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Abstract— Hopper dredgers are massive ships that excavate
sediments from the sea bottom while sailing. The excavated
material is then transported and discharged at a specified
location. The efficiency of this process is highly dependent on
the detailed knowledge of the excavated soil. When the soil
is composed mainly of sand, the parameter of the greatest
importance is the average grain diameter. This, however cannot
be directly measured by available sensors. Therefore, in this
paper a particle filter is proposed to estimate the average grain
diameter. The estimation is based on online measurements of
the total height of the mixture in the hopper, total mass, the
incoming mixture density and flow-rate and the height of a sand
bed, together with estimates of the outgoing mixture density
and flow-rate. The loading process is naturally decomposed into
three phases and the filter is applied to the first two phases.
In order to match different types of nonlinearities, a separate
observer is proposed for each phase under consideration. This
increases the modularity of the filter and makes tuning easier.
The performance of the filter is evaluated in simulations and
the results are encouraging.

I. INTRODUCTION

The optimization of dredging operations is of vital im-

portance for future improvement in efficiency, accuracy and

from the viewpoint of labor saving. While modern hopper

dredgers are equipped with advanced dynamic positioning

and tracking systems, no on-board decision-support systems

are yet available to optimize the dredging performance under

given operating conditions (type of soil, dredging depth,

water current, etc.). The manipulated variables must con-

stantly be adjusted by two operators: the ship navigator and

the dredge process operator. Consequently, the performance

and efficiency of the entire process heavily depend on their

insight and experience.

IHC Systems, a company specialized in the development

and manufacturing of automation systems for dredgers, cur-

rently cooperates with the Delft Center for Systems and

Control on the development of an adaptive decision-support

system for hopper dredgers to advise the operators on the

most suitable control strategy, given a specified performance

goal. This can be, for instance, the minimization of the

integral dredging costs per m3 of sand or the maximization of

the production per time unit. To this end, a control-oriented

dynamic model of the hopper dredger has been developed

and calibrated by using recorded process data. Based on this

model, a suitable control strategy has been derived by using
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Model-Predictive Control (MPC) approach [1]. However, as

only some of the state variables are measured by sensors,

the use of on-line state estimation techniques is essential for

an on-board application of this system.

One of the variables that cannot be measured, but is

required by the MPC controller, is the average grain diameter

of the in situ material. This soil-dependent parameter is

needed for the optimization of the separation process in

the hopper. Therefore, the research presented in this paper

addresses the estimation of this variable. For the estimation,

the dynamical system describing the settling of sand in

the hopper is used. This model is both nonlinear and non-

Gaussian. Therefore, we use a Particle Filter (PF), which is a

nonparametric method capable of estimating highly nonlinear

and non-Gaussian systems.

The paper is organized as follows. Section II explains the

dredging process and presents the dynamic sedimentation

model. The estimation problem is stated in Section III.

Section IV reviews the particle filtering methodology that

is used for estimation. The results are presented in Section

V and discussed in Section VI. Section VII concludes the

paper.

II. PROBLEM STATEMENT

Trailing Suction Hopper Dredgers (TSHD) have been

intensively studied in the recent years. In the literature

models of the isolated components of the total system

were developed [2], [3], [4], [5], together with the overall

model taking into account the interactions between separate

subsystems [1]. One of the most important parts of the

system is the hopper model, which, among others, describes

the sedimentation of the material excavated from the bottom.

The sedimentation process has been extensively studied in

the literature (see [5] and the reference therein). Existing

models are in general very detailed descriptions of the

physical phenomena in terms of partial differential equations

and they contain a large number of uncertain parameters.

For the aforementioned reasons they cannot be applied for

control or optimization of the TSHD performance. Therefore,

a simplified sedimentation model was proposed in [2] as a

basis for the automation of the dredging process. This model

contains uncertain parameters dependent only on the in situ

soil properties. During the dredging, the ship is constantly

sailing, hence the excavated soil can change. Therefore the

parameters of the model have to adapt to new conditions.

