
Article

Fault Tolerant Digital Datapath Design Via Control
Feedback Loops

Oana Boncalo 1,† , Alexandru Amaricai 1,† and Zsófia Lendek 2,*
1 Universitatea Politehnica Timisoara; oana.boncalo@cs.upt.ro, alexandru.amaricai@cs.upt.ro
2 Technical University of Cluj-Napoca; Zsofia.Lendek@aut.utcluj.ro
* Correspondence: oana.boncalo@cs.upt.ro; Tel.: +40-256-403264
† Address:Timisoara, Blvd. Vasile Parvan, Nr. 2

Version October 20, 2020 submitted to Electronics

Abstract: In this paper, we propose a novel fault tolerant methodology for digital pipelined data-paths1

called Control Feedback Loop Error Decimation (CFLED), that reduces the error magnitude at the2

outputs. The data-path is regarded from a control perspective as a process affected by perturbations3

or faults. Based on the corresponding dynamic model, we design feedback control loops with the goal4

of attenuating the effect of the faults on the output. The correction loops apply correction factors to5

selected data-path registers from blocks that have their execution rewinded. We apply the proposed6

methodology on the data-path of a controller designed for a 2-degree-of-freedom robot arm, and7

compare the cost and reliability to the generic triple modular redundancy. For FPGA technology, the8

solution we propose uses 30% less slices with respect to TMR, while having a third less DSP blocks.9

Simulation results show that our approach improves the reliability and error detection.10

Keywords: Fault tolerance, reliability, arithmetic datapath, FPGA, control engineering, feedback11

controller12

1. Introduction13

Reliability represents a key factor in electronic devices that operate in radiation prone14

environments, frequent in applications in the aerospace domain. It is achieved by adding redundancy15

to the digital circuits, with cost increase acting as the main drawback. Fault tolerant design is based on16

adding some form of replication, or using specially designed error detection and correction codes, so17

that the cost overhead with respect to the nominal solution is acceptable, and the target reliability is18

achieved.19

The most common way of increasing the reliability of a circuit is to employ Triple Modular20

Redundancy (TMR), i.e., using three copies of the digital circuit and a voter structure [1]. The main21

drawbacks of TMR are its high cost and the sensitivity of errors affecting the voters. Regarding the22

former, schemes to reduce the cost of the TMR, such as approximate TMR [2–4] or inexact TMR [5] have23

been proposed. Furthermore, the use of TMR in the context of approximate computing is discussed in24

[6]. For arithmetic circuits, the concept of reduced precision replicas has been applied, with the most25

significant part of the circuit being triplicated [7,8]. Reduced precision replicas can also be used in a26

dual manner, with the lower cost data-path working in a higher supply voltage domain and providing27

a highly reliable reference [9]. Other works improved reliability by increasing the resilience of the28

voting circuits within the TMR, such as the self checking voting circuits [10], adaptable bit-width voter29

[11], or employing dedicated voters for approximate TMR [12].30

Modular redundancy approaches use multiple instances or truncated versions of the same nominal31

circuit. Other solutions use different types of redundancies. For example, approaches using error32

correction codes – Hamming or Reed-Muller codes – in combinational circuits have been proposed33

Submitted to Electronics, pages 1 – 13 www.mdpi.com/journal/electronics

http://www.mdpi.com
https://orcid.org/0000-0002-9211-2311
https://orcid.org/0000-0002-2706-1781
https://orcid.org/0000-0003-4539-7876
http://www.mdpi.com/journal/electronics

Version October 20, 2020 submitted to Electronics 2 of 13

in [13]. Redundant residue number systems have been employed for signal processing datapaths34

in [14,15]; in this case, modular redundancy is employed, with each replica having its own residue35

representation. Another approach uses a design inspired from the Markov Random Field (MRF) theory.36

In [16], a complementary dual modular redundancy with an MRF voter is proposed, while [17] uses37

coding based partial MRF, where the circuit is employed using MRF based logic components. The38

common drawback of MRF based implementations is the high implementation cost. Therefore, for39

non time-critical applications, several approaches using testing methods and redundancy have been40

proposed [18], with fault detection being performed during a circuit testing phase.41

Different from all the mentioned approaches, this work proposes a control engineering approach –42

CFLED – for improving the reliability of digital data-path processing pipelines, by employing feedback43

control loops to reduce the error magnitude. CFLED targets applications that rely heavily on arithmetic44

operations, such as signal and image processing or control and artificial intelligence applications.45

In arithmetic data-paths, error magnitude is an important factor, as low-magnitude errors may by46

tolerated by the application. The goal of reducing the error magnitude, and not to completely remove47

the fault, is also employed in fault tolerant techniques that rely on approximate redundancy [2,4,6],48

inexact redundancy [5] or reduced precision replicas [8]. The proposed technique may be applied for49

arithmetic data-paths implemented on both ASIC and FPGA technology.50

To the best of our knowledge, CFLED represents the first approach that uses control theory in51

order to improve the reliability of processing datapaths. Fault-tolerant control for finite state machines52

has been considered in e.g., [19,20]. The design for these use cases is aided by the finite state machine53

characteristics: finite and rather low (at most tens) number of states, low number of inputs (typically54

