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Abstract

The Kalman filter and its nonlinear variants have been widely used for filtering and state

estimation. However, models with severe nonlinearities are not handled well by Kalman fil-

ters. Such an application is presented in this paper: the estimation of the overflow losses in

a hopper-dredger. The overflow mixture density and flow-rate have to be estimated based

on noisy measurements of the total hopper volume, mass, incoming mixture density and

flow-rate. We propose a decomposition of the nonlinear process model into two simpler

subsystems. Different types of observers are considered for each sub-process. The perfor-

mance is evaluated for simulated and real-world data and compared for the centralized and

distributed settings and four combinations of the particle filter and the unscented Kalman

filter. The results indicate that the distributed observer achieves the same performance as

the centralized one, while leading to increased modularity, reduced complexity, lower com-

putational costs and easier tuning.
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1 Introduction

Many problems require the estimation of states and possibly uncertain parameters

based on a dynamic system model and a sequence of noisy measurements. Dynamic

systems are usually modeled in the state-space framework, using a state-transition

model, which describes the evolution of states over time and a measurement model,

which relates the measurement to the states. These models can be deterministic as

well as stochastic.

The most well-known and widely used probabilistic estimation methods are the

Kalman filter (KF) and its extension to nonlinear systems, the Extended Kalman

Filter (EKF) (Kalman, 1960; Welch and Bishop, 2002). However, these methods

have severe limitations and may become unstable even for linear processes. The

Unscented Kalman Filter (UKF), introduced by Julier and Uhlmann (1997), over-

comes some of these deficiencies. The estimates obtained by the UKF are in general

more accurate, since the filter does not rely on linearization, but uses directly the

nonlinear state-transition function. Its superior performance has been reported in

several publications (Li et al., 2004; Stenger et al., 2001; van der Merwe and Wan,

2003). Though more accurate and reliable than the EKF, the UKF still assumes

a unimodal distribution of the states and the handling of multimodal distributions

remains problematic.

Over the last years, particle filters (PF) (Doucet et al., 2000; Arulampalam et al.,

2002) have been extensively studied. These filters have been successfully applied

to state-estimation problems, mainly in the field of tracking (Hue et al., 2002; Nait-

Charif and McKenna, 2004; Sullivan et al., 2001). The basic idea behind this tech-

nique is to represent probability densities by a set of samples. Thus, a wide range of

probability densities can be represented, allowing the handling of nonlinear, non-

r.babuska@tudelft.nl (R. Babuška), j.braaksma@tudelft.nl (J.
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Gaussian dynamical systems. However, this representation comes with a higher

computational cost, which may render the filter unusable for online or real-time

estimation.

Since the above-mentioned methods are suboptimal, their performance varies, de-

pending on the application considered. While for a highly nonlinear and non-Gaus-

sian model a particle filter is likely the best option, UKF may also yield good per-

formance with considerably lower computational costs.

Decentralized estimation has been studied in the context of large-scale processes

and distributed systems. The architecture in general takes the form of a network of

sensor nodes, each with its own processing facility. In case of a fully decentralized

system, computation is performed locally and communication occurs between any

two nodes. Each node shares information with other nodes and computes a local

estimate. Computation and communication is distributed over the network so that a

global estimate can be computed. Several topologies have been proposed, depend-

ing on the particular application. In case of large scale processes (Vadigepalli and

Doyle, 2003a,b), the network is in general in a hierarchical form, with several in-

termediate and one final fusion node. For distributed systems, such as multiagent

societies (López-Orozco et al., 2000; Roumeliotis and Bekey, 2002; Schmitt et al.,

2002), several fusion nodes exist, which process the data and send the informa-

tion to the rest of the nodes. Observers for distributed estimation include, but are

not limited to decentralized Kalman and Extended Kalman filter (Durrant-Whyte

et al., 1990), information filter and particle filters (Bolic et al., 2004; Coates, 2004).

In this paper, we propose the decomposition of the nonlinear system model into cas-

caded subsystems, with the possibility of using different estimation methods for the

subsystems. The idea behind this type of estimation is that many nonlinear systems

can be represented as cascaded, observable subsystems, which alone are less com-

plex than the original system. Separate observers can be designed for the individual

subsystems. Moreover, different types of observers can be combined, depending on
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the complexity and nonlinearity of the subsystems. This setting can be regarded as

a cooperative multiagent system. Each agent has the task of observing one of the

subsystems, possibly using different methods and relying on its own measurement

and the information gathered from other agents. In turn, each agent communicates

its own results to other agents.

The proposed distributed observer design is applied to the estimation of the over-

flow losses in a hopper-dredger. The estimation of overflow losses is an essential

step toward the optimization of the separation process in the hopper, which is of

vital importance for future improvement in efficiency, accuracy and from the view-

point of labor saving. In the considered process, only two of the three state variables

are measured, both heavily corrupted by noise, and the remaining state need to be

estimated online for monitoring and control purposes. The system is highly non-

linear, and for global state estimation a particle filter would be required. However,

the model can be represented as two cascaded subsystems, which allows the use

of two observers. We consider for these observers the combinations of UKF and

PF and compare the performance of a centralized PF for the whole system with

the four possible combinations in the distributed setting, both on simulated and

experimental data.