Current results [2], [6], [7] indicate that the sedimentation

parameters can be approximated as functions of the average

grain diameter of the excavated soil dm. Furthermore, the



knowledge of dm can be used to estimate the uncertain

parameters in other subsystems. Therefore, developing an

accurate adaptive estimator of the average grain diameter is

of crucial importance for the TSHD automation system.

Dredgers are currently not equipped with sensors that can

measure the height of the sand settled at the bottom of

the hopper. However, design of such a sensor is an active

research area and, under laboratory conditions, the height of

the sand bed can be measured. The purpose of this research

is to design a dynamic observer for estimating the average

grain diameter of the sand excavated by the hopper dredger

assuming that the height of the sand bed is measured.

A. LOADING PROCESS

The production process in a TSHD is naturally divided

into three separate phases:

1) The no-overflow phase.

2) The constant-volume phase.

3) The constant-tonnage phase.

When the ship arrives at the dredging area, the loading

begins. At first (no-overflow phase) all the excavated material

is stored in the hopper. When the mixture level reaches

a certain height, the second phase begins (constant-volume

phase). During this stage the excess water (or a low density

mixture) is being discharged overboard to keep the volume

Vt of the stored material constant. As a result the density

of the remaining mixture increases and therefore the total

mass mt of the material in the hopper also increases. The

last loading phase begins after the maximum allowed mass in

the hopper (determined by the maximum draught of the ship)

has been reached. In order to prevent the ship from sinking

a constant-tonnage controller is used. When necessary, the

controller lowers the overflow height hence more mixture is

disposed through the overflow pipe.

During this third phase the overflow losses increase up

to the point when it is no longer economically efficient to

continue dredging, at which point the loading stops.

B. DYNAMIC SEDIMENTATION MODEL

The sedimentation process in the hopper is described by

a dynamic model with three state variables: the total mass

in the hopper mt, the total volume of the mixture in the

hopper Vt and the mass of the sand bed ms (see Figure 1).

The dynamics are given by the following ordinary differential

equations:

V̇t = Qi −Qo, (1)

ṁt = Qiρi −Qoρo, (2)

ṁs = F (dm,ms, ht, hs, Qo,mt, Vt). (3)

Equations (1) and (2) represent the volume and mass balance,

respectively. The two controllable input variables are the

incoming flow rate Qi and the density of the incoming

mixture ρi. The overflow rate Qo and the overflow density

ρo are output variables which cannot be directly measured

due to the lack of appropriate sensors in the overflow system

and are in general estimated.
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Fig. 1. Cross section of the hopper with variables that are used to describe
the sedimentation process.

In the literature, a number of models of the overflow

rate Qo and the overflow density ρo have been proposed

[2]. Unfortunately, those models contain too many uncertain

parameters which lead to rather inaccurate approximations of

the desired signals, when compared with the measured data.

Therefore, a cascaded observer of the overflow rate Qo and

the overflow density ρo has been developed in [8] in order to

obtain online estimates of both signals. Thus, in this paper,

the two aforementioned variables are regarded as measured

inputs of the system.

Equation (3) describes the sedimentation rate of the ex-

cavated material as a function of the average grain diameter

dm, sand bed mass ms, the total height of the mixture in the

hopper ht, sand bed height hs, the overflow rate Qo, the total

mass in the hopper mt and the total volume of the mixture

in the hopper Vt [2].

The nonlinear function F is factorized into two compo-

nents

F = fe(dm, ht, hs, Qo)fs(dm,ms,mt, Vt), (4)

where each factor describes a different physical phenomenon.

The scouring function fe models the erosion of the already

settled material as:

fe(dm, ht, hs, Qo) = max

(

1− Q2
o

(ke(dm)(ht − hs))
2 , 0

)

,

(5)

where the erosion pickup flux coefficient ke is a soil depen-

dent parameter expressed as a function of the mean grain

diameter dm of the in situ material.

