
Evolving Systems manuscript No.
(will be inserted by the editor)

Online Self-Evolving Fuzzy Controller with Global Learning
Capabilities

Ana Belén Cara · Héctor Pomares · Ignacio Rojas · Zsófia Lendek · Robert Babuška

Received: date / Accepted: date

Abstract This paper presents an online self-evolving fuzzy

controller with global learning capabilities. Starting from

very simple or even empty configurations, the controller learns

from its own actions while controlling the plant. It applies

learning techniques based on the input/output data collected

during normal operation to modify online the fuzzy con-

troller’s structure and parameters. The controller does not

need any information about the differential equations that

govern the plant, nor any offline training. It consists of two

main blocks: a parameter learning block that learns proper

values for the rule consequents applying a local and a global

strategy, and a self-evolving block that modifies the con-

troller’s structure online. The modification of the topology

is based on the analysis of the error surface and the determi-

nation of the input variables which are most responsible for

the error. Simulation and experimental results are presented

to show the controller’s capabilities.

Keywords Evolving fuzzy system · Adaptive control ·
Evolutionary methodology · Adaptive fuzzy control

1 Introduction

Throughout the years, control has been one of the fields in

which fuzzy systems have achieved a considerable success.

The two main reasons for this are: 1) fuzzy controllers do

A.B. Cara · H. Pomares · I. Rojas

Dept. Computer Architecture and Computer Technology, University of

Granada, C/ Periodista Saucedo Aranda s/n, 18071 Granada, Spain

Tel.: +34 958 241 778

E-mail: acara@atc.ugr.es, hector@ugr.es, irojas@atc.ugr.es

Zs. Lendek · R. Babuška

Delft Center for Systems and Control, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands

Tel.: +31 (0)15 27 88573

E-mail: z.lendek@tudelft.nl, r.babuska@tudelft.nl

not need an accurate model of the plant under control, and

2) they allow for the application of human expert knowledge

(Ying 2000; Liu and Zheng 2009; Chen et al 2009; Rojas

et al 2006; Park et al 2005; Gao and Er 2005; Angelov 2004).

Furthermore, it has been proven that fuzzy controllers are

universal approximators in the sense that they are able to

approximate any continuous function on a compact set to

any desired accuracy (Castro 1995).

There are different approaches to design a fuzzy con-

troller. When the dynamics of the plant to be controlled are

fully known (i.e., the differential equations that define the

plant’s behavior are available), ad-hoc controllers may be

defined by setting their structure and determining the proper

value of their parameters (Lalouni et al 2009; Galluzzo and

Cosenza 2009). However, when such knowledge about the

plant is not available, intelligent methods are required to au-

tomatically design the controller. Some of these methods are

based on assumptions about the bounds of the unknown dif-

ferential equations. Partial knowledge about the plant is used

to compute the controller’s parameters offline (Mucientes

and Casillas 2007) or online (Liu and Zheng 2009; Wang

et al 2008b), or even to modify the controller’s structure

(Phan and Gale 2008; Park et al 2005; Gao and Er 2003).

The design becomes even more challenging when it is

not possible to make such assumptions. In this case, we find

in the literature several offline algorithms based on pre-training

with input/output data (Mingzhi et al 2009; Chen et al 2009;

Lin and Xu 2006; Li and Lee 2003; Wang et al 2008a; Hoff-

mann and Nelles 2001). Works that solve the problem of the

online adaptation of fuzzy control parameters, i.e., adapta-

tion of the rule consequents and membership functions, also

exist (Wang et al 2008b; Rojas et al 2006; Pomares et al

2002b). However, few results exist about the online adap-

tation of the structure of the fuzzy system when no prior

knowledge about the plant is available (Angelov 2004; Lin

et al 1995).



2

In (Angelov 2004) and (Lin et al 1995) the controller’s

structure is modified by using the information given by ev-

ery new sample of training data. As a consequence, differ-

ent sequences of training data may produce different struc-

tures for the controller. In some cases, e.g., when working in

noisy environments, these methods may not be sufficiently

robust. Furthermore, in (Lin et al 1995) the fuzzy controller

is trained by using previously obtained data and is not ac-

tually used to control the plant until the learning has been

completed. Hence, the method proposed in (Lin et al 1995)

could be considered an offline learning method, in the sense

that learning does not take place while controlling the plant.

Therefore, the search for methods able to work with less

information while controlling the plant is a very challeng-

ing issue for current research. Nevertheless, relaxing the as-

sumptions and conditions imposed on the plant’s dynamics

is not without a price, as stability analysis becomes difficult.

In many cases, the value of these methods can only be shown

by experimental results (Angelov 2004).

The aim of this paper is to advance in the direction of

these interesting works by proposing a methodology for an

Online Self-Evolving Fuzzy Controller (OSEFC) with global

learning capabilities. This paper is an extension of the work

presented in (Cara et al 2010). The main idea is to apply

global information gathered during the normal control op-

eration to dynamically adapt the rule consequents and the

fuzzy controller’s topology. For this, we rely on the property

of universal approximation of fuzzy controllers, which states

that the proper addition of membership functions makes it

possible to reach a desired accuracy level for a functional

approximation. The main properties of the OSEFC proposed

in this paper are the following:

– No model of the plant is needed.

– No previous knowledge about the control policy is needed.

The fuzzy system can start working from an empty set

of rules and will adapt itself as it controls the plant.

– All the decisions regarding the topology or parameters

changes are based on historical information about the

control process, gathered online while the controller is

working.

The rest of the paper is organized as follows. In Sec-

tion 2, the problem to be solved is introduced together with

the structure of the fuzzy controller employed. In Section 3,

the general architecture of the OSEFC is presented. Sec-

tion 4 describes the Parameter Learning (PL) block, dis-

tinguishing between the local and the global learning tech-

niques. Section 5 is dedicated to the description of the Self-

Evolving (SE) block. Simulation and experimental results

illustrating the capabilities of the algorithm are presented in

Section 6. Finally, conclusions are drawn in Section 7.

2 Problem Formulation

The objective of the controller considered in this paper is to

make the plant’s output track a given reference signal rk. For

instance, consider a single-input single-output (SISO) plant,

whose dynamics are given by

yk+1 = f (xk,uk) (1)

where xk = (yk,yk−1, ...,yk−p,uk−1,uk−2, ...,uk−q)∈Ω is the

state of the plant, uk ∈ R is the control signal exerted by the

controller, f is an unknown continuous and differentiable

function, and p and q are constants that determine the plant

order.

In order to design a controller for this system, we impose

the controllability condition, that is stated as (Phan and Gale

2008)

∂ f (x,u)

∂u
6= 0 ∀x ∈ Ω ,∀u ∈ R (2)

where Ω is the operating region of the plant. This condition

guarantees that there is no state in which the plant’s output

would not depend on the control signal. Furthermore, (2)

implies that the partial derivative of the plant’s output with

respect to the control signal has a constant sign (Phan and

Gale 2008; Pomares et al 2002b). Note that this restriction

applies only to the partial derivative of the plant’s output

with respect to the control signal, but not with respect to the

state.

