
  

 

Abstract— Air-fuel ratio control is a crucial problem for 

engine control since it is one of the most important issues 

related to pollution reduction. The main difficulty in air-fuel 

ratio control is the time-varying delay. We propose a new 

model that includes the delay. This model is identified using 

real dataset from an engine test bench. The time-varying delay 

is made constant by using a change of domain. The 

nonlinearities of the model are handled with the Takagi-Sugeno 

representation and a linear controller is designed using the 

Lyapunov direct method. Simulation results highlight the 

efficiency of the proposed approach compared to classic maps-

based controllers. 

Keywords: Air-Fuel Ratio; Variable transport delay; crank-

angle domain; Takagi-Sugeno representation; Lyapunov-based 

control design 

I. INTRODUCTION 

With a continuously growing number of cars, pollution is 
a crucial matter from an ecological point of view. In the past 
years, the constraints on pollution imposed by governmental 
agencies have become tougher and tougher. Current 
technologies in car industries are mainly based on the three-
ways catalyst (TWC), which transforms exhaust gases to 
reduce the emission of NOx, CO2, and other particles. The 
TWC has an optimal functioning when the air and the fuel 
injected into a cylinder are in stoichiometric proportions. To 
achieve this proportion, an efficient control of the air-fuel 
ratio (AFR) is needed.  

The air-fuel ratio control is challenging due to the fact 
that the lambda sensor (UEGO sensor) is positioned in the 
exhaust manifold. Due to this position, the measurement is 
delayed, the delay depending on the engine speed. Moreover, 
the sensor is located after the confluence point where the 
gases from all the cylinders are mixed. This configuration of 
a unique sensor for several cylinders requires the use of 
advanced tools, for example [1]. This requires a model that is 
triggered every engine cycle. This paper proposed a new 
model in the crankshaft domain with a sampling period of 
180 crankshaft degrees. The model is an adaptation of the 
one presented in [2] with nonlinear gains to capture transient 
dynamics. It includes the fuel injection timing as well as the 
control input and the delay. The model is identified based on 
real datasets from an engine test bench. 
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Including the variable transport delay from the cylinder to 
the lambda sensor allows linking the air-fuel ratio with the 
mixture that is inside a cylinder. The main problem is that 
this delay is varying in time because it depends on the engine 
speed. Furthermore, this variable transport delay can make 
the control law very complicated and hard to compute for an 
embedded engine control unit.  

That is why many works have investigated advanced 
controllers without considering any transport delay. For 
instance, in [3]  a fuzzy PID controller is developed. Neural 
networks based on datasets have been used in several studies, 
for example [4]–[6] for identification and control, but 
considering the transport delay as fixed in time. In [7], an 
adaptive controller is designed considering that the transport 
delay is known. The adaptive methodology has also been 
applied in [8] using a mean-value model. [9] has developed a 
flatness-based controller using a Kalman filter for estimation. 
However, the delay is considered to be independent of the 
engine speed.  

In those works where the transport delay is considered, it 
is approximated, identified for compensation or mapped. In  
[10], a Padé approximation is used to get an analytical 
expression of the transport delay. In [11], Fourier analysis is 
used to handle the varying sampling time due to the non-
constant engine speed and to model individual cylinder air-
fuel ratio. Concerning the variable transport delay, it is taken 
into account through gain scheduling and integrated into the 
Fourier coefficients as a map of several operating points. The 
same method, creating maps for several operating points, has 
also been used in [12]. They used a collection of LPV 
controllers for the air-fuel ratio control, and, thanks to the 
map, the delay is constant at each point. But this mapping 
method raises the question of transient phases. In the recent 
work [13] inspired by the study [14], the authors consider the 
system as an output delay problem. They take into account 
the transport delay in the augmented state, and they estimate 
the individual AFR using observers. 

As it is illustrated through the literature review, the 
variable transport delay can be taken into account in the air-
fuel ratio control design. Indeed, it can increase performances 
while ensuring the efficiency even if the engine speed is 
varying [10]–[14]. This paper presents a transformation to the 
crankshaft angle domain, where the transport delay becomes 
constant because it is only depending on values from the past 
as introduced in [14]. It is possible to take into account the 
delay if it is known during the AFR controller design. 
Additionally, the case of idle speed is considered. This is 
because in hybrid propulsion, the internal combustion engine 
is often used to reload the battery as a generator group, and it 
is working at idle speed. Moreover, because the variable 
transport delay depends on the inverse of the engine speed 
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(see next section), this delay is maximized at low speed. This 
is the perfect case to illustrate the interest in the proposed 
methodology.  