1-bit inputs), and finite number of state transitions. In contrast, the proposed approach considers55

a dynamic model that captures high order input-state-output dynamics, where inputs, states and56

outputs have continuous values within their variation domains.57

We analyzed the proposed approach on the hardware architecture for the two-degree of58

freedom robotic arm controller (2-DOF) presented in [21]. The considered use case consists of a59

processing pipeline that relies on function evaluations – performed using Taylor series –, scalar-matrix60

multiplications, and vector-matrix multiplications. Such operations are widely used in applications61

such as graphic processing and signal and image processing. Furthermore, this use case represents62

a novel application in control engineering: design of fault tolerant controller when the faults affect63

the controller implementation. Other approaches for fault-tolerant control, such the ones used for64

electronic power converters [22], induction motors [23], filters [24], robot control and localization65

[25,26], assume faults in components of the controlled system, usually actuators or sensors.66

This paper is organized as follows: Section 2 discusses the methodology – the discrete time67

dynamical model of the circuit used to derive the feedback controller; Section 3 discusses a case study68

for the proposed methodology and presents FPGA implementation costs and reliability estimates;69

concluding remarks are presented in Section 4.70

2. Control Feedback Loop for Fault Mitigation71

The proposed methodology targets arithmetic data-path circuits consisting of several processing72

stages built out of arithmetic operations: additions, accumulations, multiplications and multiply-add73

fused. The operands can be either registers or constants. Thus, we consider data-paths commonly74

used in a wide variety of applications fields that rely on matrix-vector/matrix-matrix multiplications,75

convolutions, or weighted sums, and are therefore dominant in fields like signal and image processing,76

computer graphics, or artificial intelligence. Each processing stage i consists of a sequence of registers77

{Ri
0, Ri

1, . . . , Ri
ni
}, and it takes ni clock cycles to compute a set of ni

s data output elements out of a total78

of ni
el data values stored to memory or inside registers. Thus, in order to produce a set of output results79

for stage i a total of ni × dni
el/ni

se clock cycles (cc) are required.80

Version October 20, 2020 submitted to Electronics 3 of 13

The design process for enhancing the reliability of a given nominal circuit data-path involves:81

(i) Modeling the nominal circuit, (ii) CFLED design and simulation, (iii) CFLED operation, and (iv)82

Hardware implementation of the enhanced CFLED circuit.83

2.1. Dynamic Model of Digital Datapath84

Given a digital datapath, our first goal is to develop a mathematical model of the operations85

performed and the propagation of values through the datapath. This model forms the basis for86

designing a control law that will be used to correct the output of the circuit.87

A common way to model a system from a control perspective is by using a state space
representation. Since digital circuits are synchronous, we employ a discrete time-domain state-space
representation, where the sample k corresponds to the current clock cycle, and has the general form:

x(k + 1) = f (x(k), u(k), η) (1)

where x denotes the states describing the circuit, u the inputs, η some parameters of the dynamic88

system, and f is a vector function – to be determined – that describes the evolution of the states in89

time. For a given circuit, each (partial) result (in case of iterative loops) is mapped to a state variable.90

Hence, each meaningful register value at different clock cycles has a corresponding state variable.91

Furthermore, a data-path (process) model is built by the composition of several processing stages i.92

In this work we consider arithmetic data-path circuits, with the operations: addition,93

accumulation, multiplication and multiply-add. Since we map each (partial) result to a state, the94

value of the state may be obtained as either: 1) addition of a constant to a state; 2) addition of two95

states; 3) multiplication of a state by a constant; or 4) multiplication of two states. The dynamic model96

that describes the circuit aggregates all the operations throughout the clock cycles and therefore it may97

contain only these four mathematical operations. Consequently, the model chosen is of the form:98

x(k + 1) = Qκ(x(k)) + Ax(k) + a + δ (2)

where κ(x(k)) denotes the Kronecker product of the vector x(k) with x(k), Q and A are matrices of99

appropriate dimensions, a is the vector of biases or affine terms, and δ denotes the faults, possibly with100

a known distribution.101

To determine the exact values of the parameters – matrices Q and A and affine term a – and the102

correspondence between the states and registers, we adopt the following convention:103

1. The affine term a contains all inputs to the circuit.104

2. Since scalar multiplications are commutative, the Q matrix is not unique. Nonzero values should105

appear in the first element corresponding to a multiplication.106

The model and its parameters are obtained as follows:107

1. Write the chronological operations for each clock cycle;108

2. Assign a state variable to every register containing a partial result at different clock cycles;109

3. Define the dynamic of each state variable as the operations performed to obtain the value in the110

corresponding register at the corresponding clock cycle;111

4. Separate the bilinear, linear, and affine terms in the resulting equations;112

5. Collect the coefficients of the bilinear terms in the matrix Q, the coefficients of the linear terms in113

the matrix A, while the affine terms, including the inputs to the data-path, will form the vector a.114