The controller can be expressed as a function G such that

uk = G(x̂k;Φ) (3)

where x̂k = (rk,yk,yk−1, ...,yk−p,uk−1,uk−2, ...,uk−q) and Φ

represents the set of parameters that define the controller.

Note that the definition of x̂k is different from the one given

for xk, as it also includes the reference value at time k. The

controller has the objective of making the plant’s output reach

the set point as fast as possible.

According to (3), the control problem may be cast as

a problem of function approximation of the plant’s inverse

function (Pomares et al 2004). We choose to use a zero-

order Takagi-Sugeno fuzzy system with a complete set of

rules (Lee 1990) to approximate (3). The i-th fuzzy rule ℜi

is given by

ℜi : IF x1 is X
i1
1 AND x2 is X

i2
2 AND... xN is X

iN
N THEN ui = Qi

(4)

where i = 1...Nr, Nr is the number of fuzzy rules, N is the

number of inputs to the fuzzy system, X iv
v ∈{X1

v ,X2
v , ...,Xnv

v }
are the membership functions (MFs) of the input xv, nv is the

number of membership functions for that input variable, ui

is the output of the i-th rule and Qi is a scalar value repre-

senting the rule consequent.



3

Although our approach is independent of the type of

membership function used, we have chosen triangular mem-

bership functions to provide better transparency and inter-

pretability to the fuzzy system (Wang et al 2008a). Further-

more, by using normalized triangular membership functions

only the centers of the membership functions need to be

stored (Rojas et al 2000). At the same time, it is guaran-

teed that for any input within the input range, exactly two

membership functions for each variable attain non-zero ac-

tivation degrees. This reduces the complexity of the com-

putations while assuring that the whole operating region is

covered by fuzzy rules. The membership functions placed at

both ends of the range of the input variables are trapezoidal.

This allows responding to the issue of data that go beyond

the range of the variables. If a point is out of range, the cor-

responding trapezoidal MF is activated with a degree equal

to 1. This situation is identified as an out-of-range point and

the controller responds to it by exerting a control action and

modifying the consequents of the rules accordingly to the

output error.

The selected fuzzy system uses the product as the T-

norm for the conjunction and the weighted average as the

defuzzification strategy. Thus, the output of the fuzzy sys-

tem at instant k is given by

uk = Ĝ(x̂k;Φk) =

Nr

∑
i=1

Qi ·αi(x̂k)

Nr

∑
i=1

αi(x̂k)

(5)

where Φk is the set of parameters defining the fuzzy con-

troller at time k and αi(x̂k) is the firing strength of the i-th

rule, which is calculated by

αi(x) = αi(x1,x2, ...,xN) =
N

∏
j=1

µ i
j(x j) (6)

where µ i
j(x j) is the activation degree of the j-th MF in the

antecedent part of the rule ℜi.

The set of parameters of the fuzzy controller Φk is formed

by the rule consequents Qi (i = 1,2, ...,Nr) and the cen-

ters of the membership functions φv, j (v = 1,2, ...,N; j =

1,2, ...,nv). The use of normalized triangular membership

functions simplifies (5) as follows:

uk = Ĝ(x̂k;Φk) =
Nr

∑
i=1

Qi ·αi(x̂k) (7)

since
Nr

∑
i=1

αi(x) = 1, ∀x.

Note that the challenge tackled in this paper, i.e., the on-

line evolution and control starting from no knowledge about

the plant, is more complex than typical function approxima-

tion problems, because the approximation of (3) must be ob-

tained while controlling the plant in a proper way. Although

Reference

PL-Block

MSE improves?

SE-Block

I/O Data

Adaptation mechanism

y

Fuzzy Logic ControllerInput preprocessing

Fig. 1 Representation of the closed-loop system

in this paper we have considered only SISO plants, the pro-

posed methodology can easily be extended to multiple-input

multiple-output (MIMO) problems.

3 Architecture of the OSEFC

The complete closed-loop system is presented in Fig. 1. The

proposed adaptation mechanism of the OSEFC is shown on

the top. Its internal structure consists of two blocks (param-

eter learning and self-evolution of the topology) that will

be explained in the sequel and a memory to store the I/O

data collected during the operation of the plant for the use

in the two adaptive blocks. Below, the fuzzy logic controller

that is modified by the adaptation mechanism (dotted line)

provides the control signal that is applied to the plant. The

OSEFC is the combination of the adaptation mechanism and

the fuzzy logic controller. Finally, the plant produces the

output y that is fed back to the controller. The Input Prepro-

cessing block is optional. It simply represents the possibility

of using different sets of inputs for the fuzzy controller.

Fig. 2 depicts the general flowchart of the OSEFC. There

are two main blocks: 1) the PL-block uses the control evo-

lution information for parameter learning; 2) the SE-block



4

EMPTY CONTROLLER

PARAMETER LEARNING
PL-BLOCK

(Section 4)

SELF-EVOLUTION
SE-BLOCK

(Section 5)

MSE

improves?

NO

YES
I/O data

Fig. 2 General flowchart for OSEFC

uses this I/O information to modify the topology of the fuzzy

controller.

The PL-block performs the tuning of the rule conse-

quents at two different levels. On the one hand, the Local

Learning module (LL-module) combines information about

the current state of the control and the monotonicity of the

plant’s output with respect to the control signal to modify the

rule consequents. The aim of these changes is to direct the

plant’s current output to its target value. On the other hand,

the Global Learning module (GL-module) uses the I/O data

collected during operation to fine tune the rule consequents.

These changes come from a global perspective, as their ob-

jective is not only to direct the current output to the current

set point, but also to guarantee that the control in other op-

erating areas has a reasonable performance.

The second main block is the SE-block, which is respon-

sible for the evolution of the topology of the fuzzy controller.

This block also uses the I/O data collected during the normal

operation of the control system. In this case, the information

is used to determine which input variable is responsible for

the current approximation error and, therefore, should re-

ceive an extra membership function.

The OSEFC switches from the PL-block to the SE-block

when the former does not further improve the global mean

square error (MSE) in the control performance. However,

after adding a new membership function to the fuzzy con-

troller, the OSEFC switches back to the LL-module in the

PL-block to restart the procedure of consequent learning for

the new rules.

Section 4 describes in detail the PL-block and its two

modules (LL-module in Subsection 4.1 and GL-module in

Subsection 4.2). The SE-block is presented in Section 5.

4 Parameter learning

The PL-block is in charge of tuning the rule consequents

both at a local and a global level. Fig. 3 shows the inter-

nal flowchart and the pseudo-code of the PL-block. The lo-

cal adaptation takes care of the short-term response of the

controller. At every time instant it analyzes the error at the

plant’s output and applies a reward or penalty to those rules

that are responsible for the error. This type of action is only

capable of a coarse tuning of the parameters, which makes

the participation of the GL-module necessary. The GL-module

modifies the consequents of the rules so that the global qual-

ity of the control policy is preserved. Obviously, the changes

proposed by the GL-module must be consistent with those

suggested by the LL-module, as the main objective at ev-

ery moment is to control the plant. The pseudo-code of the

routines has been included to clarify the operation of the PL-

block.

