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Abstract—In this paper, the validity of Takagi-Sugeno ob-
servers to estimate the angular positions and speeds in the
experimental platform of a quadrotor will be assessed. Takagi-
Sugeno observers are compared to observers based on the lin-
earized model designed with the same optimization criteria and
design parameters. Experimental results confirm that Takagi-
Sugeno models and observers behave similarly to linear ones
around the linearization point, and have a better performance
over a larger operating range.

I. INTRODUCTION

Quadrotor setups have gained popularity as a platform for

testing advanced control techniques, see [1], [2] and [3].

Their first-principle rigid-body model is nonlinear and non-

linearities also arise in the propeller. Hence, quadrotors are

a sensible benchmark for nonlinear control and observation

techniques.

This paper presents the design of an observer for a

quadrotor, implemented using nonlinear Takagi-Sugeno (TS)

models. The TS fuzzy model-based approach has been cho-

sen due to its efficiency with complex non-linear systems

in a wide range of application areas, e.g. [4] and [5]. The

designed observer is tested in a 3DOF quadrotor, and its

performance is compared with a linear observer designed in

a similar manner.

The design of state observers for non-linear systems using

Takagi-Sugeno (TS) models has been actively considered

during the last decades [6], [7]. TS models are currently be-

ing used for a large class of physical and industrial processes,

such as electrical machines and robot manipulators [8], [9].

A large class of nonlinear systems can be represented or

well approximated by TS fuzzy models [10], which in theory

can approximate a general nonlinear system to an arbitrary

degree of accuracy [11]. The TS fuzzy model consists of

a fuzzy rule base. The rule antecedents partition a given

subspace of the model variables into fuzzy regions, while the

consequent of each rule is usually a linear or affine model,

valid locally in the corresponding region.

For a TS fuzzy model, well-established methods and

algorithms can be used to design observers that estimate

unmeasurable states. Several types of observers have been

developed for TS fuzzy systems, among which: fuzzy
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Thau-Luenberger observers [12], [13], reduced-order ob-

servers [14], [15], and sliding-mode observers [16]. These

observers are designed such that the estimation error dynam-

ics are asymptotically stable. In general, the design methods

lead to a Linear Matrix Inequality (LMI) feasibility problem,

which is easy to solve.

The paper is organized as follows: Section II presents the

sector nonlinearity approach that will be used for obtaining

the TS representation of the quadrotor’s model and condi-

tions for observer design. The platform and the mathematical

model of the quadrotor are described in Section III. The TS

modeling of the quadrotor is realized in Section IV and the

observers are designed in Section V. Section VI presents

experimental results and finally Section VII provides the

conclusions and the future works.

II. PRELIMINARIES: TS MODELS AND OBSERVERS

Consider the non-linear system

x(k+ 1) = f (z(k))x(k)+ g(z(k))u(k)

y(k) =Cx(k)
(1)

with f and g smooth non-linear matrix functions, x ∈ Rn

the state vector, u ∈ Rnu the input vector, y ∈ Rny the

measurement vector, z some vector function of x, y, and u,

all variables assumed to be bounded on a compact set Cxyu.

1) Takagi-Sugeno Models: The sector-nonlinearity tech-

nique [17], [18] can be applied to the above system in

order to obtain a so-called TS model. Basically, let nl j(·) ∈
[nl j, nl j], j= 1, 2, . . . , p be the set of bounded non-linearities

in f and g, i.e., components of either f or g. An exact TS

fuzzy representation of (1) can be obtained by constructing

first the weighting functions

w
j
0(·) =

nl j− nl j(·)

nl j− nl j
w

j
1(·) = 1−w

j
0(·)

for each nonlinearity j = 1, 2, . . . , p, and defining the mem-

bership functions as

hi(z) =
p

∏
j=1

w
j
i j
(z j) (2)

with i = 1, 2, · · · , 2p, i j ∈ {0,1}. These membership func-

tions are normal, i.e., hi(z) ≥ 0, i = 1, 2, . . . , r, and

∑r
i=1 hi(z) = 1, r = 2p, where r is the number of rules.

Using the membership functions defined in (2), an exact

representation of (1) is given as:
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x(k+ 1) =
r

∑
i=1

hi(z(k))(Aix(k)+Biu(k))

y(k) =Cx(k)

(3)

with r the number of local linear models, Ai and Bi matrices

of proper dimensions, with i= 1, 2, . . . , r, and hi defined as

in (2).