The structure of the paper is as follows. Section 2 reviews the Unscented Kalman

Filter and the Particle Filter methodology. In Section 3, the proposed cascaded ob-

server setting is given, while Section 4 presents the dynamic sedimentation model

and the models used for estimation purposes. Sections 5 and 6 give the results for

the simulated and experimental data, respectively, and Section 7 discusses these

results. Finally, Section 8 concludes the paper.
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2 Estimation Methods

In this section, two methods for estimating the states and parameters of a nonlinear

system are presented. Consider the following possibly time-varying, discrete-time

nonlinear system:

xk = f(xk−1, vk−1) (1)

yk = h(xk, ηk) (2)

where:

• k - current time step

• x - state variables

• v, η - noises of known distributions

• y - measurements

• f - state transition model

• h - measurement model

Note that the functions f and h may also depend on known inputs or other known

parameters. However, for the ease of notation, these variables are omitted. It is

assumed that the system (1)–(2) is observable, in order to be able to estimate the

states.

The goal is to estimate the states of interest. We consider two methods: the Un-

scented Kalman filter and the Particle Filter. Both methods use notions from prob-

ability theory, however, the UKF is a deterministic method, while particle filters

are stochastic. Both filters are recursive algorithms, that use all the provided infor-

mation (model and observations) to estimate the current state of the system. The

filters work in two steps: prediction and update. The prediction step uses the sys-

tem model and the information incorporated so far in order to predict the process’

states. This stage is also known as the time update step, as it projects the current

state forward in time. The update stage uses the latest measurement to modify (cor-
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rect) the projected state. This stage is also known as measurement update, since it

incorporates the information brought by the new measurement.

2.1 Unscented Kalman Filter

In the case of linear systems, corrupted by white Gaussian noise, the Kalman fil-

ter is proved to be an optimal filter in the least mean square sense. For nonlinear

systems, several extensions exist: the extended Kalman filter (based on linearizing

the models around the current states), and the family of sigma point Kalman filters

(Julier and Uhlmann, 2002a; van der Merwe, 2004).

The fundamental problem of the EKF is that the approximations will only be valid

if all the higher order derivatives of the nonlinear functions are effectively zero

around the current estimate. Another variation of the Kalman filter for nonlinear

systems, the Unscented Kalman Filter (UKF) was developed by Julier and Uhlmann

(1997). Since the original formulation of the UKF, a number of sigma-point filters

were described, which are based on approximating the distribution of the states by

deterministically chosen samples (sigma points) and differ mostly on how these

samples are generated. These filters preserve the normal distribution and are valid

up to the second order of the Taylor expansion of the nonlinear functions.

The UKF is based on the unscented transformation, which computes the statistics of

a random variable undergoing a nonlinear transformation. To compute the statistics,

a number of weighted samples called “sigma points” are chosen deterministically,

so that they completely capture the mean and covariance of the random variable.
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2.1.1 Unscented Transformation

Assume that an nx-dimensional random variable x has to be propagated through

the nonlinear function g in order to generate y:

y = g(x)

Assume also that x has a known mean x0 and a known covariance Px. In this case,

2nx + 1 sigma points can be generated deterministically, so that they capture the

mean and variance. One of the selection procedures (Julier and Uhlmann, 2002b)

computes the sigma points as follows:

X0 = x0 w0 = κ/(nx + κ)

Xi = x0 + [
√

(nx + κ)Px]i wi = 1/[2(nx + κ)] i = 1, 2, ...nx

Xi = x0 − [
√

(nx + κ)Px]i wi = 1/[2(nx + κ)] i = nx + 1, ...2nx

(3)

where κ is a scaling parameter, [
√

(nx + κ)Px]i is the ith row of the matrix square

root of (nx + κ)Px, and wi is the weight associated with the ith sample.

The sigma points are now propagated though the nonlinear function g: Yi = g(Xi),

i = 0, 1, . . . , 2nx. The mean and covariance of y are estimated as:

y0 =
2nx∑

i=0

wiYi (4)

Py =
2nx∑

i=0

wi(Yi − y0)(Yi − y0)
T (5)

These estimates are accurate to the second order of the Taylor series expansion of

g(x), for any nonlinear function. However, in certain cases the computed covariance

matrix can be non-positive semidefinite, in which case the filter collapses.

2.1.2 Unscented Kalman Filter Algorithm

In order to apply the Kalman filter using the unscented transformation to the system

(1-2), the state variables are augmented with the state transition and measurement
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noise, and the state covariance with the state transition and measurement covari-

ance. Assuming that the noises have means v and η, and covariances Q and R,

respectively, the augmented variables can be expressed as:

xa
k−1 = [xT

k−1 vT
k−1 ηT

k−1]
T na = dim(xa

k−1)

P a
k−1 = diag([P x

k−1 Qk−1 Rk−1])
(6)

The sigma points are computed based on the augmented state and covariance.