This paper first introduces the new air-fuel model and 
presents its identification and validation in Section 2. Section 
3 is dedicated to the transformation to the crank-angle 
domain so that the transport delay is fixed. Section 4 presents 
the controller design. Finally, Section 5 gives some 
simulation results on AFR ratio control with discussions and 
conclusions.  

II. AIR-FUEL RATIO MODEL 

A. Continuous-time model 

The air-fuel ratio (AFR) represents the ratio between the 
quantity of injected fuel and injected air inside a cylinder. In 
order to optimize the functioning of the three-ways catalyst, 
the quantities should be in stoichiometric proportions, i.e. 

 t  should be equal to 1, where 

  
 

 14.67

air

fuel

m t
t

m t
 


 (1) 

where  airm t  and  fuelm t  stand for the amount of air and 

fuel respectively, and the stoichiometric coefficient is 14.67.  
Moreover, considering the dynamics of the lambda 

sensor, the air-fuel ratio can be modelled as a first-order 
system. The following model is adapted from [2]: 
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where   is the time constant of the lambda sensor and 
injK  

is the injector constant such that    fuel inj injm t K t t  . 

 injt t  is the control input and stands for the time of injection 

(i.e., the time during which the fuel is injected into the 

cylinder). 0t  is the injection dead time. The three parameters 

 , 
injK  and 0t  are engine coefficients and have to be 

identified.  t  is the variable transport delay. Even if  t  

is time-varying, it does not directly depend on the time but on 
the crankshaft angle velocity, such that: 

  
 
fix

t
t





  (3) 

where 
fix  is the length of the delay expressed in crank-

angle. For example, it is commonly considered in the 
literature [2], [15] that the variable transport delay for AFR is 

equal to two turns of the crankshaft, i.e. 720fix   crankshaft 

degrees. The idea of this paper is to move from the 
continuous-time domain to the crank-angle domain in order 

to obtain a fixed transport delay.  t  stands for the angular 

velocity of the crankshaft in degrees per second and can be 

converted to the engine speed  n t  in turns per minute: 
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t n t  . With the above considerations, equation 

(2) can be rewritten as: 
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  (4) 

where  0, ,injK t   are constant parameters depending on 

the engine that have to be identified. In this control problem, 

the time of injection  injt t  is the input. The amount of air 

 airm t  is considered as an external input, or a disturbance, 

since it is controlled by the throttle controller. Indeed, the air 
controller is responsible for regulating the engine speed 
around a reference value, and the fuel controller has to 
maintain the AFR as close to 1 as possible. 

B. Model Identification 

B.1.  Classic model 

First of all, since the amount of air is not measured, the 
identification process uses the air mass flow entering the 

cylinders  airm t , which is measured.  

In order to identify the parameters injK , 
0t  and   in (4), 

a dataset from the engine test bench located at the LAMIH is 
used. This test bench is a D4FT 1.2L Renault engine 
equipped with the same sensors as commercial cars. In the 
case of AFR control, it means that only the lambda sensor 
located in the exhaust manifold can be used. The 
identification is performed using standard methods 
implemented in the Parameter identification function of the 
Simulink Design Optimization toolbox. An engine dataset 
with idle speed (reference at 900rpm ) and hot water 

temperature ( 75wT C  ) are first considered.  

Even at idle speed, the engine speed is varying around the 
reference with accuracy depending on the current 
implemented controller. Moreover, the engine may face 
external disturbances that can highly affect the engine speed. 
That is why identifying the model (4) does not provide 
satisfying results with several methods. Speed-dependent 
gains should be considered to make the model matching the 
real data.   

B.2.  Speed-dependent model 

In order to include the speed, two polynomial gains 

  1K n t  and   2K n t  are added to the previous model 

(4). We consider the model:  
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These gains are polynomial expressions depending on the 

engine speed, i.e.       2

1 0 1 2K n t a a n t a n t    and  

      2

2 0 1 2K n t b b n t b n t   . The number of parameters 

that have to be identified increases, however, these 
polynomial gains are able to capture transient dynamics, as 
presented in Fig. 1. 

 

Figure 1.  Results of the AFR model identification 

The nine parameters have been identified as follows: 

1.944  , 0.2027injK  , 0 0.001327t   , 0 9.059a  , 

1 0.0188a   , 5

2 1.0565 10a   , 
0 1.3482b   , 

1 0.002564b   and 7

2 3.68 10b   . 