The change from local to global learning is performed

as follows: first, only the LL-module works during a pe-

riod T’. During this period, the control policy is rough, but

the local learning allows the gathering of truly useful data

from the plant. After this period, and while the plant is con-

trolled locally, the GL-module starts tuning the consequents

to achieve a finer learning. It is important to note that during

the global learning stage, the LL-module continues working

as a supervisor of the GL-module.

4.1 Local learning

From a “local” point of view, the goal of the controller is to

bring the plant’s output from its current value to the desired

reference value at the next time step, i.e., yk+1 = rk. Accord-

ing to the controllability condition (2), the partial derivative

of the plant’s output with respect to the control signal has

a definite constant sign. Therefore, the combination of the

error at the plant’s output and the sign of the monotonic-

ity of the plant w.r.t. the control signal, gives us information

about the right direction in which the rule consequents have

to be moved to achieve the local control objective (Rojas

et al 2006).



5

FUZZY CONTROLLER

LL-MODULE

LL-MODULE

error < threshold?

GL-MODULE

Consistent?

Apply global changeApply local change

YES

YES

NO

NO

T’

e(k) = r(k-1) - y(k)

FOR each rule consequent Qi
 Qi = C · !(k-1) · e(k)

IF (u = umin AND  Qi<0)  OR (u = umax AND  Qi>0)

 Qi = 0

END IF

END FOR

  = { Q1, Q2,…, QNr}

e(k) = r(k-1) - y(k)

FOR each rule consequent Qi
 Qi = C · !(k-1) · e(k)

IF (u = umin AND  Qi<0)  OR (u = umax AND  Qi>0)

 Qi = 0

END IF

END FOR

 L = { LQ1, LQ2,…, LQNr} ={ Q1, Q2,…, QNr} 

FOR each I/O datum M(m) = [x(m), u(m)]in M

"(m) = fuzzy controller(x(m))

END FOR

Compute Jk according to equation (13):

Jk = sum((u(m) - "(m))2)

Minimize Jk according to equation (14)

#* = {Q*1,Q
*
2,…,Q

*
Nr } are the consequents that 

minimize Jk

 G = {Q1-Q
*
1,Q2-Q

*
1,…,QNr-Q

*
Nr,} are the 

modifications proposed for the global learning 

FOR each rule consequent Qi (i=1,2,…, Nr)

IF ( L(Qi) and  G(Qi) have the same sign)

 Qi=  G(Qi)

ELSE

 Qi=  L(Qi)

END IF

END FOR

  = { Q1, Q2,…, QNr}

Fig. 3 Flowchart and pseudo-code of the PL-block

Let us assume that the derivative in (2) is positive. This

means that given the state xk of the system if we apply u1 >

u0, then the output obtained for u1 is larger than the one

obtained for u0, i.e., f (kk,u1) > f (xk,u0). If we define the

error at the plant’s output as ek = rk−1 − yk, there are the

three possible cases:

– If the error is negative, i.e., yk > rk−1, the control signal

applied at time k was too large. To correct this behaviour,

the consequents of the fuzzy rules must be decreased.

– In the opposite case, ek > 0 (i.e., yk < rk−1), the con-

trol signal was too small and the consequents must be

increased.

– Finally, if ek = 0, the plant’s output has reached the ref-

erence value and no correction is needed in the rule con-

sequents.

From the previous analysis, we conclude that the sign

of the error ek indicates the direction in which the conse-

quents have to be moved. If the plant’s monotonicity with

respect to the control signal is negative, the previous study

still holds, but the changes go in the opposite direction. On

the other hand, not all the rules contribute in the same degree

to reaching the current value at the plant’s output. Therefore,

the modification applied to each of them must be propor-

tional to their contributions. Thus, we apply the following

modification to the consequent of the i-th fuzzy rule at in-

stant k:

∆Qi(k) = C ·αi(k−1) · ek (8)

where αi(k− 1) is the firing strength of the rule at the pre-

vious time step, when the rule was fired to obtain rk−1. C is

a normalization constant with the same sign as ∂y/∂u. Its

absolute value is set offline as

|C| = ∆u/∆r (9)

where ∆u is the range of variation of the control signal and

∆r is the range of possible reference values. It is to be clari-

fied that ∆r does not refer exclusively to the range in which

the reference signal is actually taking its values, but rather

refers to the range of values that are allowed by the system.

Note that ∆u is also known a priori, since the user must

know the limitations of the actuators before using them.

The rationale behind (9) is as follows: the objective of

the adaptation law is to decrease the error at the plant’s out-

put. In this case, it can be proven that the absolute value of

C must be

|C| ≤ 2

| ∂ f (x,u)
∂u

|max

(10)

Since the differential equations that govern the plant are un-

known, the maximum value of the partial derivative shown

in the denominator of (10) is also unknown and this expres-

sion cannot be applied. We use (9) as an approximation of

this value.

Most real life controllers are limited in their operation,

which highly affects the control process. For instance, if the

actuator is only able to operate within the range [umin,umax]

and at a given moment the optimal control input to reach

the reference value is u(k) > umax, the input that is finally

applied to the plant is umax, so it is not possible to reach the

desired set point at the next time step. However, we cannot

apply any penalty to the rules, as they are already giving the

best possible answer. Therefore, no adjustment is applied to



6

the rules when the error is due to the actuator’s limitations:

∆Qi(k) =























0 ifuk−1 = umin & ∆Qi(k) < 0

0 ifuk−1 = umax & ∆Qi(k) > 0

∆Qi(k) otherwise

(11)

The LL-module performs the consequent learning pro-

cess online, while the controller is operating over the real

plant. Control actions are applied from the first moment,

with increasing accuracy as the adaptation evolves. Nev-

ertheless, note that the adaptation proposed here is based

primarily on qualitative information and, therefore, only a

coarse tuning of the consequents is obtained by the LL-module.

4.2 Global learning

The local learning procedure focuses on the control at the

current time instant. However, it is also necessary to assure

the global performance of the control policy. In this way, the

controller will be able to respond to the changes in the value

of the reference signal. This means that we cannot simply

concentrate on the rules that are being fired at the moment,

but also have to consider the remaining rules. To do so, we

need historical data about the behaviour of the plant.

Since our hypothesis here is that the dynamics of the

plant are unknown, we cannot compute the partial derivative

∂y/∂u. Therefore, it is not possible to apply any gradient-

based techniques to minimize the error at the plant’s output.

However, such methodologies can be applied if we use the

error in the controller’s output instead of that in the plant’s

output (Pomares et al 2004). As mentioned before, the fuzzy

controller is an approximator of the plant’s true inverse func-

tion. Therefore, minimizing the error made by the controller

indirectly minimizes the tracking error made at the plant’s

output. In this way, we avoid the need for the model of the

plant.