The prediction is extended with respect to the Kalman filter, since the sigma points

have to be computed and propagated through the state transition model to predict

the new states. The predicted states also have to be propagated through the mea-

surement model in order to predict the measurement. The equations are described

below.

Generate the sigma points from (6), according to (3). κ provides an extra degree of

freedom to “fine tune” the higher order moments of the approximation, and can be

used to reduce the overall prediction errors. When the states are assumed Gaussian,

a useful heuristic is to select na + κ = 3 (Julier and Uhlmann, 2002b). For other

distributions, a different choice of κ might be more appropriate. In this paper we

assume that the states are Gaussian and follow the guideline above.

Since the augmented state from which the sigma points are generated has the form

(6), the sigma points also have the form:

X a
i,k−1 = [X x

k−1 X v
k−1 X η

k−1]i, i = 0, . . . , 2na (7)

Propagate the sigma points through the state transition model:

X x
i,k|k−1 = f(X x

i,k−1, X v
i,k−1) i = 0, . . . , 2na (8)

Predict the next state:

x̂k|k−1 =
2na∑

i=0

wiX x
i,k|k−1 (9)
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and covariance:

P x
k|k−1 =

2na∑

i=0

wi(X x
i,k|k−1 − x̂k|k−1)(X x

i,k|k−1 − x̂k|k−1)
T (10)

Propagate the transformed sigma points through the measurement model:

Yi,k|k−1 = h(X x
i,k|k−1, X η

i,k−1) i = 0, . . . , 2na (11)

Predict the measurement:

ŷk|k−1 =
2na∑

i=0

wiYi,k|k−1 (12)

and its covariance:

P y
k|k−1 =

2na∑

i=0

wi(Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)
T (13)

Compute the cross-correlation matrix:

P xy
k|k−1 =

2na∑

i=0

wi(X x
i,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)

T (14)

The update stage remains the same as in the Kalman filter:

Compute the Kalman gain:

Kk = P xy
k|k−1(P

y
k|k−1)

−1 (15)

Correct the predicted state:

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1) (16)

Correct the covariance:

P x
k = P x

k|k−1 + KkP
y
k|k−1K

T
k (17)

A generic UKF algorithm is given in Algorithm 1.

The presented procedure is a general form of the unscented Kalman filter. For spe-

cial cases, such as additive state transition and/or measurement noise, the compu-

tational complexity can be reduced (Julier and Uhlmann, 1997).
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Algorithm 1 Unscented Kalman filter
Input: u, y, Q, R, f, h, P0, x0, v0, η0

Output: x, P

for k = 1, 2, . . . do . each sample

Prediction:

xa
k−1 = [xT

k−1 vT
k−1 ηT

k−1]
T na = dim(xa

k−1) . augment states

P a
k−1 = diag[P x

k−1 Qk−1 Rk−1] . augment covariance

X a
0,k−1 = xa

k−1

X a
i,k−1 = xa

k−1 + [
√

(na + κ)P a
k−1]i i = 1, 2, ...na

X a
i,k−1 = xa

k−1− [
√

(na + κ)P a
k−1]i i = na +1, ...2na . compute sigma points

X x
i,k|k−1 = f(X x

i,k−1, X v
i,k−1) i = 0, . . . , 2na . propagate sigma points

x̂k|k−1 =
∑2na

i=0 wiX x
i,k|k−1 . predict next state

P x
k|k−1 =

∑2na
i=0 wi(X x

i,k|k−1 − x̂k|k−1)(X x
i,k|k−1 − x̂k|k−1)T . predict covariance

Yi,k|k−1 = h(X x
i,k|k−1, X η

i,k−1) i = 0, . . . , 2na . propagate transformed sigma

points

ŷk|k−1 =
∑2na

i=0 wiYi,k|k−1 . predict measurement

P y
k|k−1 =

∑2na
i=0 wi(Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)T . predict measurement

covariance

P xy
k|k−1 =

∑2na
i=0 wi(X x

i,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)T . cross-correlation

matrix

Update:

Kk = P xy
k|k−1P(k|k − 1y)−1 . Kalman gain

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1) . correct the state

P x
k = P x

k|k−1 + KkP
y
k|k−1K

T
k . correct the covariance

end for

The Unscented Kalman Filter is not restricted to Gaussian noises, though its best

performance is achieved when the random variables are Gaussian.
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The UKF is a rather general solution for nonlinear state estimation, but it cannot

be used successfully in all situations. The filter may collapse due to the lack of ro-

bustness: the estimated posterior covariance can increase in an unbounded fashion

in the case of model-plant mismatch.

2.2 Particle Filters

Most Kalman filters represent the distribution of the random variables as Gaussians.