Note that a model developed for a given circuit is not unique. We have formulated a generic115

dynamic structure that can be used for any circuit implementing arithmetic operations. In what follows,116

we illustrate the modeling steps on the circuit in Fig. 1.117

In this example, In1 and In2 denote the inputs of the circuit. We define the state variables as the
register values (states) in reverse order, i.e., x1(k + 1) = R3(n + 2), x2(k + 1) = R2(n + 1), etc., and

Version October 20, 2020 submitted to Electronics 4 of 13

R
2

R
0

R
1

R
3

x

constant- C

M
U

X

X n repetitions

(a) Circuit

R0(0) = In1

R1(0) = In2

R2(1) = R0(0)× R1(0)

R2(2) = R2(1) + R0(0)× R1(0)

...

R2(n) = R2(n− 1) + R0(0)× R1(0)

R2(n + 1) = R2(n) + C
R3(n + 2) = R2(n + 1)

(b) Chronological operations
for each clock cycle

Figure 1. Modeling example: Ri(m) denotes the value assigned to register Ri at the clock cycle m, and
In1 and In2 are the MAC design unit inputs.

express each of them as a function of the state variables at the previous sample. This leads to the state
equations:

xn+3(k + 1) = In1

xn+2(k + 1) = In2

xn+1(k + 1) = xn+3(k)× xn+2(k)

xn(k + 1) = xn+1(k) + xn+3(k)× xn+2(k)
...

x3(k + 1) = x4(k) + xn+3(k)× xn+2(k)

x2(k + 1) = x3(k) + C

x1(k + 1) = x2(k)

(3)

which can be written in a vector form as

x(k + 1) = Qκ(x(k)) + Ax + a

where Q =

 02×(n+3)2

0(n−1)×((n+2)(n+3)−1) 1(n−1) 0n×(n+3)
02×(n+3)2

, A =

(
0n×1 In 0n×2

0n×1 0n 0n×2

)
, a =


0
C

0(n−1)×1
In2

In1

,118

with 0n×m we denote the zero matrix of dimensions n×m, In the identity matrix, and 1n a column119

vector of 1s.120

121

Models of multiple pipelined sub-components can be combined as follows: (1) The outputs of122

pipeline stage block i become states of pipeline stage i + 1; (2) Modifying the matrices A and Q and123

vector a appropriately. Thus, larger models of more complex circuits can be built from individual124

sub-models of its parts.125

2.2. Controller Design126

The first objective of the controller is to reduce the fault effect at the digital circuit outputs, such
that it is as close as possible to a reference value (i.e. gold output result). The second objective is to

Version October 20, 2020 submitted to Electronics 5 of 13

converge as fast as possible to the correct value. A way to include control inputs into model (2) is to
include a linear input, modifying the system model as

x(k + 1) = Qκ(x(k)) + Ax(k) + a + δ + Bu(k)

y(k) = Cx(k)
(4)

where u denotes the vector of the control inputs, k is the current clock cycle, B is the input matrix that127

determines which state is affected by which input and in what measure, y is the vector of outputs128

available for correction, and C is the output selection matrix. Next, we define some specific design129

constraints.130

From the circuit side, we need to ensure that even if multiple states are mapped to the same131

register, the control input is the same. Note that in (4), the matrix B is an nx-by-nu matrix, where nx132

is the number of states and nu is the number of inputs. In this matrix, each element Bij indicates the133

measure in which the input corresponding to the column j is applied to the state corresponding to the134

row i. If the same input is applied to several states, then the values corresponding to these states can135

all be set to the same value. Thus, we enforce that the same control (correction) input is applied to all136

the states corresponding to the same register by the appropriate choice of the values in the matrix B.137

The control input u(k) is usually computed based on the outputs of the circuit and a given138

reference. Cost-wise the preferred solution is the simplest possible, mainly, a linear control law, i.e.,139

when the control input u(k) is computed as u(k) = −Ky(k), with K a constant matrix. The controller140

gain K is determined such that the closed-loop system – meaning that the control input is applied to141

the system described by (4) – is asymptotically stable. Thus, we have experimented with the control142

input computed as u(k) = −K(y(k)− yd), where yd are the desired values. However, since model (4)143

is in most cases nonlinear, such a controller may not suffice, in which case nonlinear controllers can be144

designed.145

The proposed methodology consists of the steps depicted in Figure 2. The inputs are: a register146

transfer level nominal digital design, a set of application specific constraints (e.g. the acceptable output147

error), and the aforementioned design specific constraints. The output is a CFLED model.148

A final remark concerns the operands data representation, since it is an important implementation149

cost factor. Although in control engineering floating point is the preferred representation format, from150

the circuit design point of view, having fixed point operands is a major source of cost saving. Many151

designs are fine tuned to the application specific needs and use custom fixed point representation.152

Thus, if a fixed-point representation is chosen, the CFLED gains, as well as resulting states, cannot153

exceed the representation used for the initial implementation, and use fixed point representation as154

well.155

Figure 2. CFLED design steps

Version October 20, 2020 submitted to Electronics 6 of 13

Figure 3. CFLED execution example. Three stages are considered in this example, each computing
ni

el results. Each result takes ni cc for computation. First, the normal operation is performed. If, after
finishing the computation, a difference is detected at the output, the correction operation is started. All
three stages are executed – rewinded – in parallel with correction inputs added to designated registers.