We propose a method that exploits the fact that the very

operation of the control system provides the I/O data about

the plant’s inverse function needed to perform the aforemen-

tioned approximation. Hence, if the control signal uk exerted

at time k produces the plant’s output yk+1 we know that, if

the system is ever in the same state again and the reference

value happens to be rk′ = yk+1, the optimum control signal

is precisely uk. Therefore, at every sampling time the plant

produces a value of the plant’s true inverse function.

In order to use this information, we store in a memory

M the I/O data collected during the normal control oper-

ation. The memory is organized as a grid that divides the

input space. Each datum has the form [x̃k,uk], where x̃k =
(yk+1,yk, ...,yk−p). Every new datum is stored in the hyper-

cube of the grid corresponding to x̃k, replacing the datum

already stored in that position, if there was any. The data

stored in this memory is used with two different purposes in

our approach: 1) for the global learning of the rule conse-

quents described in this section, and 2) for the modification

of the controller’s topology. For the latter, a uniform rep-

resentation of the function to be approximated is required.

With this organization, the data stored in M provide such

uniform representation of the inverse function of the plant.

Moreover, the organization of the memory as a grid reduces

the memory costs, as only one I/O pair is stored in each hy-

percube.

Now it is possible to compute the error at the controller’s

output at time k for the m-th datum as

eu(m) = um − ũm (12)

where um is the control signal stored in the memory M and

ũm is the output produced by the current controller for the

input vector x̃m.

At each control step k, the objective of the GL-module

is to minimize the mean square error for all the data in M:

Jk =
#M

∑
m=1

e2
u(m) =

#M

∑
m=1

(um − ũm)2 =
#M

∑
m=1

(um − Ĝ(x̃m;Φk))
2

(13)

where #M is the number of elements stored in the memory

M.

The new consequents proposed for the fuzzy controller

are those that minimize (13), that is:

Γ ∗ = argmin
Q

(Jk) = argmin
Q

(
#M

∑
m=1

(um − Ĝ(x̃m;Φk))
2) (14)

where Γ ∗ = {Q∗
1,Q

∗
2, ...,Q

∗
Nr
} is a set with the new values

for all the consequents.

Before replacing the old consequents in the fuzzy con-

troller by the new ones, it must be kept in mind that we have

minimized the error at the controller’s output and not the er-

ror at the plant’s output. An additional check is necessary to

verify whether the modification proposed by the GL-module

actually improves the tracking of the reference signal. In this

sense, we use the LL-module as a supervisor: as stated be-

fore, the monotonicity of the plant allows us to determine the

right direction in which the consequents have to be moved.

Therefore, if the modification proposed for a consequent by

the GL-module is in the same direction as that indicated by

the LL-module, the change is accepted. Otherwise, we apply

the local modification.

Finally, it is important to note that the global learning

cannot be used without the existence of the local module as

the latter is the one which is initially capable of starting to

control the plant and obtaining truly useful I/O data.



7

5 Self-evolving topology

In the previous section we introduced a method for the on-

line learning of the rule consequents of a fuzzy controller

with a predefined configuration of membership functions.

However, it still is necessary to fix the structure of the fuzzy

controller beforehand (i.e. control inputs, number of mem-

bership functions for each input, parameters of the member-

ship functions, etc.). This may not be a trivial task, as it re-

quires certain knowledge about the system to be controlled

(Rojas et al 2006; Phan and Gale 2008).

In order to operate without any previous knowledge, a

true self-evolving adaptive controller must be able to adapt

not only some of its parameters, but its full structure as well.

However, most adaptive fuzzy controllers proposed in the

literature use a predefined structure (Liu and Zheng 2009;

Wang et al 2008b; Mucientes and Casillas 2007), that often

leads to systems whose structure is unnecessarily large or

too small to adequately represent the plant (Phan and Gale

2008).

To tackle the problem of the evolution of the topology

of the fuzzy controller, information about all the operating

regions reached by the plant is required. Again, this infor-

mation must be gathered during the normal operation of the

controller. Unlike other methods proposed to solve this prob-

lem (Angelov 2004; Lin et al 1995), OSEFC considers the

entire operating region when modifying the controller’s topol-

ogy, thereby providing more robustness.

To do this, we again make use of the I/O data stored in

M during the parameter learning phase. In this case, the in-

formation is used to decide which input variable needs most

a new membership function. Fig. 4 depicts the elements that

form the SE-block:

– First, an input variable has to be selected to receive an

additional membership function. Adding membership func-

tions to all the inputs is not feasible as the number of

rules grows exponentially with the number of member-

ship functions (Pomares et al 2002a).

– After selecting the most appropriate input variable, we

must select a good position to place it. To reduce the

method’s sensibility to noise, we analyze the entire error

distribution, instead of placing the new function at the

point of highest error.

– Finally, the new fuzzy rules created from the new MF

have to be initialized. The goal of this initialization is

that the controller’s performance is minimally affected

by the topology change.

All these steps are detailed in the following subsections.

It is important to note that to avoid an uncontrollable growth

of the number of MFs (and thereby of the number of rules)

we set a threshold for the desired accuracy in the approxi-

mation. Once this is met, no new membership functions are

FUZZY CONTROLLER

error < threshold

LOCATE NEW MEMBERSHIP FUNCTION

INITIALIZE NEW RULES

SELECT INPUT VARIABLE

NO

YES

1. FOR each input variable x

a. Define a fuzzy controller G* with:

- xv has the same number of MFs as in the current 

controller

- n* MFs in all the other inputs

b. FOR each I/O datum M(m) = [x(m), u(m)]in M

 (m) = G*(x(m)) 

END FOR

c. Compute the index of responsibility IR for x

according to Eq.(15)

2. Select xs = xv associated to the maximum IR

1. Divide the range of the input x

2. FOR each interval compute its MSE according to Eq. (18)

3. The location of the new center is given by Eq. (19)

1. NN = prod(ni) with i ! s and i = [1,…,N]

2. Create NN new rules as indicated in Eq. (20)

3. Update the list of MF centers, according to Eq. (21):

FOR all j < s 

newCenter(v,j) = oldCenter(v,j) 

END FOR

FOR all j > s

newCenter(v,j) = oldCenter(v,j-1)

END FOR

FOR all i ! s

newCenter(i,j) = oldCenter(i,j)

END FOR

4. Initialize the consequents of the new rules according 

to Eq. (22)   

Fig. 4 Flowchart and pseudo-code of the SE-block

added. However, if the control performance decreases be-

low the desired level (e.g. a change in the plant’s dynamics

happens), the SE-block starts operating again.

5.1 Selection of the input variable

In the proposed method we only add a membership function

to one input variable at a time. The selection of this input

is based on the study of the complete error surface reached

by the current configuration (Pomares et al 2000), instead of

considering only the point of maximum error, which would

lead to a method with high sensibility to noise (Phan and

Gale 2008).