However, for arbitrary distributions, there is no general method to compute the re-

sulting distribution analytically. Moreover, these methods may become unstable

for highly nonlinear processes. This is why the particle filters represent the distri-

butions by samples, which can be easily computed with, rather than by a compact

parametric form.

The particle filter (PF) uses probabilistic models for the state transition function

and the measurement function, respectively:

p(xk|xk−1), p(yk|xk) .

The objective is to recursively construct the posterior PDF p(xk|yk) of the state,

given the measured output yk and assuming conditional independence of the mea-

surement sequence, given the states. The PF works in two stages:

(1) The prediction stage uses the state-transition model to predict the state PDF

one step ahead. The PDF obtained is called the prior.

(2) The update stage uses the current measurement to correct the prior via the

Bayes rule. The PDF obtained after the update is called the posterior PDF.

Particle filters represent the PDF by N random samples (particles) xi
k with their

associated weights wi
k, normalized so that

∑N
i=1 wi

k = 1. At time instant k, the

posterior obtained in the previous step, p(xk−1|yk−1), is represented by N samples

xi
k−1 and the corresponding weights wi

k−1. To approximate the posterior p(xk|yk),
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new samples xi
k and weights wi

k are generated. Samples xi
k are drawn from a (cho-

sen) importance density function q(xi
k|xi

k−1, yk), and the weights are updated, using

the current measurement yk

w̃i
k = wi

k−1

p(yk|xi
k) p(xi

k|xi
k−1)

q(xi
k|xi

k−1, yk)
(18)

and normalized

wi
k =

w̃i
k∑N

j=1 w̃j
k

.

If the importance density q(xk|xk−1, yk) is chosen equal to the state-transition PDF

p(xk|xk−1), the weight update equation (18) becomes:

w̃i
k = wi

k−1p(yk|xi
k) .

The use of the transition prior as the importance density is a common choice (Aru-

lampalam et al., 2002) and it has the advantage that it can be easily sampled and

the weights are easily evaluated.

The posterior PDF is represented by the set of weighted samples, conventionally

denoted by:

p(xk|yk) ≈
N∑

i=1

wi
kδ(xk − xi

k)

where δ is the Dirac delta measure.

The PF algorithm is summarized in Algorithm 2. A common problem of PF is the

particle degeneracy: after several iterations, all but one particle will have negligi-

ble weights. Therefore, particles must be resampled. A standard measure of the

degeneracy is the effective sample size:

Neff =
1

N∑

i=1

(wi
k)

2

If Neff drops below a specified threshold NT ∈ [1, N ], particles are resampled by

using Algorithm 3.
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Algorithm 2 Particle filter
Input: p(xk|xk−1), p(yk|xk), p(x0), N , NT

Initialize:

for i = 1, 2, . . . , N do

Draw a new particle: xi
1 ∼ p(x0)

Assign weight: wi
1 = 1

N

end for

At every time step k = 2, 3, . . .

for i = 1, 2, . . . , N do

Draw a particle from importance distribution: xi
k ∼ p(xi

k|xi
k−1)

Use the measured yk to update the weight: w̃i
k = wi

k−1p(yk|xi
k)

end for

Normalize weights: wi
k = w̃i

k∑N

j=1
w̃j

k

if 1∑N

i=1
(wi

k
)2

< NT then

Resample using Algorithm 3.

end if

Algorithm 3 Resampling
Input: {(xi, wi)}N

i=1

Output: {(xi
new, wi

new)}N
i=1

for i = 1, 2, . . . , N do

Compute cumulative sum of weights: wi
c =

∑i
j=1 wj

k

end for

Draw u1 from U(0, 1
N )

for i = 1, 2, . . . , N do

Find x+i, the first sample for which wi
c ≥ ui.

Replace particle i: xi
new = x+i, wi

new = 1
N

ui+1 = ui + 1
N

end for

The state estimate is computed as the weighted mean of the particles:

x̂k =
N∑

i=1

wi
kx

i
k .
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For more details on particle filters, refer to (Doucet et al., 2000; Arulampalam et al.,

2002).

Particle filters have an important advantage over Kalman filters: they can handle

not only highly nonlinear processes, but also arbitrary distributions. In such case,

however, the mean of the posterior cannot be considered a correct estimate of the

state, since no guaranties exist that the posterior is unimodal. Also, due to the ap-

proximation of the posterior with weighted samples, a large number of samples are

necessary for good performance. Hence, the algorithm is computationally involved,

and not suitable for fast processes.

While in theory particle filters are the best of the above estimators, for non-linear

systems, they cannot be considered a universal solution. Mild nonlinearities or fast

processes can be better handled by a Kalman filter, even if the estimate is not per-

fect.

3 Centralized and Cascaded Observers

Consider a general, observable nonlinear system, described as:

ẋ1 = f1(x,u) y1 = h1(x,u)

ẋ2 = f2(x,u)
...

