
     

Improving observer design for discrete-time TS descriptor models under the 
quadratic framework 

 
Víctor Estrada-Manzo*, Zsófia Lendek**, Thierry Marie Guerra* 



*University of Valenciennes and Hainaut-Cambrésis, LAMIH UMR CNRS 8201, 
Le Mont Houy, 59313, Valenciennes Cedex 9, France . 

(e-mail:{victor.estradamanzo, guerra}@univ-valenciennes.fr) 
**Department of Automotion, Technical University of Cluj-Napoca, 

Memorandumului 28, 400114, Cluj-Napoca, Romania. 
 (e-mail: zsofia.lendek@aut.utcluj.ro) 

Abstract: The paper presents a new quadratic Lyapunov function for observer design for discrete-time 
nonlinear descriptor systems. The main idea is to represent the original nonlinear model as a Takagi-
Sugeno one and then use Lyapunov’s direct method to design the observer. The well-known Finsler’s 
Lemma is used to design a non-Parallel-Distributed-Compensator-like observer together with a quadratic 
Lyapunov function. This procedure yields design conditions in terms of linear matrix inequalities. The 
effectiveness of the proposed approaches is illustrated via numerical examples. 



1. INTRODUCTION 

Takagi-Sugeno models (Takagi and Sugeno, 1985) have 
become an interesting alternative for the analysis and 
controller/observer synthesis for nonlinear models; this is due 
to their convex structure that allows using the Lyapunov’s 
direct method (Tanaka and Wang 2001). Moreover, when the 
sector nonlinearity is used, the resulting TS model is an exact 
representation of the original nonlinear one (Ohtake et al., 
2001). A TS model is a blending of local linear models and 
nonlinear membership functions (MFs) (Lendek et al., 2010; 
Tanaka and Wang, 2001). The main design goal is to get 
conditions in terms of linear matrix inequalities (LMIs) 
(Boyd et al., 1994; Scherer and Weiland, 2005).  

In (Wang et al., 1996) the so-called Parallel-Distributed-
Compensator (PDC) together with a quadratic Lyapunov 
function (QLF) were introduced for control purposes. The 
observer design was treated in (Bergsten and Driankov, 2002; 
Palm and Driankov, 1999).  The use of non-quadratic 
Lyapunov functions (NQLF) allows reducing the 
conservativeness of QLF; however, in the continuous-time 
case, researchers must face the difficulty of the time-
derivatives of the MFs (Bernal and Guerra 2010; Blanco et al. 
2001; Tanaka et al. 2003). However, in the discrete-time case 
the NQLF has yielded successful results (Ding et al. 2006; 
Guerra and Vermeiren 2004; Kruszewski et al. 2008; Lendek 
et al. 2014). 

Recently, via some matrix manipulations (de Oliveira and 
Skelton 2001; Shaked 2001) some works have obtained 
advantages for the quadratic case altogether with a non-PDC 
controller/observer (Jaadari et al. 2012; Marquez et al. 2013; 
Marquez, et al. 2014).  

Despite all the work mentioned above, there are few results 
referring to TS descriptor systems. This type of TS rewriting 

was first introduced in (Taniguchi et al., 1999) to represent 
nonlinear descriptor models which appear in mechanical 
systems (Luenberger, 1977). An exact TS representation of a 
model with several p nonlinear terms gives r  number of 
rules ( 2 pr  ), thus it can easily reach computational 
intractability. Since its TS descriptor structure separates the 
non-constant terms in the two sides of the system (Estrada-
Manzo et al., 2014b; Guelton et al., 2008; Taniguchi et al., 
2000), keeping the descriptor form reduce the computational 
burden.   

In most applications not all the states are available for control 
purposes; an observer is needed to estimate the missing 
states. In this paper, the main idea is to design an observer via  
a Lyapunov function similar as Case 1 in (Lendek et al. 
2015). Using the well-known Finsler’s Lemma together with 
QLFs, a non-PDC-like observer can be designed. Although it 
is well know that NQLFs are more relaxed than QLFs, we are 
interested in the study of QLFs because they give a co-
negativity problem of 3 sums, which is less computationally 
complex than NQLF. 