2.3. Fault tolerant CFLED operation156

Before describing the CFLED operation, we revise the circuit design constraints with respect to157

timing (i.e. number of clock cycles required computing a result). In digital circuit operation, a pipeline158

stage result is obtained at well defined moments in time (i.e. after a number of ni clock cycles for159

an arbitrary processing stage i). In addition to this, we add the latency constraint that the CFLED160

enhanced circuit execution can not be larger than twice the execution of the nominal circuit. The latter161

implies that re-execution of an input data set is not applicable, otherwise we would be unable to justify162

the additional logic overhead with respect to time redundancy. However, given the principle of the163

correction loop, an extended execution, such that the correction offsets are added is required. This164

is handled in parallel for all the pipeline stages having non-zero coefficients in the K matrix, and we165

refer to it as pipeline stages execution rewind. Thus, latency increase is limited, and all computation166

sub-blocks are synchronized to the worst case number of clock-cycles it takes to compute a pipeline167

stage output result. This operating principle is depicted in Figure 3.168

To summarize, the operation of the CFLED augmented digital circuit requires the following steps:169

1. compute the difference between the output and the reference (y(k)− yd)),170

2. determine the correction factors by means of −K× (y(k)− yd),171

3. rewind the computation by adding the obtained correction factors to the corresponding registers.172

It should be emphasized that for a circuit composed of several sub-blocks, the rewinding process is173

performed only in the sub-modules for which the coefficients in K are non-zero. Furthermore, the174

re-executions is performed in parallel for the sub-blocks where the correction factors are applied –175

see Figure 3. Therefore, a correction phase duration is equal to the highest latency of the rewinded176

sub-modules. The correction process may take several phases/iterations, until the result is below the177

tolerated threshold.178

A key issue is represented by the need of the yd reference. We solved this problem by employing179

two CFLED augmented processing pipeline, each providing the reference to the other circuit. In this180

case, an application specific filter may be employed, in order to exclude results that are out-of-bounds181

for the specific application.182

3. Case Study - A Robot Arm Controller183

3.1. Nominal circuit design184

To illustrate the proposed approach, we consider the hardware implementation of a fuzzy185

controller for a two degree of freedom (2-DOF) robot arm. The parameters of the physical robot186

are described in [27], and the hardware implementation of the controller in [21]. The output of the187

nominal (controller) circuit implementation is the vector u (2 elements), that represents the inputs188

for controlling the robot arm. With xIr (2 element vector) we denote the controller state, while xr
189

Version October 20, 2020 submitted to Electronics 7 of 13

represents the current state of the robot (4 element vector), and yr is the reference that the robot arm190

should follow.191

The hardware architecture is a fixed point implementation, using 24 bits operands, 8 bits for the192

integer part, and 16 bits for the fractional part. The equations and the numerical approximations used193

are described in [21]. For the purpose of this study, we focus on the register transfer level operations of194

the five pipelined processing blocks of the data-path depicted in Fig. 4:195

1. Trigonometric function approximator, that computes the sin(x), sin(2x) and cos(x) - these three196

functions are evaluated based on the 2nd and 3rd order Taylor series, and are computed in197

parallel;198

2. Computation of weighting functions - the computation of the three weighting functions h1, h2,199

and v is serialized, with one element computed at a time;200

3. Multiplication between the weighting functions - this block performs the 8 multiplications201

between h1 or (1− h1), h2 or 1− h2, and v or (1− v) sequentially;202

4. Final gain matrix computation - this block performs the accumulation of 8 scalar-matrix products;203

the size of the matrices is 2× 6; it employs a single multiply-add fused unit, and therefore, the 12204

elements of the final gain elements are computed sequentially;205

5. Output computation - the output control vector is obtained by multiplication of the final gain206

matrix with the vector composed of the process state xr and internal state xIr; the two elements207

of the output vector are computed sequentially;208

Figure 4. 2-DOF robot arm controller hardware architecture

The 2-DOF robot arm controller contains 34 data registers and the processing of a set of input209

samples requires 175 clock cycles.210

3.2. Dynamic model and CFLED design211

For the implemented architecture, a dynamic model has been developed, following the steps212

described in Section 2. The output of the system has been defined as the output of the circuit. The213

model is non-linear (consequence of the multiplication operation), of the form (4) and has 310 states.214

