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Abstract— This paper presents a novel observer design ap-
proach for discrete-time nonlinear systems. The nonlinearities
are handled on the one hand by a polytopic model and on
the other hand with a slope-restricted condition. Using these
two tools sufficient LMI conditions are developed for a new
observer design technique. The obtained results are tested in
simulation and on experimental data on an inverted pendulum
on a cart.

I. INTRODUCTION

State estimation is an important problem for real systems,
either because it is physically not possible to measure some
of the states or because the sensors are too expensive. For
this reason, starting from [7] and [10], much research has
been done to design state estimators. The model of a dynamic
system usually contains a set of nonlinear terms, which needs
to be taken into consideration for observer design. Linear
approximations can be used, however they only provide local
conclusions [8]. Nonlinear observers may be able to satisfy
global performances.

An important nonlinear observer design approach was
presented in [1] for continuous-time state estimation, and
was extended in several papers, see e.g. [2], [3], [15]. This
approach assumes that the unmeasured-state nonlinear terms
satisfies a slope-restricted condition. A drawback of this
condition is that the rest of the error dynamics are considered
linear. This restriction is removed in our approach by also
considering polytopic models.

Although many results were developed for continuous-
time nonlinear systems with slope-restricted nonlinearities,
the discrete-time case is not so well explored. In [6] a
detailed approach is presented for discrete-time systems
with the circle-criterion approach. Other important results
on observers for discrete-time Lipschitz nonlinear systems
are presented in [16].

In parallel with these results many other observer design
methods were developed for nonlinear systems, for example
approaches relying on polytopic representations such as
Tagaki-Sugeno (TS) fuzzy systems. The fuzzy representation
defines the model as a convex combination of local linear
models. Conditions in the TS framework are usually for-
mulated as Linear Matrix Inequalities (LMIs), as these are
easy to solve with existing convex optimization methods [9].
Among many advantages, like being able to exactly represent
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a nonlinear model in a convex set of the state-space [13],
it has some disadvantages as well. The number of fuzzy-
rules/local-models increases exponentially with the number
of nonlinearities, and the design problem may become
computationally intractable. Another disadvantage concerns
the case when the nonlinearities depend on unmeasured-
state variables. In this case, classically, the observer-model
mismatch has to satisfy a Lipschitz condition, which makes
the design conditions more conservative.

In this paper we combine the slope-restricted condition
with the TS fuzzy approach to gain the advantages from
both, and we apply it for discrete-time systems. With the
TS fuzzy representation we extend the slope-restricted ap-
proach for polytopic models, and in parallel, we can han-
dle the unmeasured-state nonlinearities. A similar idea was
described in [12] and [11] for the continuous-time case.
The discrete-time dynamic observer-based feedback control
design described in [4] considers a similar observer problem,
but there the control is the main target, and the estimation
is not so well explored. This paper focuses on the observer
design and extends the existing results.

In the sequel, following some notations, the TS fuzzy
system with local nonlinearities and the estimation problem
are introduced in Section II. Section III presents the main
theoretical results. To highlight the main novelty of the paper,
a comparison is provided with observer design approach
from [4] in Section IV. This is followed by a case study first
in simulation in Section V-A and in an experimental setup
on an inverted pendulum on a cart in Section V-B. Finally
the conclusions and the future directions are presented in
Section VI.

Notations. Let F = FT ∈ Rn×n be a real symmetric
matrix, F > 0 and F < 0 mean that F is positive definite and
negative definite, respectively. I denotes the identity matrix
and 0 the zero matrix of appropriate dimensions. The symbol
∗ in a matrix indicates a transposed quantity in the symmetric

position, for instance
(
P ∗
A P

)
=

(
P AT

A P

)
, A + ∗ =

A+AT , and AP ∗ = APAT . The notation diag(f1, ..., fn),
where f1, ..., fn ∈ R, stands for the diagonal matrix, whose
diagonal components are f1, ..., fn.