The settling function fs describes the process of settling

of the sand particles suspended in the mixture above the sand

bed. The sedimentation rate depends on the density of the

mixture in the hopper. It has been experimentally shown [2]

that above the sand bed, the mixture of water and sand that

are being discharged into the hopper form a uniformly dense

soup with a thin layer of water at the top. Thus, the density

of the mixture can be approximated by the average density

of the mixture ρm, given by [2]:

ρm =
mt −ms

Vt −ms/ρs(dm)
=

ρs(dm) (mt −ms)

Vtρs(dm)−ms

. (6)

The sand bed density in the hopper ρs is another soil type

dependent parameter and can also be derived as a function



of the average grain diameter dm. There are two more such

parameters that play an important role in describing the

sedimentation process: the undisturbed settling velocity of a

single particle vs0 and the exponent β in the settling equation

based on the particle Reynolds number [9]. Finally, the rate

of sedimentation in a hopper of the form of a rectangular

parallelepiped with a base area A
[

m2
]

is given by:

fs(dm,ms,mt, Vt) =

Aρs(dm)vs0(dm)
ρm − ρw

ρs(dm)− ρm

(

ρq − ρm
ρq − ρw

)β(dm)

, (7)

where ρw is the density of water (1024 kg/ m3) and ρq is

the density of quartz (approximately 2650 kg/ m3).

Note that (3) can alternatively be written as

ṁs = Aρs(dm)
d

dt
hs, (8)

from which it is straightforward to obtain the formula for

the sand bed height hs growth rate:

d

dt
hs =

F (dm,ms, ht, hs, Qo,mt, Vt)

Aρs(dm)
. (9)

Since the erosion of the sediment takes place only after

the overflow begins (see (5)), there is a significant difference

in sedimentation dynamics between the first and the second

loading phase. The switching character of the process makes

it difficult to design a single observer of the average grain

diameter dm for both phases. Instead, each loading stage is

analyzed separately and an appropriate estimation technique

is chosen with regard to the phase under consideration.

III. ESTIMATION PROBLEM

As explained in the previous section, due to the changes

in sedimentation dynamics, different loading phases require

different estimation methods. In this paper we propose fil-

tering algorithms for the first two phases. The design of an

observer for the constant-tonnage stage will be the subject

of further research.

According to (1) and (2) the evolution of both total mass

mt and total volume Vt is determined by the incoming flow

rate Qi and the incoming density ρi (no-overflow period)

together with the overflow flow rate Qo and the overflow

density ρo (constant-volume phase). The first two signals

are available from the measurements and the last two are

estimated [8]. Therefore, in both cases we can treat mt and

Vt as the inputs of the model. The outputs are: the total

height of the mixture in the hopper ht and the height of

the sand bed hs, both assumed to be corrupted by the zero-

mean, time-invariant Gaussian noises eot and eos respectively.

Since measurements are taken with a sampling period Ts, a

discrete-time model is derived and used for estimation. The

derivative of hs at time step k is approximated by applying

the Euler method:

d

dt
hs,k ≈ hs,k − hs,k−1

Ts

+ eapprox, (10)

where the last term is an approximation error (time invariant,

zero-mean Gaussian) and Ts is the time to elapse between

two measurements.

The dynamics of ms are obtained by the discretization of

(9) by using the Euler method and applying (10) afterwards:

ms,k+1 = ms,k +Aρs(dm,k) (hs,k − hs,k−1)

+ TsAρs(dm,k)eapprox + em. (11)

Combining (9) and (10) gives:

hs,k+1 = hs,k+Tseapprox+TsG(dm,k, ht,k, hs,k, Q̂o,k, ρm),
(12)

where G is the function defined by the right hand side of

(9). During the first loading phase the variable Qo is equal

to zero, which simplifies the dynamics by setting (5) to

one. After the overflow starts the erosion effect must be

included in (12). Field data suggest that the mixture density

ρm is equal to the overflow density ρo. Therefore, during

the constant-volume phase an estimate of ρ̂o is used in (12)

instead of ρm. The state equations are augmented with a

random-walk model for dm:

dm,k+1 = dm,k + ed. (13)

The em and ed in (11) and (13) respectively are model

uncertainties.