Version October 20, 2020 submitted to Electronics 8 of 13

In addition to the discussion from Section 2, in order to avoid obtaining a switching system or the need215

to include clock-dependence in the model, the blocks that compute results sequentially (e.g weighting216

functions, weighting function multiplication, and output computation) are modeled as parallel in the217

dynamic model.218

For the actual design of the controller, we have opted to linearize the model in the zero equilibrium219

point, reduce it using a balanced realization, and compute the gain matrix by placing the closed-loop220

system poles as close as possible to the origin [28]. Because K is constant, it is computed offline. Finally,221

the resulting controller has been tested for the original nonlinear model. The correction gains are222

constant during the entire correction process and are independent of the fault rate affecting the circuit.223

The computed gains are multiplied by the difference between the actual and desired output vector224

(u[k]− ud[k]), and their sum added at each clock cycle to the designated register during the correction225

operation phase. Furthermore, the vector ud is updated at the end of each correction phase execution.226

Regarding the values in the gain matrix K, we have obtained values that are non-negligible for227

two out of five blocks: the final gain matrix computation and output computation blocks (5 registers228

out of 34). Thus, we employ CFLED for these two computational stages. The values for the gain factors229

corresponding to the two blocks are given in Table 1, where R3
i denotes registers within the final gain230

matrix computation block, while R4
i denotes registers within the output computation. During the231

correction phase, processing is performed only on these two blocks and the duration of the correction232

is given by the maximum of the latency of the two modules augmented with CFLED. Since the233

correction gain values are constant (computed offline), optimized implementation of multiplication234

with constants can be employed, using a simple shift-and-add approach.235

First, the Matlab model of the CFLED enhanced 2-DOF controller with golden reference has236

been built. In the next step the golden reference has been replaced by a second CFLED controller237

that is also subject to probabilistic errors. A simple control unit determines if the difference between238

the outputs is smaller than the application specific error tolerance, chosen as 10−3. If the computed239

output register difference is larger than this bound, the error correction phase is started. Thus, the fault240

tolerant solution relies on two CFLED enhanced models connected in reaction, that exchange data at241

the beginning of each correction phase.242

We simulated the Matlab model to asses the performance of the overall system. The behavior243

of the proposed solution can be observed in Figure 5, which depicts outputs u1, and u2 of the two244

controllers in the presence of errors. Note that the error at the output of one circuit influences the245

other. The simulation shows that up to cycle 27, the output of the two CFLED circuits are identical,246

thus, the black and red lines overlap. Then, the first controller has errors manifesting at the output u1,247

thus, triggering the correction phase during the next simulation cycle. Due to the correction factors248

the two outputs influence each other, leading to a small perturbation in output u2, that is eliminated249

successfully during further correction phases. This is also the case for the other two errors that are250

larger in amplitude. The only difference is that the recovery time is larger. Given this observation,251

it makes sense to include a check in the control unit, that verifies if the output values are within the252

allowed range. For the considered use-case the range is [−3.5, 3.5]. If both CFLED enhanced circuits253

yield out of bounds results, then system failure occurs, and computation is restarted. Otherwise, they254

may serve as reference for each other during an error correction phase, if needed. If only one of the255

CFLED enhanced circuit outputs exceeds the range, then the other output is considered correct.256

Table 1. CFLED K matrix values for registers in Fig. 4.

Input no. Register Gains u
1 R3

1 −0.0011 −0.0038
2 R3

0 0.0007 0.0024
3 R4

1 −0.0017 −0.0022
4 R4

0 −0.0103 −0.0092

Version October 20, 2020 submitted to Electronics 9 of 13

3.3. Results and discussion257

In this section, we discuss the results obtained by the proposed approach and compare them with258

those obtained by a TMR.259

3.3.1. Reliability analysis260

The reliability analysis of the proposed approach has been performed using simulated fault261

injection, in a Matlab-Modelsim co-simulation environment. Two main components are needed: the262

Matlab model for the process, and the HDL CFLED RTL design simulated using Modelsim. The Matlab263

simulation is responsible for generating and sending input data to the robot arm controller. It also264

generates the correct output results, and handles the statistics recording and result post-processing.265

The communication between the two CAD programs is through TCP/IP connection.266

The simulated fault injection is performed in three phases:267

I Setup: initializes all data structures from Matlab from the configuration files, loads the HDL268

design inside the Modelsim environment with the parameters sent from Matlab, and generates a269

TCL data structure in the HDL simulation environment that mirrors the Matlab simulated fault270

injection configuration data (i.e. bit error probability, fault location).271

II Simulation runs: One simulation step is run for both Matlab and Modelsim. In the Matlab272

environment a set of input data and output gold values are computed. A TCL script with273

appropriate command parameters is invoked through the TCP/IP connection. Next, the register274

values for outputs, and the debug registers are read in Matlab, and data is logged in *.csv files.275

III Results processing: Matlab scripts process the logged data and compute statistics.276

(a) u1 (b) u2

Figure 5. Matlab simulation example. Clock cycle accurate simulations of two CFLED enhanced 2-DOF
units connected in reaction, and denoted with colours red and black, respectively.