The main idea is to check independently the degree of

responsibility of each input variable on the approximation

error and to select the one with the highest error. To do so,

we assume that the approximation is perfect in all the other

dimensions and that only the variable under analysis is re-

sponsible for the approximation error. To perform this anal-

ysis, the following algorithm is applied:

1. For each input xv:



8

(a) Construct an auxiliary fuzzy system G∗
v such that

i. The input xv has the same number of member-

ship functions as on the current fuzzy controller.

ii. Associate to all the other inputs a large number

n∗ of MFs.

(b) The approximation of the plant’s inverse function

produced by this fuzzy controller is G∗
v(x̃m;Φ∗), where

x̃m represents the input data stored in M and Φ∗ is

the set of parameters with the properties described

in step 1a.

(c) Compute the Index of Responsibility for input xv (IRv)

as

IRv =
#M

∑
m=1

(um −G∗
v(x̃m;Φ∗))2 (15)

2. Select the input variable xs with the largest value of IRv,

i.e. s = argmax
v

(IRv).

Under the assumption that the memory M provides a

uniform distribution of the data in the state-space, that is,

all hypercubes contain data, the number of data points along

one axis is indeed the n-th root of the total number. There-

fore, a possible value for n∗ is

n∗ =
N
√

#M

2
(16)

where #M is the number of I/O data stored in the memory

M and N is the number of input variables.

This value is based on the idea of having neither too few

MFs (which would lead to a structure far from the ideal case,

in which all the inputs have infinite membership functions)

nor too many (in which case, many of them would not be

activated by any of the input vectors stored in the memory

M).

Note that the fuzzy system G∗
v is used solely to determine

which input variable is receiving the new membership func-

tion. The SE-block operates in parallel with the normal op-

eration of the controller. For this reason, the auxiliary fuzzy

controller only works with the data stored in M, and is never

applied to the real plant.

The algorithm proposed allows us to select the variable

with the highest responsibility for the current approxima-

tion error and, hence, the one which needs to have one more

membership function. The next step is to find a proper loca-

tion for this new function.

5.2 Location of the new membership function

After selecting the input variable, we have to find a good

location for the new MF. As mentioned before, selecting

the point of largest error leads to methods sensible to noise.

Hence, we analyze the error distribution through the whole

variable’s range. The position of the new membership func-

tion is the center of gravity of the error distribution.

With this aim, we divide the range of the input variable

xs selected in Section 5.1 in K small intervals of width ∆xs

and compute the mean square error in each of them. Let us

define the j-th interval of the input xs as [xsmin
+ ( j − 1) ·

∆xs, xsmin
+ j ·∆xs] and the set of data points stored in M

with component xs within the j-th interval defined in the

range of the variable xs as

χ s
j = {x | xs ∈ [xsmin

+( j−1) ·∆xs, xsmin
+ j ·∆xs]} (17)

where j = 1,2, ...,K, x is a data vector stored in the memory

M, xs is the s-th component of that data and xsmin
is the left

end of the range of the variable xs.

The mean square error of all the data in χ s
j is given by

e2(χ s
j) =

∑
x∈χs

j

e2
u(x)

#χ s
j

(18)

where eu is computed as in (12) and #χ s
j represents the num-

ber of elements in the set χ s
j .

The center of the new membership function is located at

the gravity center of the error distribution, which is given by

φ∗
s =

K

∑
j=1

c j · e2(χ s
j)

K

∑
j=1

e2(χ s
j)

(19)

where c j is the central value of the interval [xsmin
+( j−1) ·

∆xs, xsmin
+ j ·∆xs].

5.3 Initialization of the new fuzzy rules

Since we are using a complete set of rules, the addition of

one MF to the input xs implies the creation of
N

∏
i=1
i6=s

ni new

rules. It is possible to initialize these new rules to any ran-

dom value, as the PL-block is able to adapt them properly.

However, this choice may cause a sudden decrease in the

controller’s performance in the first time steps after the topol-

ogy change. This undesirable effect is avoided by initializing

the consequents of the new rules to values that guarantee a

minimum quality degradation.

The new rules have the form

ℜ∗ : IF x1 is X
i1
1 AND...AND xs is X js

s AND...xN is X
iN
N THEN u = Q∗

(20)

where js is the position of the new membership function

within the list of ordered centers.



9

To explain the changes applied to the parameters of the

fuzzy system, let Φ be the set of old parameters (before the

new membership function was added) and Φ∗ the new set of

parameters. First, we include the new membership function

φs, js in the list of ordered centers of the variable xs. Note that

the MFs belonging to all the others variables do not undergo

any changes:

φ∗
s, j =φv, j i f j < js

φ∗
s, j =φv, j−1 i f j > js

φ∗
i, j =φi, j i f i 6= s (21)

Secondly, the consequents of the new rules have to be

initialized. The idea is that the global function represented

by the fuzzy controller keeps the same outline as before the

change, i.e. Ĝ(x;φ∗) = Ĝ(x;φ)∀x. The new rules are acti-

vated only when the input value for variable xs is within the

range [φv, js−1,φv, js+1], which is the partition created by the

new membership function. Therefore, we only need to as-

sign values to these rules. To obtain the new consequents we

impose the condition that, at the rule’s point of maximum ac-

tivation, the consequent equals the output of the fuzzy con-

troller under its previous configuration for the same input.

As this maximum activation happens when all the inputs are

located at the centers of the MFs in the premise, we have

that:

Q∗ = Ĝ(c;Φ) (22)

where c = (φ1,i1 , ...,φs,is= js , ...,φN,iN ), with i1 = 1, ...,n1 , ...,
iN = 1, ...,nN .

5.4 Related work

In this section we present some comments about the com-

parison of the proposed OSEFC with other methods found in

the literature. As mentioned in the introduction, many of the

approaches proposed for the online adaptation of fuzzy con-

trollers only modify the parameters of the fuzzy controller,

but use a fixed structure that has to be chosen a priori (Wang

et al 2008b; Rojas et al 2006; Pomares et al 2002b). Oth-

ers also modify the structure, but are based on assumptions

about the differential equations that govern the plant (Phan

and Gale 2008; Park et al 2005; Gao and Er 2003). Compar-

ing the proposed methodology with this type of algorithms

is very difficult, as the assumptions and the initial informa-

tion in every case are very different.

To the best of our knowledge, the methodology proposed

by Angelov (2004) is the most relevant work concerning a

problem similar to the one tackled in this paper, i.e., the on-

line development of a fuzzy controller while the controller is

operating and without previous knowledge about the plant.

However, the way the problem is solved is very different in

the two cases. Firstly, the underlying ideas are different. In

(Angelov 2004), the structure of the controller may evolve

with each new incoming data; that is, every new data is stud-

ied to decide whether or not a new fuzzy rule should be cre-

ated. In our case, we gather data in a global memory and use

a set of data points to decide when and where to add new

membership functions. Therefore, our topology changes are

less frequent in time than in the approach proposed by An-

gelov (2004). Moreover, in (Angelov 2004), each topology

change consists only of the addition or modification of one

fuzzy rule. In our proposal, a change in the topology consists

of the addition of one membership function to one input and

all its related rules, since a complete set of rules is being

used.