Summarizing, the aims of this work are: given a discrete-time 
TS descriptor model, 1) design  non-PDC-like observer for 
such a TS model, 2) introduce a new structure on the 
Lyapunov function to perform the observer design 
conditions, 3) illustrate the advantages via numerical 
examples. 

The rest of paper is organized as follows: Section 2 provides 
some useful notation and lemmas used along the paper; 
Section 3 introduces the discrete-time TS descriptor model 
and motives the study of them; Section 4 presents previous 
results in the literature and gives the main results on the 
observer design; Section 5 shows the performance of the 
proposed approaches via examples. Section 6 concludes the 
paper. 



 
 

     

 

2. NOTATION AND TOOLS 

Throughout the paper the following shorthand notation is 
used to represent convex sums of matrix expressions:  

     

     

1 1

1

1

1 1

, ,

1 , ,

e

i i

i

rr

h v k k
i k

r r

l l hh
i i

i

h z v z

h z h z

 

 

 




 

     

        
 

 

 
 

where i , k , and l  are matrices of appropriate  

dimensions. The subscript h  and v  denote the associated 

MF. In matrix expressions, an asterisk    denotes the 

transpose of the symmetric element; for in-line expressions it 
represents the transpose of the terms on its left-hand side. 

When double convex sums appear, the following relaxation 
lemma is employed to drop off the MFs. 

Lemma 1 (Relaxation Lemma) (Tuan et al. 2001): Let k
ij  

 1,2 ,, ,i j r  ,  1,2, , ek r   be matrices of appropriate 

dimensions. Then 
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Lemma 2 (Finsler’s Lemma) (de Oliveira and Skelton 2001): 
Let ,n  T n n   , and m n  such that 

 rank n ; the following expressions are equivalent: 
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Property 1: Let 0T    and   be matrices of 
appropriated size. The following expression holds: 

   1 10 .
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3. PROBLEM STATEMENT 

Consider a nonlinear descriptor system in discrete-time: 
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where nx  is the state vector, mu  is the control input 

vector, oy  is the output vector, and   is the current 

sample. Matrices   A x  ,   B x  , and   C x   are 

assumed to be bounded and smooth in a compact set of the 
state space x . This paper considers the descriptor matrix 

  E x  as a non-singular matrix at least in a compact set 

x . In what follows, x   and x  will stand for  1x    and 

 x   respectively. Arguments will be omitted when their 

meaning is clear. 

When using the sector nonlinearity approach (Ohtake et al. 
2001), the p  nonlinear terms in the right-hand side of (2) are 

captured via convex MFs    0ih z   ,  2,1, , 2 pi  , 
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method allows obtaining an exact TS descriptor model of the 
nonlinear descriptor one (more details are given in the 
pioneering work (Taniguchi et al. 2000)). 

Using the above methodology, an exact representation of (2) 
in x  is given by the following TS descriptor model: 
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where matrices  , ,i i iA B C ,  21, ,,i r  , represent the i-th 

linear right-hand side model (3) and kE ,  2,1, , ek r  , 

represent the k-th linear left-hand side model of the TS 
descriptor model. In this work, the MFs depend on the 
premise variables grouped in the vector  z   which are 

assumed to be known. 

The following example illustrates why it is important to keep 
the nonlinear descriptor form instead of calculating the 
standard state space: 

    ,x A x x B x u       (4) 

with       1 Ax E xA x  and      1 Bx E xB x .  

Example 1. Consider a nonlinear descriptor model: 
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representation in the form (3) gives 2er   due to the 

nonlinear term   2
11 1 x  and 4r   due to the number of 

nonlinearities  1cos x  and  1 1sin x x . Note that in (5) the 

matrix B  is constant. Since  E x  is non-singular, one can 

calculate its inverse and then construct a standard TS model:  
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one can see that at least four different nonlinearities have to 
be considered, which results in 16r  . Moreover, the 



 
 

     

 

standard representation contains nonlinear terms in 

   1B x E x B  which forces the use of sum relaxations for 

the controller design. Table I compares the observer design 
conditions for the standard TS and TS descriptor forms. 
 