2) TS Observers: In general, an observer designed for the

model (3) has the form

x̂(k+ 1) =
r

∑
i=1

hi(̂z(k))
(
Aix̂(k)+Biu(k)+Li(y(k)− ŷ(k))

)

ŷ(k) =Cx̂
(4)

where ẑ denotes the estimated scheduling vector and Li, i=
1, . . . ,r, are the observer gains. The observer design problem

is to calculate the values of Li such that the estimation error

converges to zero. Approaches to TS observer designs in

literature have been considered in [19], [20], [21].

The estimation error is e(k) = x̂(k)−x(k) and the dynamics

can be written as

e(k+ 1) =
r

∑
i=1

hi(̂z)(Ai−LiC)e(k)

+
r

∑
i=1

(hi(z)− hi(̂z))
(
Aix(k)+Biu(k)

) (5)

In order for the estimation error to converge to zero, the

observer gains Li are computed such that the first term of (5)

converges to zero and such that the disturbance due to the

second term, hi(z)− hi(̂z) becomes zero as ẑ approaches z.

In general, it holds that there exists a µ > 0 so that for all k,

‖
r

∑
i=1

(hi(z(k))− hi(̂z(k)))Aix(k)‖ ≤ µ‖e(k)‖

Using the above condition, the estimation error dynam-

ics (5) is asymptotically stable, i.e., the estimation error

converges to zero if there exists a positive definite matrix

P such that [22]




P−µ2I ∗ ∗
P(Ai−LiC) P ∗

0 P I


> 0 i = 1, . . . , r (6)

The inequalities above can be transformed into the fol-

lowing LMI problem: Find a positive definite matrix P and

matrices Mi, where Mi = PLi, i= 1, . . . ,r, such that




P−µ2I ∗ ∗
PAi−MiC P ∗

0 P I


> 0 i= 1, . . . , r (7)

The gains Li of the Takagi-Sugeno observer can be ob-

tained by solving the LMI in (7). The design details of this

observer will be presented in Section V, after presenting the

dynamic model of the quadrotor experimental platform.

Fig. 1. The Quanser Helicopter

III. EXPERIMENTAL PLATFORM

The three degrees of freedom (3DOF) Hover system

consists of a frame with 4 propellers mounted on a 3 DOF

pivot joint, such that the body can freely move in roll,

pitch and yaw, see Fig. 1. The propellers generate a lift

force that can be used to control the pitch and roll angles.

The total torque generated by the propeller motors causes a

yaw to the body as well. Two propellers in the system are

counter-rotating propellers, such that the total torque in the

system is balanced when the thrusts of the 4 propellers are

approximately equal.

The sensors of the platform are encoders that measure

the position of the three axes of the system φ , θ and ψ .

The control inputs are the voltages applied to each of the 4

propellers.

The communications between the computer and the plat-

form were made with a PMC I/O target. The non-linear

model of the platform is presented in the following equations,

as given in [23].

φ̈ =
Jr θ̇

Ixx
Kv(V1+V3−V2−V4)+

Iyy − Izz

Ixx
θ̇ ψ̇ +u1

θ̈ =
Jr φ̇

Ixx
Kv(−V1−V3+V2+V4)+

Izz − Ixx

Iyy
ψ̇φ̇ +u2

ψ̈ =
Ixx − Iyy

Izz
θ̇ φ̇ +u3

(8)

where
u1 =

blK2
v (V

2
2 −V 2

4 )

Ixx

u2 =
blK2

v (V
2
3 −V 2

1 )

Iyy

u3 =
dK2

v (V
2
1 −V 2

2 +V 2
3 −V 2

4 )

Izz

are the net torques from the propellers’ actuation, which can

be computed from the input voltage commands. For observer

design purposes, in what follows, the input signals will be

considered to be the transformed signals ui.

The symbols used and their values, where applicable, are

given in Table I (extracted from [24]).

The input voltages Vi, i = 1, 2, 3, 4, are limited by the

drivers, Vi ∈ [Vmin,Vmax], with Vmin = −10V and Vmax =
10V. We considered that the angular velocities φ̇ , θ̇ , ψ̇
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TABLE I

VARIABLES AND PARAMETERS.