... ym = hm(x, u)

ẋn = fn(x, u)

(19)

for which an observer has to be designed. For a large number of states, and nonlin-

ear equations, the design of an observer is clearly problematic. If the states and/or

measurements are also corrupted by noise and one uses a particle filter, then a very

large sample set is needed, in which case the computational costs may render the

observer unusable for online estimation.

A solution is to decompose such a system, and design separate observers for each
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subsystem, allowing that one subsystem may use the results of another one. Such

a decomposition is presented in Figure 1. In this setting we denote as “centralized

observer” an observer designed for the system (19) as a whole, while distributed /

cascaded observers are designed for the subsystems.

Observer 1

Observer 2

u

y1

u

y2

x1^

x2^

Fig. 1. Cascaded observers.

First one has to determine under which conditions such a decomposition is possi-

ble. A condition for the decomposition of the observers is that system (19) can be

partitioned as:

ẋ1 = f 1(x1, u)

ẋ2 = f 2(x1, x2, u)

y1 = h1(x1, u)

y2 = h2(x1, x2, u)

(20)

so that the subsystem

ẋ1 = f 1(x1,u)

y1 = h1(x1,u)
(21)

is observable.

Since both systems (19) and (21) are observable, this also means that the subsystem

ẋ2 = f 2(x1, x2, u)

y2 = h2(x1, x2, u)
(22)

is observable. In fact, for the subsystem (22), x1 can be considered as input.

Assuming that m ≥ 2 and such a partition exists, observers may be designed for

the two parts separately. At this point, a comparison of the performance of cascaded

observers and a centralized observer for the system (19) does not exist in the litera-
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ture. However, several advantages of such a decomposition and the use of cascaded

observers can already be recognized: the design and tuning of the subobservers is

simpler, computational costs can be reduced, different observers can be used for

the subsystems.

4 Estimation of Overflow Losses in a Hopper-Dredger

The Particle filter and the Unscented Kalman filter are applied in the cascaded set-

ting (20) to the estimation of the overflow losses in a hopper dredger. Information

on the amount of overflow losses is essential both for decision support and auto-

matic control. Unfortunately, these losses cannot be reliably measured, due to the

presence of air in the overflow pipe. However, as shown in this paper, they can be

estimated by using mathematical models and the available on-line measurements.

Before stating the estimation problem, the principle of the dredging process is

briefly explained. The dredger uses a drag head to excavate soil from the sea bot-

tom. A mixture of soil and water is transported through a pipe to the hopper, which

is a large storage tank inside the ship (see Figure 2).

Pump

Overflow pipe

Drag head

Hopper

Fig. 2. Schematic drawing of a hopper dredger.

The soil gradually settles at the bottom of the hopper, while excessive water (in fact

low-density mixture) is discharged through an overflow pipe whose level can be
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adjusted. As the height of the settled sand layer rises, so does the concentration of

the overflow mixture and eventually the overflow losses become so high that it is

no longer economical to continue dredging. The ship then sails back to deliver the

load. After the sand is discharged, the ship sails again to the dredging location and

the whole cycle repeats.

The efficiency of the sedimentation process heavily depends on the type of soil and

is influenced by the flow-rate and density of the incoming mixture and the man-

ner the overflow pipe is controlled. An important factor in the optimization of the

dredging performance is the minimization of the overflow losses. In the literature,

a number of sedimentation models have been proposed (Camp, 1946; van Rhee,

2002), however, these models cannot be used as a basis for control or optimization

of the dredging process. The reason is that they are based on detailed (often PDE)

modeling of the physical phenomena and contain too many uncertain parameters.

Therefore, we use simplified models, along with advanced signal processing and

estimation techniques.

4.1 Dynamic Sedimentation Model

The sedimentation process in a hopper-dredger can be described by a model with

three state variables: the total mass in the hopper mt, the total volume Vt of the

mixture in the hopper and the mass of the sand bed ms (see Figure 3).

w

Overflow

Incoming mixture

Sand bed

Q ,i

ht

Q ,o

ri

ro

rs

rm ho

hs

Fig. 3. The sedimentation process in the hopper.
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While the first two variables can be derived from on-line measurements (the ship

draught and the total level ht, respectively), the mass of the sand bed is not measur-

able. The flow-rate Qi of the incoming mixture and the overflow height ho are the

manipulated inputs and the incoming mixture density ρi is in this context regarded

as a measured disturbance. The volume and mass balance equations are given by:

V̇t = Qi −Qo (23)

ṁt = Qiρi −Qoρo . (24)

The rate of material sedimentation is as a function the settling velocity (fs) and the

scouring (erosion) effects (fe)

ṁs = fs (ρm) fe (Qo, hm) . (25)

The overflow rate Qo, the density ρo and the functions in (25) are modeled by using

static relationships as detailed below.

If the outgoing mixture freely flows through the overflow pipe, the flow-rate Qo is

given by

Qo = ko max(ht − ho, 0)
3
2 (26)

where ko is an uncertain parameter depending on the overflow pipe shape and cir-

cumference. However, if the overflow pipe is full (e.g., because a valve inside the

pipe is engaged), the following model must be used:

Qo = k′o
√

2g max(ht − ho, 0) . (27)

Clearly, there is some uncertainty in the modeling of the overflow rate. Moreover,

due to the model’s switching nature, it is not straightforward to estimate its para-

meters.