 Approach 
No. of 
sums 

No. of LMI 
conditions 

Feasible 
solution 

Q Standard TS1      
+ Lemma 1 

3 2 1 257r    No 

NQ Standard TS2   
+ Lemma 1  

4 3 4112r r   No 

Q TS Descriptor3   
+ Lemma 1 

3 2 1 33er r    No 

NQ TS Descriptor3 
+ Lemma 1 

4 3 132er r r    Yes 

Table I. Computational Complexity for different results in 
Example 1.   

 

Via Table I, one can see that better results may be obtained 
with TS descriptor models. Therefore, the observer design is 
done for the TS descriptor models via the direct Lyapunov 
method. The next section recalls some previous results and 
gives new LMI conditions for observer design. 

4. RESULTS 

An observer for the descriptor model (3) is given by: 
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where the observer gain    may change according to the 

approach under study.  

Defining the estimation error ˆe x x    , its dynamics are 

as follows: 

   ,v h he AE C e    (7) 

which can be expressed as the following equality constraint 
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For design purposes consider the following Lyapunov 
function candidate: 

  0, 0,T TV e e e         (9) 

where   may be constant (quadratic approach) or depend on 
MFs (non-quadratic approach). The variation of the 
Lyapunov function (9) writes 

                                                 
1 (Lendek et al. 2010) 
2 (Guerra et al. 2012) 
3 (Estrada-Manzo et al. 2014a) 
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In order to use Finsler’s Lemma the inequality (10) is 
expressed as follows: 
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Thus, using Finsler’s Lemma the inequality constraint (11)
together with the equality one (8) gives 
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where  
2n n   will be defined later on. 

4.1  Previous results 

The quadratic approach in (Estrada-Manzo et al. 2014a) is 
summarized in the following Lemma : 

Lemma 3: (Estrada-Manzo et al. 2014a) The estimation error 
e  is asymptotically stable if there exist matrices 0TP P   

and  hvF ,  such that the following inequality holds 
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The observer gains are recovered with 1
hv hvL P F . The final 

observer structure is 
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Proof: see Theorem 1 in (Estrada-Manzo et al. 2014b).   

The non-quadratic case presented in (Estrada-Manzo et al. 
2014a) is summarized in the following Lemma. 

Lemma 4: (Estrada-Manzo et al. 2014a) The estimation error 
e  is asymptotically stable if there exist matrices 

0T
h hP P  , hH , hvL , such that the next inequality holds 
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The final observer structure is 
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Proof: Recall (12). Choosing the observer gain as 

 
1

hvhH L , the Lyapunov matrix as hP , and 

  0 T
h

T
H     yields (15), thus the proof is ended.   

Remark 1: The inequality conditions in Lemma 3 and 4 are 
easily transformed into LMIs once the MFs are removed. To 
this end, Lemma 1 could be applied, and many other 
relaxation lemmas are available (Kim and Lee 2000; Sala and 
Ariño 2007; Wang et al. 1996).  



 
 

     

 

4.2 New quadratic Lyapunov function 

In this subsection a new Lyapunov function is presented. 
Recall (10) and select 1TG P G , therefore a new 
Lyapunov function yields 

  1 0,T TV e e G P Ge  
   (17) 

where  0TP P  , thus it is non-singular. The following 
result can be stated: 

Theorem 1: The estimation error e  is asymptotically stable 

if there exist matrices 0TP P  , G , and  hvF ,  such that 

the following inequality holds 
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The observer gains are recovered with 1
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Proof: Recall  (12). Choosing the observer gain as   hvL , 
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with the change of variable hv hvF PL . Finally, using 

Property 1 on the position (1,1) and the Schur complement on 
the position (2,2) renders (18); thus concluding the proof.   