Symbol Meaning Value Hover Units

φ Roll angle Measured rad
θ Pitch angle Measured rad
ψ Yaw angle Measured rad
Vi Voltage applied to propeller i Known input V
Kv Transformation constant 54.945 rad s/V

Jr Rotators inertia 6 ·10−5 kgm2

Ixx Inertia X-axis 0.0552 kgm2

Iyy Inertia Y-axis 0.0552 kgm2

Izz Inertia Z-axis 0.1104 kgm2

b Thrust coefficient 3.935139∗10−6 N/Volt

d Drag coefficient 1.192464∗10−7 Nm/Volt
l Distance from pivot to motor 0.1969 m
m Mass 2.85 kg

g Acceleration due to gravity 9.81 m/s2

Ts Sampling time 0.005 s

are bounded, φ̇ , θ̇ , ψ̇ ∈ [dαmin, dαmax], with dαmin =−π/4
rad/s and dαmax = π/4 rad/s. The maximum pitch and roll

angles are assumed to be π/2 rad, while the maximum yaw

angle is also considered to be π rad.

IV. TS MODELING OF THE 3DOF HOVER

In this section an exact TS representation of the discretized

3DOF model is developed. The TS model will be used later

to design the non-linear observer for the hover system.

The gyroscopic effects in the roll and pitch dynamics con-

tain the term Kv(V1+V3−V2−V4), which is the sum of the

(known) inputs. This term is denoted by ug = Kv(V1+V3−
V2−V4). Furthermore, to simplify the notations, the terms

containing the moments of inertia of the 3DOF quadrotor

are denoted as Ixyz =
Ixx−Iyy
Izz

, Iyzx =
Iyy−Izz
Ixx

, and Izxy =
Izz−Ixx
Iyy

.

With the notations presented above, the model (8) is

rewritten as

φ̈ =
Jr θ̇

Ixx
ug+ Iyzxθ̇ ψ̇ +u1

θ̈ =−
Jr φ̇

Ixx
ug+ Izxyψ̇ φ̇ +u2

ψ̈ = Ixyzθ̇ φ̇ +u3

(9)

The state vector x is defined as x = (φ , φ̇ , θ , θ̇ , ψ , ψ̇)T .
Then, one possible1 representation of (9) is

ẋ = Ac(x)x+Bcu

y=Cx

with

Ac(x) =




0 1 0 0 0 0

0 0 0 Jr
Ixx

ug 0 Iyzxx4
0 0 0 1 0 0

0 − Jr
Ixx

ug 0 0 0 Izxyx2
0 0 0 0 0 1

0 Ixyzx4 0 0 0 0




Bc =




0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1



; C =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0




1Due to the multiplication of the angular velocities, the matrix Ac(x) can
be defined in several ways.

where xi denotes the ith variable of the state vector x.

Since the variables are measured in discrete time, a

discrete-time observer will be designed. It is assumed that

the sampling time is small enough such that an Euler

discretization can be effectively used for the model (9).

Consequently, the non-linear discrete-time model is

x(k+ 1) = Ad(x(k))x(k)+Bdu(k)

y(k) =Cx(k)
(10)

with

Ad(x(k)) =




1 Ts 0 0 0 0

0 1 0 Ts
Jr
Ixx

ug(k) 0 TsIyzxx4(k)

0 0 1 Ts 0 0

0 −Ts
Jr
Ixx

ug(k) 0 1 0 TsIzxyx2(k)

0 0 0 0 1 Ts
0 TsIxyzx4(k) 0 0 0 1




Bd = TsBc

(11)

To obtain an exact fuzzy representation of the non-linear

model (10), the sector non-linearity approach [18] is used.

The non-constant terms in the matrix Ad(x(k)) are ug(k),
x4(k), and x2(k), therefore z(k) = (ug(k), x2(k), x4(k))

T .

Each of these terms are bounded and their weighting func-

tions are constructed2 as follows:

1) The bounds on the term ug(k) can be computed

based on the bounds of the voltage input and are

ug,min = 4KvVmin and ug,max = 4KvVmax. The weighting

functions are w0
1 =

ug,max−ug(k)
ug,max−ug,min

and w1
1 = 1−w0

1. The

term ug(k) is expressed as ug(k) = ug,minw
0
1+ug,maxw

1
1.

2) The bounds of x4(k) are the bounds of the angular

velocity, dαmin and dαmax. The weighting functions

are w0
2 =

dαmax−x4(k)
dαmax−dαmin

and w1
2 = 1−w0

2. The term x4(k)

is expressed as x4(k) = dαminw
0
2+ dαmaxw

1
2.

3) x2(k) is also angular velocity, and its bounds and

weighting functions are the same as for x4(k). Thus,

the weighting functions are w0
3 = dαmax−x2(k)

dαmax−dαmin
and

w1
3 = 1−w0

3. The term x2(k) is expressed as x2(k) =
dαminw

0
3+ dαmaxw

1
3.