II. PRELIMINARIES AND PROBLEM STATEMENT

The classic TS fuzzy discrete-time model is a convex
combination of linear models, having the form:



x(k + 1) =

s∑
i=1

hi(z(k))(Aix(k) +Biu(k))

y(k) =

s∑
i=1

hi(z(k))Cix(k),

(1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the
control input, y(k) ∈ Rny is the measured output vector, s
is the number of rules, z(k) ∈ Rnz is the premise vector,
and hi, i = 1, ..., s are nonlinear functions with the property

hi ∈ [0, 1], i = 1, ..., s,

s∑
i=1

hi(z) = 1. (2)

These nonlinear functions are called the membership func-
tions. Matrices Ai, Bi, and Ci represent the i − th local
model. Throughout this paper, the following shorthand nota-
tion is used to represent convex sums of matrix expressions:

Fz =
s∑
i=1

hi(z(k))Fi. (3)

Based on this notation, (1) can be rewritten as

x(k + 1) =Azx(k) +Bzu(k)

y(k) =Czx(k).
(4)

In order to develop our results we will use the following
property and lemmas.

Property 1: (Schur complement). Let M = MT =[
M11 M12

MT
12 M22

]
, with M11 and M22 square matrices of ap-

propriate dimensions. Then:

M < 0⇔

{
M11 < 0

M22 −MT
12M

−1
11 M12 < 0

⇔

{
M22 < 0

M11 −M12M
−1
22 M

T
12 < 0

(5)

Estimation and control problems are often defined as a
double sum negativity problem having the form

Fzz =

s∑
i=1

hi(z)hj(z)Fij < 0, (6)

with symmetric matrices Fij , and nonlinear functions hi,
where i = 1, ..., s, satisfying the convex sum property in (2).

Lemma 1 ([14]): Equation (6) is satisfied if the following
conditions hold

Fii <0

2

s− 1
Fii + Fij + Fji <0 ∀i, j = 1, ..., s, i 6= j.

(7)

In order to develop our results we consider the following
model structure:

x(k + 1)=Azx(k)+Gzψ(Hx(k))+f(y(k), u(k))+Szd(k)

y(k) =Czx(k),
(8)

where x(k), u(k), y(k) have the same meaning as in (1)
and Az , Gz , Sz and Cz are convex combination of matrices

as in (3). With d we denote the disturbance including the
unmodelled dynamics, and f is a possibly nonlinear vector
function that only depends on measured signals. We assume
that the scheduling vector z only depends on measured
variables. The nonlinearities that contain unmeasured states
are collected in the vector function ψ(Hx(k)).

The quantity ψ(Hx(k)) ∈ Rr is an r-dimensional vector
where H ∈ Rr×nx and each entry is a function of a linear
combination of the states, i.e.

ψi = ψi(

nx∑
j=1

Hijxj(k)), i = 1, ..., r.

To develop our results, the elements in vector ψ(Hx(k))
must fulfill the following assumption.

Assumption 1: For any i ∈ {1, ..., r} there exist constants
0 < bi <∞, so that

0 ≤ ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (9)

A similar assumption is used in [1], [2], [3], [5].
In view of (9), there exist δi(k) ∈ [0, bi], so that for any

v, w ∈ R

ψi(v)− ψi(w) = δi(k)(v − w). (10)

Let δ(k) = diag(δ1(k), ..., δr(k)). To develop our results we
consider the following observer structure:

x̂(k + 1) =Azx̂(k)+f(y(k), u(k))+Lz(y(k)−ŷ(k))

+Gzψ
(
Hx̂(k) + Lψ(y(k)− ŷ(k))

)
ŷ(k) =Czx̂(k),

(11)

where x̂(k) denotes the estimate of x(k), Lz contains the
observer gains, and Lψ is an injection term to obtain a
less conservative design. Let us consider the error dynamics,
e(k) = x(k)− x̂(k), from where we obtain

e(k + 1) = (Az − LzCz)e(k) + Szd(k)

+Gz
(
ψ(Hx(k))−ψ(Hx̂(k)+Lψ(y(k)−ŷ(k)))

) (12)

Based on Assumption 1 we can rewrite (12) in the form

e(k + 1) =(Az − LzCz)e(k)+Gzδ(k)η(k) + Szd(k)

η(k) =(H + LψC)e(k).
(13)

III. MAIN RESULTS

In this section we develop sufficient conditions for ob-
server design with the aim of attenuating the effect of the
disturbance d. The following Lyapunov function is consid-
ered, with P = PT > 0,

V (e(k)) = e(k)TPe(k). (14)

Given the estimation error system in (11) we want to find
the observer gains Lz and Lψ so that the following holds:

∆V ≤ −‖e(k)‖2 + µ‖d(k)‖2, (15)

where

∆V := e(k + 1)TPe(k + 1)− e(k)TPe(k). (16)



If (15) holds, then based on [4] the estimation error satisfies

‖e(k)‖ ≤
√
µ‖d(k)‖2 + c‖e(0)‖2, ∀k > 0, (17)

where c is a constant. The above mentioned inequality is the
well known disturbance attenuation condition, where µ is the
H∞ performance index.