Now that the model parameters have been identified, the 
engine model is tested with an engine dataset with similar 
conditions for the speed (idle speed) but with a water 

temperature continuously increasing in the set  64,72wT   

in Celsius degrees (transient phase for temperature – “tepid”). 

 

Figure 2.  Validation of the AFR model with tepid temperatures 

As one can see in Fig. 2, the model is not perfectly 
accurate in term of amplitude when the water temperature is 

not hot enough (  0,20t s ). If the mean value is reached, 

the amplitude of the signal is different. This suggests that the 
model also depends on the temperature.   

B.3.  Temperature-dependent model 

The model can be improved by integrated temperature-
dependent coefficients in equation (5). In what follows, the 
time index is omitted for clarity. 
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where 
wK  is a global gain to be identified, and the 

polynomial gains are now depending on both the speed and 

the temperature 
wT : 
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However, even such a complex model including the water 
temperature is not valid at low temperatures (around 

30wT C  ). Indeed, the behavior of the engine at low 

temperatures is hard to control, so the currently implemented 
strategy is mainly based on maps. That is why we focus on 
normal temperature situations.  

The identified model (5) is kept for controller design. The 
validation presented in Fig. 2 is satisfactory, taking into 
account that the controller is going to compensate the 
oscillations. For the rest of the paper, we consider for engine 
operating conditions that the water temperature is high 

enough such that the model is valid ( 70wT C  ).  

III. CRANK-ANGLE DOMAIN MODEL  

A.  Discrete transformation 

The engine is controlled by the electronic control unit 
(ECU). This device receives signals from the sensors with a 
certain sampling time, or depending on crankshaft angles. For 
example, the top-dead center sensor provides a single peak 
every 180 crankshaft degrees. Therefore, it would be 
convenient to have a model in the crank-angle domain where 
the sampling period is expressed as a function of the crank-

angle  t  [16], [17]. Moreover, it has been shown in [18] 

that this angular domain is suitable for engine control. 
Finally, because the transport delay is depending on the 
engine speed, in the crank-angle domain, the delay becomes 
fixed. The idea behind the transformation is to express all the 
variables and their dynamics using the crankshaft angle  . 

The variation of  t  then becomes: 

  
   

 

 d t d t d t
t

dt d t dt

  
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The time-derivative of the crankshaft angle  t  is in our 

case the angular velocity  t  [deg/sec] that is related to the 

engine speed  n t  [turns/min]: 
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In order to transform the equations from the continuous-
time domain to a discrete domain depending on the 
crankshaft angle, the Euler transformation in angle is used: 
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where  k  stands for the air-fuel ratio expressed in the 

crank-angle domain and 
sT   is the sampling period in 
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crankshaft degrees, assumed to be small enough such that no 

information is lost during the transformation. Note that k  

here denotes the sample index in the crank-angle domain. 
Then, by combining (9) and (10), we have: 

    
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Applying (11) on the AFR model (5), we get the model 
expressed in the crank angle domain:

      
  

2 1

0
6 88.02

airs s

inj inj

m kT K n T K n

n nK t k t

 

 


  
  




  
 

(12) 

where the k  index is removed for notation, and    denotes 

 1k  .    is a function that converts the delay in 

seconds into the delay in crank angles. Moreover, using the 
expression of the delay (3), it stands:  

      fixk k     . In addition, this delay is fixed in the 

new crank-angle domain, so   sT      with   the delay 

in discrete samples (integer). By combining the two 
expressions, the sampling period in crankshaft degrees can be 
calculated as: 

 
fix

sT 



  (13) 

The engine has a periodic behavior. Every 180 crankshaft 
degrees, it enters into a new phase: intake, compression, 
explosion or exhaust. Then, the sampling period for the 

crank-angle domain is chosen as 180sT  . Consequently: 
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By transforming the continuous model (5) into the crank-

angle domain model with a sampling period 180sT  , the 

delay becomes fixed and equal to 4 samples. Equation (12) 
becomes: 
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As one can see, the crank-angle model (15) is nonlinear. 
Instead of using linearization around operating points and 
maps, this paper proposes to use the Takagi-Sugeno 
representation. Thanks to this, the stability can be proved not 
only around operating points, but also during transient 
phases.  