As shown above, there are three non-linearities. For each

of these nonlinearities we have 2 weighting functions, and

therefore the fuzzy model will have 23 = 8 rules. The

membership functions are computed as (2), and the corre-

sponding local linear models are obtained by substituting

the corresponding values into the Ad matrix. For instance,

the first membership function and the corresponding local

matrix are

h1(z(k)) = w0
1w

0
2w

0
3

A1 =




1 Ts 0 0 0 0

0 1 0 Ts
Jr
Ixx

ug,min 0 TsIyzxdαmin

0 0 1 Ts 0 0

0 −Ts
Jr
Ixx

ug,min 0 1 0 TsIzxydαmin

0 0 0 0 1 Ts
0 TsIxyzdαmin 0 0 0 1




Each of the local models is observable given the available

measurements.

2Note that the multiplication with a constant of a non-linearity does not
affect the weighting functions.
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V. OBSERVER DESIGN

A. TS Observer

To design a TS observer, it is assumed that both the state

and the measurements are corrupted by noise, i.e., the system

equations can be written as

x(k+1) =
r

∑
i=1

hi(z(k))(Aix(k))+Bu+ v(k)

y(k) =Cx(k)+η(k)

(12)

where v(k) and η(k) are the state transition and measure-

ment noises, respectively.

The fuzzy observer is

x̂(k+1) =
r

∑
i=1

hi (̂z(k))(Aix̂(k)+Li(y(k)− ŷ(k)))+Bu

ŷ(k) =Cx̂(k)

(13)

and the error dynamics are

e(k+1) =
r

∑
i=1

hi (̂z(k))
(
(Ai−LiC)e(k)+(I −Li)

(
v(k)
η(k)

))

+
r

∑
i=1

(hi(z(k))−hi (̂z(k)))Aix(k)

with

‖
r

∑
i=1

(hi(z(k))− hi(̂z(k)))Aix(k)‖ ≤ µ‖e(k)‖

Our goal is to design the observer gains Li, such that

the effect on the disturbances v(k) and η(k) on De(k) is

minimized, where D is a known matrix. This can be written

as:

‖eTDe‖2 ≤ γ2‖ωT Iω‖2 (14)

After some algebraic manipulations (details are omitted for

brevity) it can be proven that the effect of the disturbances is

minimized and the estimation error converges with a desired

desired convergence rate β , if the observer gains are obtained
by solving minimize γ > 0, find P=PT > 0, Li, i= 1, 2, . . . , r
so that




(1−2βTs)P−µ2I ∗ ∗ ∗ ∗
0 γI ∗ ∗ ∗

P(Ai−LiC) P(Q −LiR) P ∗ ∗
0 0 P I ∗
D 0 0 0 γI


> 0

i= 1, . . . , r

(15)

where β is the equivalent desired convergence rate for the
continuous system, Q is the covariance matrix of the state
noise and R is the covariance matrix of the measurement
noise. To transform equation (15) into an LMI a change of
variable Mi = PLi is performed. The obtained LMI is:




(1−2βTs)P−µ2I ∗ ∗ ∗ ∗
0 γI ∗ ∗ ∗

PAi−MiC PQ −MiR P ∗ ∗
0 0 P I ∗
D 0 0 0 γI


> 0

i= 1, . . . , r

(16)

For this platform it has been considered that:

Q= diag(0.0001,1,0.0001,1,0.0001,1)

R= diag(8 ·10−4 ,8 ·10−4 ,8 ·10−4)

D= diag(10,0.038,10,0.038,10,0.038)

β = 2.25

and the value µ = 0.003 has been computed from the

knowledge of hi and the validity range of the TS model.
In total 8 observer gains have been obtained. For instance,

the gain matrix for the first rule is:

LTS,1 =




1.1799 0.0000 −0.0000
35.9791 −0.4295 0.1508
−0.0000 1.1799 0.0000
0.4299 35.9791 −0.1509
0.0000 −0.0000 1.1918
0.0001 −0.0002 38.3548




B. Linear Observer

To design a linear observer, first the non-linear model,

presented in (11), is linearised around x= 0, obtaining

x(k+1) = A0x(k)+Bdu(k)+ν(k)

y(k+1) =Cx(k+1)+η(k)
(17)

where A0 is the local state matrix, Bd is the input matrix,

C is the measurement matrix, and ν(k) and η(k) having the

same interpretation as in (12).