Since Finsler’s Lemma allows “separating” — in a sense — 
the observer gain and the Lyapunov matrix (Marquez et al. 
2013), a way to take advantage of the classical non-PDC-like 
observer is obtained by choosing  

1
hvhH L ; this result is 

summarized in the following: 

Theorem 2: The estimation error e  is asymptotically stable 

if there exist matrices 0TP P  , G , hH , and  hvL  such 

that the following inequality holds 
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The final observer structure is 
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Proof: Recall (12). Choosing the observer gain as 
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Using Property 1 on the position (1,1) and the Schur 
complement on the position (2,2) gives (21); thus concluding 
the proof.   

Remark 2: Note that the PDC-like observer structure in 
Theorem 1 is the same as in Lemma 3, while the non-PDC-
like observer in Theorem 2 is the same as in Lemma 4; but 
the design procedure is done via different Lyapunov 
functions. The new Lyapunov function may be less 
conservative since it naturally introduces more slack 
variables; it could be seen as the dual of the one presented in 
(Lendek et al. 2015) for control purposes. 

The complexity in terms of number of decision variable and  
LMI conditions is summarized in Table II. 
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Table II. Computational complexity of the various approaches. 
 

5. EXAMPLES 

The following example is adopted from (Estrada-Manzo et al. 
2014a). 

Example 2. (Estrada-Manzo et al. 2014a) Consider a 
discrete-time TS descriptor model as in (3) with 2er r  ,  
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The parameters are defined as  1,1a   and  1,1b  . 

Fig. 1 shows the feasible regions for the proposed 
approaches. Results obtained via Lemma 3 ( ), via Lemma 4 
( ), and via Theorem 1 (  ). 



 
 

     

 

Example 2 illustrates the improvements made by the new 
Lyapunov function. In Fig. 1, one can see that the new 
Lyapunov function together with a PDC-like observer 
overcomes the quadratic approach in (Estrada-Manzo et al. 
2014a).  
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Fig. 1. Feasibility sets for Example 2.  

Using results in Theorem 2, it is possible to obtain the same 
feasibility set as in Lemma 4 for this specific Example 2. 
Both conditions allow designing the same observer structure 
(16). Table II shows that conditions in Theorem 2 are less 
demanding than Lemma 4.   

Example 3. Recall the nonlinear descriptor in Example 1. 
Considering the compact set 2

x    and using the sector 

nonlinearity approach a TS descriptor model as in (3) , we 
obtain: on the left-hand side: 
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 The MFs are:  2
1 11 1v x  , 2 11v v  , 1 2

0 01h   , 
1 2
0 12h   , 1 2

3 1 0h   , 1 2
4 1 1h   ; with 

  1
1
0 cos 1 2x   ,   1 1

2
0 sin / 1.210.216 77 6x x  , 

1 1
1 01   , and 2 2

1 01   . The state variable 1x  is 

available. Conditions in Lemma 3 and Theorem 1 are not 
feasible. Feasible results are obtained via Theorem 2 (non-
PDC-like observer and the new quadratic Lyapunov 
function); for brevity, only some of the resulting gains are 
given:  
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For this example, conditions in Lemma 4 are also feasible. 
However, the number of LMIs in Theorem 2 is 33 while for 
Lemma 4 is 132 (see Table II). 

The TS descriptor exactly represents the nonlinear model in 
the compact set  2

x   , thus the designed observer allows 

the asymptotic converge of the estimation error for any initial 
condition of the original nonlinear model (see Fig. 2). 
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Fig. 2. Evolution of the estimation error for several initial 
conditions for Example 3.   

6. CONCLUSIONS 

In this paper, LMI conditions are established for the observer 
design of TS descriptor models. Using Finsler’s Lemma 
together with a quadratic Lyapunov function it is possible to 
design a non-PDC-like observer; thus relaxing previous 
results. Numerical examples illustrate the advantages of the 
presented approaches.  
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