Another difference regarding the evolution of the topol-

ogy is the way the decision of adding MFs/rules is made:

in the method proposed in (Angelov 2004), this decision is

based on the potential of the data, which is related to the

distance between the data points. In our case, we analyze

the surface of the approximation error, trying to reduce the

error.

The methods used for the adaptation of the rule conse-

quents are also different. In (Angelov 2004) the recursive

weighted least square approach (Kalman filter) is applied,

while we base the modification of the consequents on two

different concepts: on the one hand, the local learning mod-

ule uses the error at the plant’s output to reduce it in the

short term. On the other hand, the global learning module

uses global information to reduce the error at the controller’s

output and, hence, indirectly reduce the error at the plant’s

output.

Finally, there are also some minor differences regard-

ing the structure of the fuzzy controllers used. Firstly, the

method of Angelov (2004) defines a fixed set of input vari-

ables (the reference, the plant’s output and some measure of

the external perturbations). In our case, the set of input vari-

ables may differ from one problem to another. For instance,

in the first example (Section 6.1) the inputs are the refer-

ence value and the plant’s output, while in the second exper-

iment (Section 6.2) we use the reference value, the plant’s

output and the first derivative of the plant’s output (the angu-

lar velocity). Secondly, in (Angelov 2004) a first-order TSK

fuzzy system is used, while in our approach we have cho-

sen a zero-order TSK. Although the approximation power

of the first-order TSK systems may be higher, the number of

parameters to be estimated and adapted is also larger.

6 Test results

With the aim of providing a better insight into the operation

of the proposed OSEFC, two examples are presented in this

section. The first one (presented in Section 6.1) is a sim-

ulation example. In this case we only apply the parameter



10

learning procedure, described in Section 4, to a controller

with a fixed topology. To visualize the positive effect of the

global learning, we have developed two simulations in the

same conditions: the first one only applies the local learn-

ing module, while the second one applies both the local and

the global learning policies. In this experiment we also show

the response of the OSEFC to an unexpected change in the

dynamics of the plant to be controlled.

On the other hand, Section 6.2 presents an experiment

with a real setup consisting of a nonlinear servo system. In

this case, we apply the full OSEFC (parameter learning and

self-evolving topology, described in Section 5) to control the

system. The objective of this experiment is to show the ca-

pabilities of the proposed approach to control a real system.

6.1 Parameter learning: local learning vs. global learning

In this section we illustrate the parameter learning method-

ology using a fuzzy controller with a fixed structure. Let us

consider the plant given by (Pomares et al 2002b):

yk+1 = −0.3sin(yk)+ uk + u3
k (23)

This plant shows a nonlinear behavior both with respect

to the control signal and the output variable. Note that a con-

trol signal uk = 0 does not guarantee a stationary plant out-

put. On the other hand, it is clear that the plant has a positive

monotonicity with respect to u.

Consider a fuzzy controller with two input variables, the

reference signal rk and the plant’s output yk. For this exam-

ple we assign five evenly distributed MFs to each input, as

shown in Fig. 5. Therefore, 25 fuzzy rules are used. Accord-

ing to (7) and given this structure, the output of the fuzzy

controller is given by

uk = Ĝ(x̂k;Φk) =
25

∑
i=1

Qi ·αi(xk) (24)

where x̂k = (rk,yk). Initially, all the rule consequents are set

to zero. The reference signal is a random step function in the

range [-4,4] and the actuator’s range is [-0.4,0.4]. According

to (9), the constant C is set to 0.1.

Fig. 6 compares the evolution of the MSE for the cases

of applying only local learning (solid line) and both local

and global learning (dotted line). For the latter case, the pe-

riod of initial data gathering has been T ′ = 10000 samples.

This is the reason why in the beginning both alternatives

show the same evolution. However, the effect of the global

learning is evident: although the minimum error achieved by

the local learning is 0.039, the addition of the GL-module

allows reaching a value of 0.0038, i.e., the global learning

performance is ten times better.

Another interesting fact is the response of the OSEFC to

unexpected changes in the dynamics of the plant. To show

−5 −4 −3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

D
e
g

re
e
 o

f 
m

e
m

b
e
rs

h
ip

Fig. 5 Location of the membership functions used for both inputs rk

and yk in Example 1

0.3 0.6 0.9 1.2 1.5
0

0.01

0.02

0.03

0.04

0.05

0.06

Samples

M
S

E

 

LL−Module only

LL−Module + GL−Module

Fig. 6 Local learning performance versus local and global learning

performance for Example 1



11

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

x 10
4

0

0.002

0.004

0.006

0.008

0.01

Samples

M
S

E

Change in the plant’s dynamics

Fig. 7 Response of the OSEFC to an unexpected change in the dynam-

ics of the plant for Example 1

this behavior, we have executed the same simulation as de-

scribed above. However, at sample 15000, the definition of

the equation of the plant was changed as follows:

yk+1 = −0.3sin(yk)+ 0.8uk + u3
k (25)

The only difference with the previous definition given in

(23) is the multiplying factor applied to uk. This means that

the actuator’s response is decreased, for instance, due to an

incipient fault. Fig. 7 depicts the evolution of the MSE be-

fore and after the change in the dynamics of the plant. It is

observed that the change in the plant causes a sudden in-

crease in the mean square error. However, after some time

and due to the joint action of both the LL-module and the

GL-module, the error decreases again.

6.2 OSEFC application to a real-world system

In this section the proposed OSEFC is applied to a nonlinear

servo system consisting of a DC motor with an extra weight

(see Fig. 8). The control objective is to compensate the non-

linearities caused by the gravity term caused by the extra

weight and to make the system’s output θ track a desired

trajectory given by the reference signal r. The proposed con-

troller does not need any information about the differential

equations that govern the plant. However, this information is

Fig. 8 Nonlinear servo system used in Example 2

summarized in the Appendix for those readers who are inter-

ested in simulating the experiment. Note that all the results

reported were obtained in real-time experiments.

For this experiment we have applied a fuzzy controller

with three inputs: the reference value r, the current angle θ ,

and the angular velocity θ̇ , with values ranging in [−π ,π ],

[−π ,π ], and [−5,5], respectively. Initially, two membership

functions are assigned to each input, thus 8 fuzzy rules form

the initial controller. However, all the consequents are ini-

tialized to zero, so the situation is equivalent to having an

empty controller. Fig. 9 presents the initial membership func-

tions assigned to the input θ̇ . The initial configuration for the

inputs r and θ is the same, but in the range [−π ,π ].

The actuator’s range is limited to [−10,10] V. As the

monotonicity of the plant with respect to the control sig-

nal u is positive, the constant C for the adaptation of the

consequents is positive. According to (9), its value is set

to C = 10/π . The sampling period is chosen as h = 0.05s.

The reference signal is given by a function of random values

in the interval [−π ,π ], forming a 1000-sample long pattern

(i.e., 50-second long pattern). The total time for the experi-

ment has been 45 minutes.

Fig. 10 (a), 11 (a) and 12 (a) show the tracking of the

reference signal at three different moments of the execution.