B. Takagi-Sugeno representation 

This representation, first introduced by [19], allows 
dealing directly with the nonlinearities. Indeed, for bounded 
and measured nonlinearities, it is possible to define a domain 
in which the Takagi-Sugeno model exactly represents the 
nonlinear model. The main idea is to build a collection of 
linear models linked together with nonlinear functions called 
“membership functions”. More details can be found in [20]. 
Let us consider equation (15): 
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. 

The model (16) can be written as a Takagi-Sugeno state-

space representation. It is a SISO system (    x k k  ) 
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where   i ih NL k  are the nonlinear functions (membership 

functions). They verify the property of convex sum, i.e. 
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IV. CONTROLLER DESIGN 

Once the Takagi-Sugeno model (18) is written, the goal is 
to design a linear state-feedback controller: 

    u k Fx k   (19) 

The closed-loop is: 
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To prove the stability of the closed-loop system, the direct 
Lyapunov method is used with the Lyapunov function: 
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The difference    1V V k V k     can be written as: 
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Using the Finsler lemma [21] on (21) and (23), (23) is 

satisfied if there exist matrices 2 zzM  and 3M such as: 
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where    stands for the symmetric term of the left hand 

side. Equation (24) can be rewritten as: 
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After applying a congruence with  2 3, ,zzdiag X M M  

with 
1X P , a Schur complement is applied and the change 

of variables 1FQ W   leads to conditions: 
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with 
2

T T T

zz z zzN W B M    and   1

z zH B W Q     . 

Sufficient Linear matrix inequality [22] conditions can be 
developed using the relaxation of [23]:  
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with 
ij  being the quantity defined by: 
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Then, by solving (27), the gains of the linear controller (19) 
which stabilizes the closed-loop system (20) can be obtained.  

V. SIMULATION RESULTS 

The AFR continuous-time model (5), with the engine 

parameters from Section II, is used for the simulation. The 

speed and the air mass flow are taken from dataset of the 

engine test bench, and shown in Fig. 3. Fig.4 presents the 

variable transport delay according to (3). The controller is 

designed following the presented methodology. The 

conditions (27) are solved using Matlab. In addition, a 

second term is added to reach a constant reference, in our 

case, 1ref  , using classic state-feedback design methods 

[24]. The controller gain is: 

 12.7282F    (29) 

 

Figure 3.  Engine speed and air mass flow considered for the simulation 

 

Figure 4.  Variable transport delay in seconds 

Then, by going to the crank-angle domain, this delay 

becomes fixed. Fig. 5 presents the results of different control 

strategies on the air-fuel ratio.  

 

Figure 5.  Air-fuel ratio with two different controllers 

The dotted red line represents the reference that the 

controller has to follow, i.e. 1ref  . In green line, the air-

fuel ratio obtained using our crank-angle linear controller 

(19) with the gain (29) is given. In blue discontinuous line, 

the air-fuel ratio measured on the engine test bench with the 

current maps-based controller is shown. As one can see, the 

proposed simple linear state-feedback controller drives the 

air-fuel ratio to the reference value of 1, ensuring that the 

three-ways catalyst is working in the optimal conditions. 

Fig. 6 presents the command generated by our new 

controller as the time of injection is triggered every 180 

crankshaft degrees  injt k
. 

0 20 40 60 80
800

850

900

950

1000

1050

time (s)

e
n

g
in

e
 s

p
e

e
d

 (
rp

m
)

0 20 40 60 80
0.015

0.0155

0.016

0.0165

0.017

0.0175

time (s)

a
ir

 m
a

s
s
 f

lo
w

 (
g

/s
)

0 10 20 30 40 50 60 70 80
0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

time (s)
d

e
la

y
 (

s
)

0 10 20 30 40 50 60 70 80
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

time (s)

A
F

R
 (

-)

 

 

measured

simulated

reference



  

 

Figure 6.  Command of the injectors 

VI. CONCLUSION 

This paper has presented a new air-fuel ratio model. The 

classic one from the literature, including a variable transport 

delay, has been improved using nonlinear gains whose 

parameters have been identified using real data from the 

engine test bench. Then, this model has been converted into 

the crank-angle domain where the transport delay becomes 

fixed and expressed as a number of samples. The nonlinear 

behavior has been handled using the Takagi-Sugeno 

representation. A linear controller has been designed using 

the Lyapunov direct method to maintain the air-fuel ratio at 

the reference value. Finally, the simulation results have 

highlighted the strength of the approach compared to 

traditional maps-based controllers. Future works will be 

dedicated to the implementation of the controller on the 

engine test bench, providing real-time results.   
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