We have performed the simulated fault injection both on the CFLED augmented architecture,277

and on a fault tolerant controller that uses TMR. We have considered bit-flips that affect each flip-flop278

within all data registers, with different fault rates per clock cycle: 10−4 , 10−5, and 10−6. During a279

sample processing, for a bit-flip rate of 10−4, the number of faults injected in the baseline architecture –280

without any fault tolerant mechanism – is 14. For the fault tolerant designs – CFLED and TMR –, faults281

have been applied for the entire design and during the entire execution.282

We present the results in terms of:283

1. Output failure rate - In this case, we have counted the number of outputs that have a difference284

greater than 10−3 with respect to the correct output.285

Version October 20, 2020 submitted to Electronics 10 of 13

2. Gaussian distribution of the output error magnitude in terms of mean (µ) and covariance (σ) -286

This type of analysis has been performed because in arithmetic data-paths the error magnitude287

is in many cases more important than the number of errors (such as bit errors) affecting the288

result. Smaller values of the mean and of the covariance mean an improved distribution of error289

magnitude, and therefore, increased fault tolerance.290

Results are depicted in Table 2 for the first component of the output vector (u1), and Table 3 for291

the second component of the output vector (u2). Although the TMR presents better output failure rate -292

a smaller number of erroneous frames -, the distribution of error magnitude is improved in the case of293

CFLED. This indicates that although the number of erroneous results is higher in the case of CFLED,294

the error magnitudes achieved with the proposed method is lower compared to TMR. Therefore, it295

can be noted that CFLED achieves its primary goal, to reduce or mitigate the magnitude of errors in296

arithmetic datapaths.297

Table 2. Parameters of the Gaussian distributions and output failure rates for ur
1

Bit error Method µ σ Output
probability mean covariance failure rate

10−4 CFLED -0.1036 79.54 0.3202
TMR -0.5192 236.39 0.1516

10−5 CFLED -0.0043 0.4196 0.0186
TMR 0.0277 1.3228 0.0066

10−6 CFLED −5.99× 10−4 1.3× 10−3 0.002
TMR −2.09× 10−2 2.826 0.0007

Table 3. Parameters of the Gaussian distributions and output failure rates for ur
2

Bit error Method µ σ Output
probability mean covariance failure rate

10−4 CFLED -0.0886 66.8871 0.3176
TMR 0.10132 131.82 0.1436

10−5 CFLED -0.0334 3.6056 0.0229
TMR -0.0452 5.501 0.0039

10−6 CFLED 0.0018 0.016 0.002
TMR 0.0056 0.7344 0.0007

Figure 6 depicts the average number of correction phase executions, depending on the bit error298

probability. It can be noted that for a bit error probability of 10−6, less than a quarter phase executions299

are required on average. Given that a phase execution requires 20 clock cycles - out of 175 clock cycles300

required for processing one sample -, less than 5 clock cycles are added on average to each sample301

processing. This means that the execution time is increased on average with less than 0.3%.302

3.3.2. FPGA implementation results303

The implementation results for the proposed CFLED enhanced 2-DOF controller design for Xilinx304

Virtex-7 VX485T-2 FPGA device, using the Xilinx Vivado 2017.1 tool are depicted in Table 4 for the305

baseline - non-fault tolerant - circuit, and the controlled, fault tolerant version, with two CFLED306

enhanced circuits providing the reference to the other.307

FPGA implementation results indicate that the two circuit CFLED solution has an overhead of308

2.1x in terms of slices, with respect to the baseline circuit. In terms of DSP blocks, the CFLED solution309

contains the same number of blocks as two baseline circuits. Therefore, the CFLED solution uses 30%310

less slices with respect to the TMR, while having a third less DSP blocks. The results in Table 4 also311

indicate the low cost of the correction feedback with respect to the baseline circuit. Because this block312

Version October 20, 2020 submitted to Electronics 11 of 13

10-4 10-5 10-6

Bit error probability

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v
e

ra
g

e
 e

rr
o

r
c
o

rr
e

c
ti
o

n
 p

h
a

s
e

 e
x
e

c
u

ti
o

n

Figure 6. CFLED average phase execution increase for a maximum of 24 Correction Phase Executions.