The solid line represents the reference signal and the dotted

line corresponds to the plant’s output. At the beginning of

the execution (Fig. 10 (a)), the lack of knowledge about the

plant causes oscillations in the plant’s output. However, after

only 20 s, the system starts following the trajectory marked

by the reference signal, although the control is still not satis-

factory. In Fig. 11 (a) the effect of the global learning can be



12

 6  5  4  3  2  1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Angular velocity

D
e
g

re
e
 o

f 
m

e
m

b
e
rs

h
ip

X
3

1
X

3

2

Fig. 9 Initial MFs for the input θ̇ in Example 2

observed. At time 1238 s the GL-block starts operating. As

it can be seen in Fig. 11 (a), the action of this block elimi-

nates the small oscillations that were present before. Finally,

Fig. 12 (a) depicts the control at the end of the experiment.

It can be observed that the tracking at this point is virtually

perfect. Fig. 10 (b), 11 (b) and 12 (b) show the control signal

applied during the execution.

Table 1 summarizes the evolution of the controller’s struc-

ture. Each row represents a topology change, showing the

time of change, the new MF distribution, the values of the

indexes IRi used to select the variable to receive the new

MF, and the MSE reached with that topology after tuning

the new consequents. In the first two changes it is clear that

the second input (the angle θ ) is the most important, as the

difference between its IR and the others is high. However,

after optimizing the consequents of the topology 2x4x2, IR1

and IR2 have very similar values, the former being slightly

higher. This means that, at this point, the error due to the

plant’s output has been corrected by the two extra MFs and

the lack of precision on the first variable (the reference value)

is more relevant. At the end of the execution, both inputs are

equally important for the control, as they both have the same

number of MFs. However, the initial configuration of the in-

put θ̇ does not change. This means that a linear approxima-

tion is sufficient in that dimension.

10 20 30 40 50 60 70 80

−5

0

5

Time (s)

A
n

g
le

 θ
 (

ra
d

)

(a)

 

10 20 30 40 50 60 70 80
−10

−5

0

5

10

Time (s)

C
o

n
tr

o
l 

s
ig

n
a

l 
(V

)

(b)

 

Fig. 10 Reference tracking during the first 100 seconds in Example 2.

(a) Reference tracking. (b) Control signal

1200 1220 1240 1260 1280

−2

0

2

Time (s)

A
n

g
le

 θ
 (

ra
d

)

(a)

 

1200 1220 1240 1260 1280
−10

−5

0

5

10

Time (s)

C
o

n
tr

o
l 
s
ig

n
a
l 
(V

)

(b)

 

Global learning

Fig. 11 Effect of the global learning on the reference tracking in Ex-

ample 2. (a) Reference tracking. (b) Control signal



13

2650 2660 2670 2680 2690 2700

−2

0

2

Time (s)

A
n

g
le

 θ
 (

ra
d

)
(a)

 

 

r
k

y
k+1

2650 2660 2670 2680 2690 2700
−10

−5

0

5

10

Time (s)

C
o

n
tr

o
l 

s
ig

n
a

l 
(V

)

(b)

 

 

u
k

Fig. 12 Reference tracking at the end of the experiment 2. (a) Refer-

ence tracking. (b) Control signal

Table 1 Topology evolution for the nonlinear servo system

Time (s) Configuration IR1 IR2 IR3 MSE

0 2x2x2 7.761 18.531 4.538 2.897

748.3 2x3x2 13.038 29.533 7.512 0.153

1469.5 2x4x2 12.899 12.609 7.318 0.191

2173.7 3x4x2 12.033 12.470 7.135 0.020

2274.5 3x5x2 11.875 6.714 6.997 0.019

2376.4 4x5x2 11.703 6.652 6.978 0.015

2685.6 5x5x2 0.014

Fig. 13 shows the evolution of the MSE during the ex-

ecution and Fig. 14 depicts the detail of this evolution once

the error reaches small values. The moments in which topol-

ogy changes have occurred are pointed out, as well as the

moments in which global learning starts for some topolo-

gies. In both figures a clear decreasing tendency of the error

is observed, which is faster at the beginning but continues

until the end. Again, the global learning improves the per-

formance of each topology, helping to reduce the number of

topology changes.

Finally, we show the structure of the final fuzzy con-

troller. Fig. 15 and 16 depict the final location of the mem-

bership functions of the two first input variables (rk and θ ).

The final MFs for the third input (θ̇ ) are the same as at the

beginning (see Fig. 9). At the end of the experiment, the

controller is formed by 5 · 5 · 2 = 50 rules. These are de-

500 1000 1500 2000
0

5

10

15

20

Time (s)

M
S

E

Global learning

2x3x2

Global learning

2x4x2

Fig. 13 Evolution of the mean square error in Example 2

1400 1600 1800 2000 2200 2400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

M
S

E

2x4x2

Global learning

3x4x2
3x5x2

4x5x2

Fig. 14 Details of the evolution of the MSE in Example 2



14

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Input: r
k

D
e

g
re

e
 o

f 
m

e
m

b
e

rs
h

ip

X
1

1
X

1

2
X

1

3
X

1

4
X

1

5

Fig. 15 Final location of the membership functions assigned to the

input r(k) in Example 2

Table 2 Final fuzzy rules for θ̇ = X1
3

Input r

Input θ X1
1 X2

1 X3
1 X4

1 X5
1

X1
2 4.7721 52.1996 53.6901 69.7312 104.5669

X2
2 -30.8451 23.5035 24.9537 43.3321 83.2436

X3
2 -48.4456 8.3943 10.3832 29.4678 70.9134

X4
2 -70.1487 -10.0520 -8.4621 11.4745 54.7989

X5
2 -90.8356 -45.5182 -44.1779 -28.9516 4.1149

picted in two tables: Table 2 represents the consequents of

the 25 rules for MF X1
3 , while Table 3 represents the con-

sequentes for the remaining 25 rules, for MF X2
3 . Note that

we identify the rules by the membership functions that form

their antecedent part. In these tables, only the centers of the

MFs are shown because we are using normalized triangular

functions.

7 Conclusions

In this work, an online self-evolving fuzzy controller has

been presented. This controller learns based on I/O data ob-

tained while controlling the plant, so no pretraining is re-

quired. The proposed method adapts the values of the fuzzy

rule consequents in two different ways: local learning is ap-

−5 −4 −3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Input: Angle θ

D
e

g
re

e
 o

f 
m

e
m

b
e

rs
h

ip

X
2

1
X

2

2
X

2

3
X

2

4
X

2

5

Fig. 16 Final location of the membership functions assigned to the

input θ in Example 2

Table 3 Final fuzzy rules for θ̇ = X2
3

Input r

Input θ X1
1 X2

1 X3
1 X4

1 X5
1

X1
2 -4.7673 43.3722 44.9777 61.2631 96.6294

X2
2 -39.8072 15.1472 16.5961 35.0585 75.1525

X3
2 -56.5496 0.2467 2.2119 21.1992 62.4334

X4
2 -77.4427 -18.3305 -16.7001 2.9824 45.7843

X5
2 -98.5657 -53.8703 -52.5698 -37.5362 -4.8880

plied to direct the plant’s output to the current target value

and global learning is used to improve the control in the re-

maining operating space. Besides, the controller’s structure

is adjusted by the addition of more membership functions in

the controller’s inputs with higher responsibility in the ap-

proximation error. Thanks to these structural changes, the

controller is able to start working with an empty or very

simple structure and evolves to provide satisfactory results.