The density profile in the mixture above the sand bed can be approximated as a

decreasing function of the height above the sand. The exact form of this function

is highly uncertain and time varying. In this paper, we use the following saturated
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affine linear approximation:

ρo = max
(
ρs − kρ(ho − hs), ρw

)
. (28)

The slope kρ must be determined at every time instant such that the average mixture

density ρm, computed from the mass-balance relations, equals to the average of the

density profile:

ρm =
1

hm

∫ ht

hs

max
(
ρs − kρ(h− hs), ρw

)
dh

with hm = ht − hs. Solving this constraint for the model (28) yields the following

equation for the slope:

kρ =





2(ρs−ρm)
hm

for ρm > 1
2
(ρw + ρs)

(ρs−ρw)2

2hm(ρm−ρw)
otherwise

where the average mixture density is given by:

ρm =
mt −ms

Vt − ms

ρs

=
ρs(mt −ms)

Vtρs −ms

.

Validation based on measured data has shown that this model is not very accurate,

but it suffices for the tuning and first evaluation of the particle filter.

The settling function fs describes how the rate of sedimentation depends on the

undisturbed settling velocity vs and the mixture density:

fs(ρm) = Aρsvs
ρm − ρw

ρs − ρm

(
ρq − ρm

ρq − ρw

)β

. (29)

The scouring function describes the effect of erosion on the sand bed due to the

flow in the mixture (which is considered to be equal to the overflow rate in steady

state):

fe (Qo, hm) = max

(
1− Qo

2

kchm
2 , 0

)
. (30)

The parameters of the entire model have been determined by fitting the outputs of

the simulation model to real data from a ship, by using non-linear least-squares

optimization.
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4.2 The Estimation Problem

In order to estimate at each time step the overflow density and flow-rate, the volume

and mass balance equations were discretized by using the Euler method:

Vt,k = Vt,k−1 + T (Qi,k−1 −Qo,k−1) (31)

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 −Qo,k−1ρo,k−1) (32)

where the sampling period is T = 5 s, which is also the sampling period of the on-

board data-acquisition system. The state equations are augmented with a random-

walk model for Qo and ρo:

Qo,k = Qo,k−1 + εQ,k−1 (33)

ρo,k = ρo,k−1 + ερ,k−1 (34)

The motivation for this choice results from the process description in Section 4. The

sedimentation models are based on empirical modeling of the physical phenomena

and contain too many uncertain parameters. By using a random walk model, the

use of the uncertain overflow model (26)-(27), the settling and scouring functions

(29)-(30), and the uncertain parameters is circumvented. We define the augmented

state, input and output vectors as:

x =




Vt

mt

Qo

ρo




, u =




Qi

ρi




, y =




Vt

mt




Measurements are available for the inputs Qi and ρi and the outputs Vt and mt. The

objective is to estimate Qo and ρo on-line. For estimation purposes, the corrupting

noises are considered zero-mean Gaussians ( εxi,k ∼ N (0, νxi)), and their standard

deviations are determined experimentally.
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Note, that in this particular case, the estimation model is described as:

xk = f(xk−1) + vk−1

yk = h(xk−1) + ηk

where vk and ηk are zero mean Gaussian noises, with covariances Q and R, respec-

tively. The equivalent probabilistic model is expressed as:

p(xk|xk−1) = N (xk; f(xk−1); Q)

p(yk|xk) = N (yk; h(xk); R)

Using the estimation model above, a centralized PF has already been successfully

implemented in the data-acquisition and monitoring system of a hopper-dredger.

The different observers, using the presented estimation model, are compared in

terms of their performance. We consider the following cases:

(1) use of a centralized observer to simultaneously estimate the values of both Qo

and ρo, see Figure 4.

Observer

Vt

Qi

ρi

mt

ρo

Qo

Fig. 4. Centralized observer.

(2) cascaded observers: the first observer estimates Qo based on the volume bal-

ance (31), and the second estimates ρo based on the mass balance (32) and the

values obtained for Qo by the first observer, see Figure 5.

Observer 1

Observer 2

Vt

Qi

ρi

mt

ρo

Qo

Fig. 5. Cascaded observers.
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Note, that the models (31)-(34) only approximate the underlying true process. If

the data were generated based on these models, a Kalman filter could be used. For

the data generated from the sedimentation model, however, the results obtained

by the Kalman filter are too noisy and the Kalman filter becomes unstable for the

experimental data.

We found that the UKF cannot simultaneously estimate both Qo and ρo. Therefore,

for the centralized observer, only PF is considered, while in the cascaded setting

both PF and UKF are used. The observers are first applied to the simulated data

and then, with the same parameters, to real measured data.