Table 4. Implementation results

Design Slices DSP Frequency
Blocks [MHz]

Baseline 1948 34 142
TMR 5844 102 142
CFLED 4052 68 142

consists of 4 multipliers with constants – using a simple shift-and-add approach –, no dedicated DSP313

blocks are required, while the overhead in logic slices is rather negligible.314

4. Conclusions315

To the best of our knowledge, this paper represents the first attempt to improve the reliability316

of digital processing pipelines by employing control engineering techniques. CFLED requires317

the development of a dynamic model associated to the processing pipeline, and the design of a318

feedback controller that computes correction factors. The correction to be applied is computed as the319

multiplication between offline computed constants with the difference between the circuit’s output and320

the reference, and they are added to a sub-set of registers within the processing pipeline. A key issue321

is represented by obtaining the reference. In this paper, we propose to use two CFLED augmented322

data-paths, each providing the reference to the other.323

Reliability estimates obtained by means of simulated fault injection for a hardware architecture324

of a two degree-of-freedom robotic arm controller indicates that the error magnitude of the CFLED325

augmented circuit is reduced with respect to a classic TMR based solution. Regarding the cost overhead326

for an FPGA based implementation, CFLED shows a 30% reduction in slice based resources compared327

to the TMR.328

Thus, future work will consist of reducing the cost of this solution, by employing reduced329

precision replicas or approximate methods for part of the data-paths.330

Author Contributions: “Conceptualization, O.B., A.A., Zs.L.; methodology, O.B, Zs.L.; software Matlab model,331

Zs.L.; HDL architecture O.B., A.A., validation, O.B., A.A.; investigation, O.B.,A.A., Zs.L;; writing–original332

draft preparation, O.B, A.A.; writing–review and editing, Zs.L.; visualization, O.B.; supervision, O.B.; project333

administration, O.B.; funding acquisition,O.B., A.A., Zs.L. All authors have read and agreed to the published334

Version October 20, 2020 submitted to Electronics 12 of 13

version of the manuscript.”, please turn to the CRediT taxonomy for the term explanation. Authorship must be335

limited to those who have contributed substantially to the work reported.336

Funding: “This research was funded by European Space Agency ITI REDOUBT activity.”337

Abbreviations338

The following abbreviations are used in this manuscript:339

FPGA Field Programmable Gate Array
TMR Triple Modular Redundancy
ASIC Application Specific Integrated Circuit
MRF Markov Random Field
CFLED Control Feedback Loop Error Decimation
DSP Digital Signal Processing
HDL Hardware Description Language
RTL Register Transfer Level

340

References341

1. von Neumann, J. Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components.342

Automata Studies 1956, pp. 43–98.343

2. Sánchez, A.; Entrena, L.; Kastensmidt, F. Approximate TMR for selective error mitigation in FPGAs based344

on testability analysis. 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2018, pp.345

112–119.346

3. Sánchez-Clemente, A.J.; Entrena, L.; García-Valderas, M. Partial TMR in FPGAs Using Approximate Logic347

Circuits. IEEE Transactions on Nuclear Science 2016, 63, 2233–2240.348

4. Chen, K.; Han, J.; Lombardi, F. Two Approximate Voting Schemes for Reliable Computing. IEEE349

Transactions on Computers 2017, 66, 1227–1239. doi:10.1109/TC.2017.2653780.350

5. Chen, K.; Han, J.; Lombardi, F. Two Approximate Voting Schemes for Reliable Computing. IEEE351

Transactions on Computers 2017, 66, 1227–1239.352

6. Rodrigues, G.; Lima Kastensmidt, F.; Bosio, A. Survey on Approximate Computing and Its Intrinsic Fault353

Tolerance. Electronics 2020, 9, 557. doi:10.3390/electronics9040557.354

7. Huang, Y. High-Efficiency Soft-Error-Tolerant Digital Signal Processing Using Fine-Grain355

Subword-Detection Processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2010,356

18, 291–304. doi:10.1109/TVLSI.2008.2009636.357

8. Wali, I.; Casseau, E.; Tisserand, A. An efficient framework for design and assessment of arithmetic operators358

with Reduced-Precision Redundancy. 2017 Conference on Design and Architectures for Signal and Image359

Processing (DASIP), 2017, pp. 1–6.360

9. Wey, I.; Peng, C.; Liao, F. Reliable Low-Power Multiplier Design Using Fixed-Width Replica361

Redundancy Block. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2015, 23, 78–87.362

doi:10.1109/TVLSI.2014.2303487.363

10. Afzaal, U.; Lee, J. A Self-Checking TMR Voter for Increased Reliability Consensus Voting in FPGAs. IEEE364

Transactions on Nuclear Science 2018, 65, 1133–1139.365

11. Ló, T.B.; Kastensmidt, F.L.; Beck, A.C.S. Towards an adaptable bit-width NMR voter for multiple error366

masking. 2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology367

Systems (DFT), 2014, pp. 258–263.368

12. Arifeen, T.; Hassan, A.; Lee, J.A. A Fault Tolerant Voter for Approximate Triple Modular Redundancy.369

Electronics 2019, 8, 332. doi:10.3390/electronics8030332.370

13. Laurenciu, N.C.; Gupta, T.; Savin, V.; Cotofana, S.D. Error Correction Code protected Data Processing371

Units. 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2016, pp.372

37–42.373

14. Luan, Z.; Chen, X.; Ge, N.; Wang, Z. Simplified fault-tolerant FIR filter architecture based on redundant374

residue number system. Electronics Letters 2014, 50, 1768–1770. doi:10.1049/el.2014.3508.375

http://img.mdpi.org/data/contributor-role-instruction.pdf
https://doi.org/10.1109/TC.2017.2653780
https://doi.org/10.3390/electronics9040557
https://doi.org/10.1109/TVLSI.2008.2009636
https://doi.org/10.1109/TVLSI.2014.2303487
https://doi.org/10.3390/electronics8030332
https://doi.org/10.1049/el.2014.3508