In the following theorem we define the main result of this
work.

Theorem 1: Consider system (8) and observer (11). If
there exist P = PT > 0, M = MT = diag(m1, ...,mr) >
0, Ni, for i = 1, ..., s, Wψ and constant µ > 0, so that

Fii <0

2

s− 1
Fii + Fij + Fji <0 ∀i, j = 1, ..., s, i 6= j.

(18)

where

Fij =


−P+I ∗ ∗ ∗

MH +WψCi ν(M) ∗ ∗
0 0 −µI ∗

PAi +NjCi PGi PSi −P

 (19)

and
ν(M) =− 2Mdiag

(
1
b1
, ..., 1

br

)
, (20)

then condition (15) is satisfied, and the observer gains can
be recovered from Li = P−1Ni and Lψ = M−1Wψ .

Proof: We consider the Lyapunov function candidate
defined in (14) and the difference in (16). We denote ζ(k) =[
e(k)T (δ(k)η(k))T d(k)T

]T
, which leads to

∆V = ζ(k)TΣζ(k), (21)

where

Σ =

(Az + LzCz)
TP ∗ −P ∗ ∗

GTz P (Az − LzCz) GTz P ∗ ∗
STz P (Az − LzCz) STz PGz STz P ∗

 (22)

We need to prove that (15) holds. Considering only (22), the
design conditions are very conservative. Less conservative
design condition can be obtained by adding additional terms:

ζ(k)TΣ ζ(k) + ζ(k)TΓ ζ(k) ≤ −‖e(k)‖2 + µ‖d(k)‖2,
(23)

where

Γ =

 0 ∗ ∗
MH +MLψCz ν(M) ∗

0 0 0

 . (24)

Let us now examine ζ(k)TΓζ(k).

ζ(k)TΓ ζ(k) =(δ(k)η(k))T ν(M) ∗
+ 2e(k)T (HT + CTz L

T
ψ)Mδ(k)η(k)

(25)

We know that η(k) = (Hz + LψCz)e(k), which leads to:

ζ(k)TΓ ζ(k) = 2η(k)TDη(k), (26)

where D = Mδ(k) + 2δ(k)T ν(M)δ(k). Since all the
elements in D are on the main diagonal we can examine
the elements:

miδi(k)
(
1− 1

bi
δi(k)

)
. (27)

Based on (10) δi(k) ≤ bi, from where we can conclude that
D ≥ 0, and this leads to:

ζ(k)TΓ ζ(k) ≥ 0. (28)

Therefore, if (23) holds then (15) holds as well.
To obtain LMI conditions we consider:

Σ + Γ +

I ∗ ∗
0 0 ∗
0 0 −µI

 ≤ 0, (29)

which is equivalent toATP ∗+I ∗ ∗
GTz PA+ B GTz P ∗+ν(M) ∗
STz PA STz PGz −µI + STz P ∗

≤0 (30)

where A = Az + LzCz and B = MH + MLψCz). In this
form (30) is bilinear, to transform it into an LMI, we rewrite
in the following form−P + I ∗ ∗

B µ(M) ∗
0 0 −µI


+

ATPGTz P
STz P

P−1[PA PGz PSz
]
≤ 0

(31)

We denote Nz := PLz and Wψ := MLψ , and we apply the
Schur complement to obtain:

−P+I ∗ ∗ ∗
MH +WψCz ν(M) ∗ ∗

0 0 −µI ∗
PAz +NzCz PGz PSz −P

 ≤ 0 (32)

Using Lemma 1 sufficient conditions in the form of (18)
are obtained.
Theorem 1 gives sufficient conditions for (15). The LMI
problem can be formulated so that the effect of the dis-
turbance is minimized via the term µ. In the absence of
the disturbance the condition provides global asymptotic
stability, i.e the error is converging to 0. The following
corollary summarizes the conditions for this particular case.