There is one more setting of observers that was considered for this specific ap-

plication: independent observers. In this setting, one uses two observers: the first

estimates Qo based on the volume balance (31). The second estimates Qoρo based

on the mass balance (32). The value of ρo can be computed afterwards by dividing

the estimate of Qoρo by the estimate of Qo obtained by the first observer. However,

when working with experimental data, the computation of ρo means dividing noisy

variables and leads to huge errors and therefore the results are not presented here.

5 Results for Simulated Data

Recall that the model used for simulation is the one presented in Section 4.1, while

we use for estimation:

Vt,k = Vt,k−1 + T (Qi,k−1 −Qo,k−1) + εV,k−1

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 −Qo,k−1ρo,k−1) + εm,k−1

Qo,k = Qo,k−1 + εQ,k−1

ρo,k = ρo,k−1 + ερ,k−1

(35)

with εV,k ∼ N (0, νV ), εm,k ∼ N (0, νm), εQ,k ∼ N (0, νQ), ερ,k ∼ N (0, νρ) and

N (0, ν) being a zero-mean, ν2 covariance Gaussian random noise.
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For this simulation, only the inputs Qi and ρi are fed with experimental data,

corrupted by noise. The remaining variables are computed in simulation without

adding noise.

The results obtained with the different configuration of observers are compared to

the simulated values of ρo and Qo. The standard deviations of the state transition

and measurement noises are given in Table 1. The particle filter used 1000 samples,

Table 1

Standard deviations used in the estimation model (35).

Variable State transition Measurement

Vt [m3] 0 10

mt [kg] 3000 12000

Qo [m3/s] 0.25 –

ρo [kg/m3] 5 –

with resampling at a threshold of NT = 900. The presented results are the average

of 30 simulations.

5.1 Centralized Observer

The results obtained with a particle filter, based on the model (35) are presented in

Figure 6. The maximum standard deviation computed point-wise for the 30 Monte

Carlo simulations, is 0.1 for Qo and 5.1 for ρo.

The residuals are computed as the difference between the simulated and estimated

values of Qo and ρo, respectively. The distribution of the residuals is presented in

Figure 7, while their statistics are given in Table 2.
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Fig. 6. Centralized observer: results for Qo (a) and ρo (b) using the particle filter (solid line

– simulated data, dotted line – estimate).

Table 2

Statistics of residuals for the centralized observer.

Mean Standard deviation

Qo [m3/s] −0.0135 0.5863

ρo [kg/m3] 11.6858 22.6426
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Fig. 7. Centralized observer: residuals for Qo (a) and ρo (b).

5.2 Cascaded Observers

This setting involves two observers in a cascade. The first one estimates Qo using

the volume balance (31) and a random walk model for Qo. The second observer
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estimates ρo based on the mass balance (32), a random walk model for ρo and the

result obtained for Qo by the first observer (see also Figure 5). Two types of filters

are compared: the Unscented Kalman Filter and the Particle Filter.

The dynamic model is decomposed into two subsystems. The first observer uses

the model
Vt,k = Vt,k−1 + T (Qi,k−1 −Qo,k−1) + εV,k−1

Qo,k = Qo,k−1 + εQ,k−1

(36)

where Vt is the measured output. The second observer uses the model

mt,k = mt,k−1 + T (Qi,k−1ρi,k−1 −Qo,k−1ρo,k−1) + εm,k−1

ρo,k = ρo,k−1 + ερ,k−1

(37)

where mt is the measured output.

The results obtained for Qo are presented in Figure 8.
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Fig. 8. Cascaded observers: results for Qo using PF (a) and UKF (b) (solid line – simulated

data, dotted line – estimate).

The maximum standard deviation computed point-wise for the 30 Monte Carlo

simulations, is 0.095. The statistics of the distributions of the residuals are given

in Table 3. These statistics are comparable with that obtained with the centralized

observer.

For the cascaded observer the following combinations are considered: UKF for

both Qo and ρo, PF for both Qo and ρo, UKF for Qo and PF for ρo, and PF for Qo
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Table 3

Statistics of residuals of Qo [m3/s].

Mean Standard deviation

PF 0.0094 0.5953

UKF 0.0222 0.5582

and UKF for ρo. In what follows, the observer setting is denoted as observer 1 -

observer 2, i.e. PF-PF denotes that PF is used for both Qo and ρo, UKF-PF means

that UKF is used for Qo and PF for ρo, etc.

The results obtained for ρo using Qo estimated by PF and UKF are presented in

Figure 9. The maximum point-wise standard deviation of the 30 Monte Carlo sim-

ulations for ρo, based on the results of Qo given also by PF is 5.8, while for ρo

based on based on the results of Qo given by UKF is 2.96. The distribution of the

residuals is given in Figure 10. The statistics of the residuals can be found in Table

4.

Table 4

Statistics of residuals of ρo [kg/m3].