Version October 20, 2020 submitted to Electronics 13 of 13

15. Chang, C.; Molahosseini, A.S.; Zarandi, A.A.E.; Tay, T.F. Residue Number Systems: A New Paradigm376

to Datapath Optimization for Low-Power and High-Performance Digital Signal Processing Applications.377

IEEE Circuits and Systems Magazine 2015, 15, 26–44.378

16. Li, Y.; Li, Y.; Jie, H.; Hu, J.; Yang, F.; Zeng, X.; Cockburn, B.; Chen, J. Feedback-Based Low-Power379

Soft-Error-Tolerant Design for Dual-Modular Redundancy. IEEE Transactions on Very Large Scale Integration380

(VLSI) Systems 2018, 26, 1585–1589. doi:10.1109/TVLSI.2018.2819896.381

17. Li, Y.; Li, Y.; Wey, I.; Hu, J.; Yang, F.; Zeng, X.; Jiang, X.; Chen, J. Low-Power Noise-Immune Nanoscale382

Circuit Design Using Coding-Based Partial MRF Method. IEEE Journal of Solid-State Circuits 2018,383

53, 2389–2398.384

18. Štefan Krištofík.; Baláž, M.; Malík, P. Hardware redundancy architecture based on reconfigurable385

logic blocks with persistent high reliability improvement. Microelectronics Reliability 2018, 86, 38 – 53.386

doi:https://doi.org/10.1016/j.microrel.2018.04.010.387

19. Yang, J.; Kwak, S.W. Corrective control of parallel interconnected asynchronous sequential machines with388

output feedback. IET Control Theory Applications 2019, 13, 693–701.389

20. Yang, J.; Kwak, S.W. Model matching and fault-tolerant control of switched asynchronous sequential390

machines with transient faults. IET Control Theory Applications 2019, 13, 1882–1890.391

21. Boncalo, O.; Amaricăi, A.; Lendek, Zs. Configurable Hardware Accelerator Architecture for Takagi-Sugeno392

Fuzzy Controller. Proceedings of the Euromicro Conference on Digital System Design; , 2019; pp. 1–6.393

22. Jamshidpour, E.; Poure, P.; Saadate, S. Photovoltaic Systems Reliability Improvement by Real-Time394

FPGA-Based Switch Failure Diagnosis and Fault-Tolerant DC-DC Converter. IEEE Transactions on Industrial395

Electronics 2015, 62, 7247–7255.396

23. Cabal-Yepez, E.; Valtierra-Rodriguez, M.; Romero-Troncoso, R.J.; Garcia-Perez, A.; Osornio-Rios, R.A.;397

Miranda-Vidales, H.; Alvarez-Salas, R. FPGA-based entropy neural processor for online detection of398

multiple combined faults on induction motors. Mechanical Systems and Signal Processing 2012, 30, 123–130.399

24. Karimi, S.; Poure, P.; Saadate, S. FPGA-based fully digital fast power switch fault detection and400

compensation for three-phase shunt active filters. Electric Power Systems Research 2008, 78, 1933–1940.401

25. Srebro, A. Fault-tolerant algorithm for a mobile robot solving a maze. The Challenges of Modern Technology402

2013, 4, 21–29.403

26. Zhao, Z.; Wang, J.; Cao, J.; Gao, W.; Ren, Q. A Fault-tolerant Architecture for Mobile Robot Localization.404

2019 IEEE 15th International Conference on Control and Automation (ICCA), 2019, pp. 584–589.405

27. Lendek, Zs.; Nagy, Z.; Lauber, J. Local stabilization of discrete-time TS descriptor systems. Engineering406

Applications of Artificial Intelligence 2018, 67, 409–418.407

28. Levine, W.S. The Control Systems Handbook, Second Edition: Control System Advanced Methods, Second Edition,408

2nd ed.; CRC Press, Inc.: USA, 2009.409

Sample Availability: Samples of the compounds are available from the authors.410

c© 2020 by the authors. Submitted to Electronics for possible open access publication411

under the terms and conditions of the Creative Commons Attribution (CC BY) license412

(http://creativecommons.org/licenses/by/4.0/).413

https://doi.org/10.1109/TVLSI.2018.2819896
https://doi.org/https://doi.org/10.1016/j.microrel.2018.04.010
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Control Feedback Loop for Fault Mitigation
	Dynamic Model of Digital Datapath
	Controller Design
	Fault tolerant CFLED operation

	Case Study - A Robot Arm Controller
	Nominal circuit design
	Dynamic model and CFLED design
	Results and discussion
	Reliability analysis
	FPGA implementation results

	Conclusions
	References