Corollary 1: Consider system (8) with Sz = 0, and
observer (11). If there exist P = PT > 0, M = MT =
diag(m1, ...,mr) > 0, Ni, for i = 1, ..., s, Wψ and constant
ε > 0 so that

Fii <0

2

s− 1
Fii + Fij + Fji <0 ∀i, j = 1, ..., s, i 6= j.

(33)

where

Fij =

 −P + εI ∗ ∗
MH +WψCi ν(M) ∗
PAi +NjCi PGi −P

 , (34)

and ν(M) has the same meaning as in Theorem 1, then
observer states defined in (11) converge asymptotically to the
real system states in (8). The observer gains can be recovered
from Li = P−1Ni and Lψ = M−1Wψ .



Fig. 1. b = 1: ’x’-Theorem 1 from [4], ’o’-Corollary 1 with Wψ = 0,
’@A’-Corollary 1

Fig. 2. Pendulum on a cart

IV. COMPARISON WITH EXISTING RESULTS

To highlight the advantages of our approach we compare it
with the method for observer design presented in Theorem 1
in [4]. Consider the following example.

Example 1: Model (8) is considered with f = 0 and
matrices

A1 =A2 =

[
1 0.008
0 a1

]
, A3 =A4 =

[
1 0.008
0 0.99

]
, S = 0,

G1 =G3 =

[
0
a2

]
, G2 =G4 =

[
0

0.0027

]
, C =

[
1 0
]
.

(35)
Assume that ψ(Hx(k)) is scalar and satisfies (9) with b = 1
and H =

[
0 1
]
. For Theorem 1 from [4] we consider

Poi = P , So = P , θ = b, and R = H . In Theorem 1
from [4] the injection term, Lψ , is not used, so in the first
case we are also omitting that, by considering Wψ = 0 in
Corollary 1. We consider the values for a1 ∈ [−0.9, 2.9], and
for a2 ∈ [−1.5, 1.5]. The values for which feasible solutions
have been obtained can be seen in Fig. 1. Corollary 1
provides a wider range compared to Theorem 1 from [4],
and the range can be further extended by considering the
injection term Lψ . A further advantage is that Assumption 1
accepts a wider range of nonlinearities than the Lipschitz
condition.

V. CASE STUDY

In this section we consider a pendulum system. First the
simulation results are presented, followed by experimental
results.

A. Simulation

The continuous-time model of an inverted pendulum on a
cart adopted from [11] is considered:

ẋ1 =x2

ẋ2 =
−γx2 − a(mlx2)2 sin(x1) cos(x1) +mgl sin(x1)

α(x1)

+
−aml cos(x1)

α(x1)
ũ

y =x1,
(36)

where x1 is the angle of the pendulum, while x2 is the
angular velocity, α(x1) = (J + ml2)− a(ml cos(x1))2 and
a = 1/(M + m). The rest of the model parameters can be
found in Table I.

The model has an unstable equilibrium point at the point-
ing up position. Since we apply the observer on a real system,
we consider the physical limitations as well. For the angle
we consider x1 ∈ [−π3 ,

π
3 ] and for the angular velocity

x2 ∈ [−σ, σ], σ = 24.8. Model (36) can be transformed
to the following form:

ẋ1 =x2

ẋ2 =ρ1(x1)x2 + ρ2(x1)ψ(Hx) + f̃(x1, u)

y =x1,

(37)

where

ψ(Hx) =x22 + 2σx2

ρ1(x1) =
−γ + 2σaml cos(x1) sin(x1)

α(x1)

ρ2(x1) =
−am2l2 sin(x1) cos(x1)

α(x1)

f̃(x1, u) =
mgl sin(x1)− aml cos(x1)u

α(x1)

H =
[
0 1

]
.

(38)

The nonlinearity ψ(Hx) satisfies Assumption 1 with b = 4σ.
We denote x =

[
x1 x2

]T
, and (37) can be written in the

matrix form:

ẋ =

[
0 1
0 ρ1(x1)

]
x+

[
0

ρ2(x1)

]
ψ(Hx) +

[
0

f̃(y, u)

]
. (39)

Based on the real application the sampling time is Ts =
0.008[s], and by using the forward Euler approximation for
the derivatives we obtain the following:

x(k + 1) =A(x1(k))x(k) +G(x1(k))ψ(Hx(k))

+ f(y(k), u(k))

y(k) =Cx(k),

(40)