Qo ρo Mean Standard deviation

PF PF 12.1986 25.1174

PF UKF 0.3354 54.3970

UKF PF 10.6790 21.5436

UKF UKF −1.2536 54.2936

5.3 Discussion

For simulated data, using a centralized observer (particle filter), a good estimate

is obtained for Qo, but the estimate of ρo is delayed relative to the one simulated
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(b) PF – UKF.
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(c) UKF –PF.
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(d) UKF – UKF.

Fig. 9. The four possible estimates of ρo (solid line – simulated data, dotted line – estimate).

(Figure 6).

Of the cascaded observers, considering only the mean of the residuals (Table 4),

one can conclude that the UKF performs the best for the estimation of ρo, much

better than the centralized observer or the PF. However, both Figure 10 and the

standard deviations (Table 4) indicate differently: the estimates of ρo obtained by

UKF are much noisier than those obtained by the PF, both centralized and cascaded.

Comparing the results obtained by PF for ρo with the centralized observer (Table 2),

it can be seen that using a combination of two particle filters leads to approximately

the same results as a centralized one. However, the best result, based on the statistics

presented in Tables 3 and 4 was obtained with cascaded observers, the combination

UKF for Qo and PF for ρo.
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Fig. 10. Cascaded observers: residuals for the estimates of ρo.

6 Results for Experimental Data

For the experimental data, we consider the same model and parameter values as for

the simulated data and the same combinations of observers. The presented results

for the particle filter are the average of 30 simulations.

Since no measurements of Qo and ρo are available, the results are compared to the

values of ρo and Qo directly computed from the volume and mass balance, i.e.,

equations (31)-(32). The overflow rate and the density are computed as:

Qo,k = Qi,k − 1

T
(Vt,k+1 − Vt,k)

ρo,k =
Qi,kρi,k − 1

T
(mt,k+1 −mt,k)

Qo,k

.
(38)
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As the result of this computation is very noisy, a first order anti-causal low-pass

filter was applied to the measured data before computing Qo and ρo, with an exper-

imentally chosen cut-off frequency of 0.05 Hz.

6.1 Centralized Observer

The results obtained with the centralized observer (particle filter) are presented

in Figure 11. The maximum standard deviation computed point-wise over the 30

Monte Carlo simulations is 1.76 for Qo and 42.87 for ρo.
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Fig. 11. Centralized observer: results for Qo (a) and ρo (b) using particle filter (solid line –

computed by (38), dotted line – estimate).

6.2 Cascaded Observers

The results obtained by the UKF and PF for Qo are presented in Figure 12. The esti-

mate of Qo obtained by the UKF is noisier than that obtained by the PF, but compa-

rable to the result obtained by the centralized observer. The maximum sample-wise

standard deviation of the Monte Carlo simulations for Qo is 0.55.

For the cascaded setting, the previous four combinations are considered. The results

obtained for ρo with the four combinations are presented in Figure 13.
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Fig. 12. Cascaded observers: results for Qo using PF (a) and UKF (b) (solid line – computed

by (38), dotted line – estimate).
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(b) PF – UKF.
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(c) UKF – PF.
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Fig. 13. Cascaded observers: estimates of ρo using the four possible combinations (solid

line – computed by (38), dotted line – estimate).
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The sample-wise maximum standard deviation of the 30 Monte Carlo simulations

for ρo, based on the results of Qo given also by PF is 36.91, while for ρo based on

the results of Qo given by UKF is 36.05.

6.3 Discussion

For experimental data, a centralized observer (Figure 11) obtains a reasonably good

estimate for ρo, but the estimate of Qo is noisier than the one computed by (38).

From Figure 13 it can be seen that the UKF cannot handle the estimation of ρo,

probably due to the high noise level of the measured variables. By using the com-

binations of PF–PF and UKF–PF, approximately the same results are obtained for

ρo. These results are also comparable to those obtained by the centralized observer.

7 Conclusions

In this paper, we proposed a distributed setting for nonlinear state-estimation. In

many real-life applications, a complex process model can be decomposed in sim-

pler subsystems, and observers can be designed for these individual subsystems.

This partitioning of a process and observer leads to increased modularity and re-

duced complexity of the problem, with reduced computational costs. Moreover,

since the design and tuning of the observers becomes simpler, the overall perfor-

mance can also be improved.

The distributed observer setting was applied to the estimation of overflow losses in

a hopper dredger. The results were compared with those obtained by the centralized

observer. The overflow losses, represented by the overflow mixture density are es-

timated on the basis of the measured total hopper volume, hopper mass, incoming

mixture density and flow-rate.
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The proposed approach uses straightforward nonlinear mass balance equations and

does not rely on the overflow and sedimentation models which contain many un-

certain parameters and empirical functional relationships.

The performance was evaluated in simulations and with real measurements. The

simulation results for this application clearly indicate the best combination: cas-

caded observers, using UKF or PF for the simpler subsystem (flow-rate) and PF for

the more complex one (density).

In our future research, we will investigate the theoretical conditions under which

such a distribution of the process and the estimation is possible while maintaining

the same performance as a centralized observer.
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