Simulation and experimental results have been used to show

the capabilities of the controller developed.

Appendix

The nonlinear servo system used for the experimentation in

Section 6.2 is modeled by the following differential equa-



15

Table 4 Nonlinear servo system’s parameters

Symbol Parameter Value

J Moment of inertia of the rotor 1.91 ·10−4kg ·m2

b Damping of the mechanical system 3 ·10−6kg/s

K Electromotive force constant 0.0536Nm/A

R Electric resistance 9.5Ω
m Mass of the weight 0.055kg

l Length center of disk-center of mass 0.042m

g Gravity acceleration 9.81m/s2

tions:

ẋ = f (x,u) = Ax + Bu + G

=

[

0 1

0 −K2−bR
RJ

]

x +

[

0
K
RJ

]

u−
[

0
mgl

J
sin(θ )

]

(26)

where x =
[

θ θ̇
]T ∈ R

2 is the state of the plant, given by

the angle θ and the angular velocity θ̇ , u is the control input,

and G is the gravity term. The plant’s output is the angle θ .

The meaning and values of the parameters used for the DC

motor are given in Table 4.

As mentioned before, the proposed OSEFC does not re-

quire the differential equations that govern the plant to be

controlled. However, we have included this information in

this appendix with the purpose of allowing the interested

reader to simulate the experiment.

References

Angelov P (2004) A fuzzy controller with evolving structure. Informa-

tion Sciences 161(1-2):21–35

Cara A, Lendek Z, Babuska R, Pomares H, Rojas I (2010) Online self-

organizing adaptive fuzzy controller: application to a nonlinear

servo system. In: Proc. 2010 IEEE World Congress on Compu-

tational Intelligence, pp 2491–2498

Castro J (1995) Fuzzy logic controllers are universal approximators.

IEEE Trans Syst, Man, Cybern 25(4):629–635

Chen CH, Lin CJ, Lin CT (2009) Nonlinear system control using adap-

tive neural fuzzy networks based on a modified differential evolu-

tion. IEEE Trans Syst, Man, Cybern C 39(4):459–473

Galluzzo M, Cosenza B (2009) Control of the biodegradation of mixed

wastes in a continuous bioreactor by a type-2 fuzzy logic con-

troller. Computers & Chemical Engineering 33(9):1475–1483

Gao Y, Er MJ (2003) Online adaptive fuzzy neural identification and

control of a class of MIMO nonlinear systems. IEEE Trans Fuzzy

Syst 11(4):462–477

Gao Y, Er MJ (2005) An intelligent adaptive control scheme for

postsurgical blood pressure regulation. IEEE Trans Neural Netw

16(2):475–483

Hoffmann F, Nelles O (2001) Genetic programming for model selec-

tion of TSK-fuzzy systems. Information Sciences 136(1-4):7–28

Lalouni S, Rekioua D, Rekioua T, Matagne E (2009) Fuzzy logic con-

trol of stand-alone photovoltaic system with battery storage. Jour-

nal of Power Sources 193(2):899–907

Lee C (1990) Fuzzy logic in control systems: fuzzy logic controller. II.

IEEE Trans Syst, Man, Cybern 20(2):419–435

Li C, Lee C (2003) Self-organizing neuro-fuzzy system for control of

unknown plants. IEEE Trans Fuzzy Syst 11(1):135–150

Lin C, Xu Y (2006) A novel genetic reinforcement learning for non-

linear fuzzy control problems. Neurocomputing 69(16-18):2078–

2089

Lin CT, Lin CJ, Lee CSG (1995) Fuzzy adaptive learning control

network with on-line neural learning. Fuzzy Sets and Systems

71(1):25–45

Liu Y, Zheng Y (2009) Adaptive robust fuzzy control for a class of

uncertain chaotic systems. Nonlinear Dynamics 57(3):431–439

Mingzhi H, Jinquan W, Yongwen M, Yan W, Weijiang L, Xiaofei S

(2009) Control rules of aeration in a submerged biofilm wastewa-

ter treatment process using fuzzy neural networks. Expert Systems

with Applications 36(7):10,428–10,437

Mucientes M, Casillas J (2007) Quick design of fuzzy controllers with

good interpretability in mobile robotics. IEEE Trans Fuzzy Syst

15(4):636–651

Park J, Park G, Kim S, Moon C (2005) Direct adaptive self-structuring

fuzzy controller for nonaffine nonlinear system. Fuzzy Sets and

Systems 153(3):429–445

Phan PA, Gale TJ (2008) Direct adaptive fuzzy control with a self-

structuring algorithm. Fuzzy Sets and Systems 159(8):871–899

Pomares H, Rojas I, Ortega J, Gonzalez J, Prieto A (2000) A systematic

approach to a self-generating fuzzy rule-table for function approx-

imation. IEEE Trans Syst, Man, Cybern B 30(3):431–447

Pomares H, Rojas I, Gonzalez J, Prieto A (2002a) Structure identifica-

tion in complete rule-based fuzzy systems. IEEE Trans Fuzzy Syst

10(3):349–359

Pomares H, Rojas I, Gonzalez J, Rojas F, Damas M, Fernan-

dez FJ (2002b) A two-stage approach to self-learning direct

fuzzy controllers. International Journal of Approximate Reason-

ing 29(3):267–289

Pomares H, Rojas I, Gonzalez J, Damas M, Pino B, Prieto A (2004)

Online global learning in direct fuzzy controllers. IEEE Trans

Fuzzy Syst 12(2):218–229

Rojas I, Pomares H, Ortega J, Prieto A (2000) Self-organized fuzzy

system generation from training examples. IEEE Trans Fuzzy Syst

8(1):23–36

Rojas I, Pomares H, Gonzalez J, Herrera L, Guillen A, Rojas F, Valen-

zuela O (2006) Adaptive fuzzy controller: Application to the con-

trol of the temperature of a dynamic room in real time. Fuzzy Sets

and Systems 157(16):2241–2258

Wang D, Zeng XJ, Keane JA (2008a) An incremental construction

learning algorithm for identification of t-s fuzzy systems. In: Proc.

2008 IEEE International Conference on Fuzzy Systems (FUZZ

2008), vol 1-5, pp 1662–1668

Wang W, Chien Y, Li I (2008b) An on-line robust and adaptive T-S

fuzzy-neural controller for more general unknown systems. Inter-

national Journal of Fuzzy Systems 10(1):33–43

Ying H (2000) Fuzzy Control and Modeling: Analytical Foundations

and Applications. Wiley-IEEE Press