TABLE I
PARAMETER TABLE

Notation Value Description
g [ms/s] 9.8 gravitational acceleration

m [kg] 0.2 mass of pendulum
M [kg] 1.61 mass of cart

γ [N/rad/s] 0.4898 friction coefficient
l [m] 0.67 length of pendulum

J [kgm2] 0.0232 moment of inertia
Km [-] 6.5914 PWM gain
σ [rad/s] 24.8 max angular velocity

where

A(x1(k)) =

(
I + Ts

[
0 1
0 ρ1(x1(k))

])
,

G(x1(k)) =Ts

[
0

ρ2(x1(k))

]
,

f(y(k), u(k)) =Ts

[
0

f̃(y(k), u(k))

]
, C =

[
1 0

]
.

(41)

Equation (40) has a form similar to (8), and since ρ1(x1)
and ρ2(x1) depend on x1, which is measured, based on the
sector nonlinearity approach [13] we can transform this into
a 4 rule TS fuzzy model, having the following local matrices:

A1 =A2 =

[
1 0.008
0 0.8275

]
, A3 = A4 =

[
1 0.008
0 1.0998

]
,

G1 =G3 =

[
0

−0.0027

]
, G2 = G4 =

[
0

0.0027

]
.

(42)

We can notice that in the discrete-time case the local matrices
are close to each other. This happens due to the discretiza-
tion, since the nonlinearities are multiplied with the sampling
time. For the simulation we consider the disturbance: d =
[d1, d2]T , and it affects both the angle and the angular

velocity in the following way: S =

[
0.1 0
0 1

]
.

We have applied Theorem 1 and the following observer
gains were obtained:

Lψ =− 135.03, L1 =

[
2.08

111.96

]
, L2 =

[
2.08

111.94

]
,

L3 =

[
2.08

148.88

]
, L4 =

[
2.08

148.70

]
.

(43)

The LMI problem was defined so that the effect of the
disturbance is minimised, and the minimum value is µ =
0.046, so the attenuation will be at least

√
µ. Note that,

similar results can be obtained by considering a linear gain
Lz = L, but then the value for disturbance attenuation is
higher µ = 0.057. In this case the fuzzy observer helps to
obtain better performance. A proportional control is applied
to stabilize the system in the pointing up position. For
the disturbance, d, the standard Gaussian distribution is
considered in the following form: d = 0.1N (0, 1). The
initial condition for the model is x0 =

[
0.75 −1

]T
, and

for the observer x̂0 =
[
0.75 0

]T
. In Fig. 3 we can see the

estimated states, x̂, while Fig. 4 shows the error signals.

Fig. 3. Estimated state vector

Fig. 4. x− x̂

As a comparison, the difference between the estimated
angular velocity and the actual angular velocity can be seen
in Fig. 5. The observer performs as expected, and even in
the presence of the disturbance the estimation is still good.

B. Experimental results

In this part we consider the physical system, of the
pendulum on a cart, shown in Fig. 2. The physical limitations
for the angle are more strict than in simulation, but for
comparison we use the same observer as in Section V-A.
The experimental data was collected using a proportional
controller, which due to the highly nonlinear dynamics is
not able to stabilize the system at the pointing up position,
but provides sufficient data to test the observer. Note that the
observer-based-control problem will be addressed in future
work.

On Fig. 6 we can see the angle, x1 and the estimated angle
x̂1. As it can be seen the estimated angle follows the form of
the actual angle with some disturbance on it. The estimated
angular velocity can be seen in Fig. 7. It was assumed that the
angular velocity is not exceeding the domain x2 ∈ [−σ, σ],



Fig. 5. Actual and estimated angular velocity

Fig. 6. Angle and estimated angle

with σ = 24.8, which can be verified a posteriori also on
Fig 7.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach on observer design
for discrete-time nonlinear systems with nonlinear conse-
quents. To handle the measured state-nonlinearities TS fuzzy
model was used, while the unmeasured-state terms were
treated as slope-restricted nonlinearites. Sufficient conditions
were formulated and tested on an inverted pendulum on a
cart. An H∞ performance index was also considered, and
the conditions were formulated so that the effect of the
disturbance was minimised. Both simulation and experiment
provided good results.

There are many future directions, among which we will
focus on extending this work to observer-based-controller
design approach. On the other hand we plan to remove the
single-input nonlinearity restriction to handle nonlinearities
like sin(x1x2).

Fig. 7. Estimated angular velocity
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