is defined in (49) and

Γ49
22 =P2

(
Aij − LijCkl

)
+ (∗) +Q2 +R1

The conditions presented above can be summarised in the
following algorithm as:

1) Solve equation (43), with the matrices defined in (44).
Compute Lij = P−1

2 Nij .
2) Replace Lij in (40)
3) Solve (48) with the decision variables Kzτ , P1, P2,

Q1, Q2.
4) Compute the controller gains as Ki = NiS

−1

Regarding the minimization of the cost function J , since
the conditions are solved in two steps, the result will be sub-
optimal. There are several possibilities to minimize J1 and
J2, respectively, in step (1) or in step (3) of the algorithm.
Different possibilities will be illustrated in the next section on
a numerical example.

IV. NUMERICAL EXAMPLE

In this section we illustrate the performances of the pro-
posed method on a numerical example. Consider the following
nonlinear system:[
ẋ1

ẋ2

]
=

[
−2 −1 + cos(x1)

0.5
(
cos(x1) + 1

)
−2)

] [
x1

x2

]
+

[
0.6 0.9

1.5 + 0.3 cos(x1) 0.9 + 0.3 cos(x1(t− τ))

] [
x1(t− τ)
x2(t− τ)

]
+

[
0

0.65 + 0.35 cos(x1)

]
u(t− τ),

y =
[
1 0

] [x1

x2

]
.

The states of the open-loop system do not converge to zero.
A slowly varying time-delay, τ , with the form τ(t) = 0.35 +
0.35 cos(1.42t) and τ̇(t) ≤ d = 0.5 is used for this example.
Thus τmax = 0.7 and we also assume that ∥x(t)∥2 ≤ 13 for
t ∈ [−τ, 0].

To obtain the TS representation, we consider the premise
variable x1, which is measured and the nonlinear terms
cos(x1(t)) and cos(x1(t−τ)) are included in the membership
functions. Thus h1(x1(t)) =

1−cos(x1(t))
2 and h1(x1(t−τ)) =

1−cos(x1(t−τ))
2 are obtained. The local matrices are computed




P1Azzτ + (∗) +Q1 +R1 P1LzzτCzzτ +R1 P1

(
Dzzτ −BzzτKzτ

)
0

(∗) P2

(
Azzτ − LzzτCzzτ

)
+ (∗) +Q2 +R1 0 P2Dzzτ

(∗) (∗) KT
zτR2Kzτ − (1− d)Q1 0

(∗) (∗) (∗) −(1− d)Q2

 ≤ 0 (40)


Γ46
11 LzzτCzzτ + P−1

1 R1

(
Dzzτ −BzzτKzτ

)
P−1
1 0

(∗) Γ46
22 0 P2Dzzτ

(∗) (∗) P−1
1 KT

zτR2P
−1
1 Kzτ − (1− d)P−1

1 Q1P
−1
1 0

(∗) (∗) (∗) −(1− d)Q2

 ≤ 0 (46)


AzzτS + (∗) +W LzzτCzzτ + SR1 DzzτS −BzzτNzτ 0 S NT

zτ
(∗) Γ46

22 0 P2Dzzτ 0 0
(∗) (∗) −(1− d)W 0 0 0
(∗) (∗) (∗) −(1− d)Q2 0 0
(∗) (∗) (∗) (∗) −R−1

1 0
(∗) (∗) (∗) (∗) (∗) −R−1

2

 ≤ 0 (47)

Fijkl =


AijS + (∗) +W LijCkl + SR1 DijS −BjiNk 0 S NT

i

(∗) Γ49
22 0 P2Dij 0 0

(∗) (∗) −(1− d)W 0 0 0
(∗) (∗) (∗) −(1− d)Q2 0 0
(∗) (∗) (∗) (∗) −R−1

1 0
(∗) (∗) (∗) (∗) (∗) −R−1

2

 (49)

by replacing the limit values of cos(x1(t)) and cos(x1(t−τ))
in the nonlinear matrices.

A11 = A12 =

[
−2 −2
0 −2

]
, A21 = A22 =

[
−2 0
1 −2

]
D11 =

[
0.6 0.9
1.8 1.2

]
, D12 =

[
0.6 0.9
1.8 0.6

]
,

D21 =

[
0.6 0.9
1.2 1.2

]
, D22 =

[
0.6 0.9
1.2 0.6

]
,

B11 = B12 =

[
0
1

]
, B21 = B22 =

[
0
0.3

]
,

C11 = C12 = C21 = C22 =
[
1 0

]
,

h1(z) =
1− cos(z)

2
, h2(z) = 1− h1(z), z = x1.

We minimize (7) with R1 =

[
1 0
0 1

]
, R2 = 1.

The minimization can be applied in step (1) and step (3) of
the algorithm. We tested all the possibilities and the following
results were obtained:

1) Minimizing J0 or J1 in step (1) leads to an infeasible
problem in step (3).

2) Feasible solutions are obtained if the minimization is
performed for J1, J2 or J0 in step (3).

All the obtained costs are presented in Table 1. No optimiza-
tion means that the controller and observer gains have been
computed without optimization. The smallest one is achieved
when the minimization is performed only in step (3) for J0.
The theoretical upper bound of the cost is quite large, 4131,

TABLE I
GUARANTEED COST

Optimization type J0
No optimization 1499944

J1 in step (3) 250662
J2 in step (3) 234620

J2 in step (1) and step (3) 1493896
J0 in step (3) 4131

J2 in step (1) and J1 in step (3) 2884335

as it is valid for ∀ x0 such that ∥x(0)∥2 ≤ 13, t ∈ [−τ, 0].
We obtain the following observer and controller gains:

K1 =
[
2.23 1.56

]
, K2 =

[
2.39 2.11

]
,

L11 =

[
27.7
5.34

]
, L12 =

[
27.64
5.3

]
,

L21 =

[
27.99
6.62

]
, L22 =

[
27.95
6.61

]
.

(50)

Next we simulate the closed-loop system. The initial condition
for the state vector is x(t) =

[
3 2

]T
, t ∈ [−τ, 0]. Using

the controller, the states converge to 0, thus the controller is
stabilizing the system and the obtained results can be seen
in Fig. 1. The control input is presented in Fig. 2 and the
computed cost function in Fig. 3. As can be seen, the actual
cost for this particular trajectory is much smaller than the
theoretical one, 107.43.



Fig. 1. Trajectories of the closed-loop system

Fig. 2. Control input

Fig. 3. Cost function

V. CONCLUSIONS AND FUTURE WORK

This paper focused on observer based guaranteed cost
controller of nonlinear systems with variable time delays that
are described by Takagi-Sugeno fuzzy models. The delay is
known at all time. A two-step algorithm is given to design
the observer and the controller while minimizing the cost. As
further development, we will investigate the case of unknown,

multiple delays and finite-time convergence.
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