A deterministic linear observer is considered. The resulting

equation is:

x̂(k+1) = A0x̂(k)+Bdu(k)+LL(y(k)−Cx̂(k))

where LL denotes the observer gain. This gain is computed

by solving the matrix inequality (16), similarly to the TS

observer design. Hence, the linear observer uses only one

observer gain and one vertex model whereas the TS one

uses eight gains and eight vertex models.
The obtained linear gain is

LL =




1.0509 −0.0000 −0.0000
10.1863 −0.0000 −0.0000
−0.0000 1.0509 0.0000
−0.0000 10.1863 0.0000
−0.0000 0.0000 1.0509
−0.0000 0.0000 10.1863




VI. EXPERIMENTAL RESULTS

As the open-loop system is unstable, an LQR controller,

designed on the linearised system, was implemented to

stabilise the closed-loop.

The inputs of this control are the angular positions of

roll, pitch and yaw, which are measured by the encoders

in the experimental platform, and the angular velocities of

the three degrees of freedom. As the objective of this paper

is not designing a high-performance controller, but a high-

performance observer, suffice to say that is a state feedback

controller.

Input-output data have been generated by inserting sinu-

soidal and step references to this basic stabilising loop.

As there is no direct access to the real state variables, a

noncausal zero-phase filter, incorporating numerical differ-

entiation in the speed estimation case (filtfilt function

of Matlabr) has been used to compute the “real” value.

The results given by the Takagi-Sugeno and linear observers

have been compared to the results of the noncausal filter to

compute the (approximate) error.

With the objective of validating the TS observer, the

system has been subjected to an excitation achieving large

enough angular speeds for the nonlinear terms to be signifi-

cant. Hence, a sinusoidal excitation was introduced in ψ from

second 5 till 40 and a reference in θ and φ changes every 5
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Fig. 2. Measurement data of the platform
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Fig. 3. Input data of the platform

seconds from 10 to −10 degrees. The initial conditions were

close to the linearization point, and in the first 5 seconds

no input excitation has been applied. The input-output data

collected appear in Fig. 2 and 3. This data confirms that the

system states satisfy the bounds from Section III.
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Fig. 4. Estimations of the full experiment (Velocity)
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Fig. 5. Zoom in the time space [1 5]s

The estimation results for the noncausal filter and the

Takagi-Sugeno and linear observers are shown in Fig. 4.

Note that the position estimates are actually very precise as

a direct low-noise encoder output is available. As intuitively

expected, speed estimation is less precise and the differences

between the observer alternatives in the speed case will be

discussed below.
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Fig. 6. Zoom in the time space [33 38]s

Fig. 5 shows the first 5 seconds of the experiment, when

there is no yaw excitation. It can be seen that the three

observers estimate the velocity in a similar way, possibly

because the linearized model is reasonably valid. Fig. 6, a

zoom in of the experiment in a zone where there was a ψ
excitation and reference change in φ and θ (from 33 to 38

seconds), shows a clear difference between the estimations

of the different observers.

To have a better understanding of the platform estimation

improvement, the ISE (Integral Squared Error) of the ob-

servers estimation error (as compared to the non causal filter

output) has been computed, and the result is presented in

Fig. 7.

Fig. 7 shows that although in the first seconds the linear
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observer has less error than the TS, when the non-linear

stimulations (ψ sinusoidal and reference changes) affect the

system, the linear observer error increases significantly. The

ISE of the attitude of the quadrotor is shown in Table II. It

is clear that the error of the linear observer is larger than the

error in the TS.

TABLE II

ISE OF ATTITUDE ESTIMATION

ISE TS ISE Linear

φ̇ 148.6471 360.7385

θ̇ 533.3477 858.5370
ψ̇ 535.5539 1175.7
Combination of velocity 1217.5487 2394.237
Combination of position 0.2681 0.2858

VII. CONCLUSIONS

An LMI-based Takagi-Sugeno nonlinear observer has been

designed for attitude and rotational speed estimation in a

quadrotor. The experimental results presented show that a

better estimation is obtained with the TS observer when the

operating range is far away from the point of linearization

of a similarly designed linear observer. In this way, the

theoretical advantages of the TS framework are confirmed

in a real experiment.
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[19] Zs. Lendek, R. Babuška, and B. De Schutter, “Fuzzy models and
observers for freeway traffic state tracking,” in Proceedings of the

American Control Conference, Baltimore, MD, USA, July 2010, pp.
2278–2283.

[20] ——, “Stability of cascaded fuzzy systems and observers,” IEEE

Transactions on Fuzzy Systems, vol. 17, no. 3, pp. 641–653, June
2009.

[21] Zs. Lendek, J. Lauber, T.-M. Guerra, R. Babuška, and B. De Schutter,
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