In the standard state-space approach, the outputs of the

system are expressed as a (possibly nonlinear) function of

states and noises. However, since it is too difficult to solve

(9) in ht, we propose to consider it as another input variable

and include the noise eot into the state equation (12). Then

the augmented state, input and output vectors of the system

are given by:

x =





ms

hs

dm



 , u =





Q̂o

ρ̂o
ht



 , y = hs + eos.

The final form of the state-space model in these variables is

expressed as:

x1,k+1 = x1,k +Aρs(x3,k) (x2,k − x2,k−1)

+ TsAρs(x3,k)eapprox + em, (14)

x2,k+1 = x2,k + Tseapprox + TsG(xk,uk, e
o
t ), (15)

x3,k+1 = x3,k + ed, (16)

yk = x2,k + eos. (17)

It is assumed that errors eapprox and em are inde-

pendent and zero-mean Gaussians with variances σ2
approx

and σ2
m respectively. Consequently, the random variable

TsAρs(x3,k)eapprox+em is also a zero-mean Gaussian with

the variance σ2
x1

given by

σ2
x1

= (TsAρs(x3,k)σapprox)
2
+ σ2

m. (18)

The random variable eot influences only the erosion part fe
of the variable G. Therefore, since during the first phase

fe is constant, G(xk,uk) in (15) becomes a deterministic

function of state and observation. Thus, as long as there is

no overflow (Qo = 0), the variable Tseapprox+TsG(xk,uk)



is normally distributed with mean µx2
and standard deviation

σx2
given by:

µx2
= Tsvs0(x3,k)

ρm,k − ρw
ρs(x3,k)− ρm,k

(

ρq − ρm,k

ρq − ρw

)β(x3,k)

,

(19)

σx2
= Tsσapprox. (20)

The probabilistic model (15) for the constant-volume phase

is more involved. The error Tseapprox and the random

variable TsG(xk,uk, e
o
t ) are independent, but the latter is

not Gaussian. Thus, the probability density function (PDF)

px2
of a sum of these variables is a convolution of their PDFs

(px2,e and px2,G respectively):

px2
(y) =

∫

px2,e(y − z)px2,G(z)dz. (21)

The PDF of the normally distributed variable Tseapprox is

known. In order to derive the PDF of TsG(xk,uk, e
o
t ) we

use the following proposition:

Proposition 1: If X is a normally distributed random

variable with mean µ and variance σ2 and C1, C2 are certain

positive constants then the probability density function of the

variable C1 max
(

0, 1− C2

X2

)

is given by

p
C1 max(0,1− C2

X2 )
(x) =

√

C1C2

2πσ2(C1 − x)3
e−

C1C2
C1−x

+µ2

2σ2 cosh

(

µ
√
C1C2

σ2
√
C1 − x

)

1(0,C1](x)

+

(

1−
∫ 1

0

√

C2

2πσ2y3
e−

C2
y

+µ2

2σ2 cosh

(

µ
√
C2

σ2√y

)

dy

)

δ0(x),

(22)

where 1(0,C1] is an indicator function and δ0 is the Dirac

delta.

Due to space constraints, the proof is skipped. At each time

step k we define

Xk = ke(dm,k) (e
o
t + ht,k − hs,k) , (23)

C1,k = Tsvs0(dm,k)
ρ̂o,k − ρw

ρs(dm,k)− ρ̂o,k

(

ρq − ρ̂o,k
ρq − ρw

)β(dm,k)

,

(24)

C2,k = Q̂2
o,k. (25)

Such defined Xk is a normally distributed random variable

with mean µk and variance σ2
k given by:

µk = ke(dm,k) (ht,k − hs,k) , (26)

σ2
k = ke(dm,k)

2σ2
t , (27)

where σ2
t is a variance of the observation noise eot . Further-

more, both C1,k and C2,k defined above are positive, and,

therefore, the PDF of TsG(xk,uk, e
o
t ) follows by applying

Proposition 1.

From the description it can be seen that the system

exhibits severe nonlinearities together with non-Gaussian

probabilistic behavior. Due to this, standard parametric filters

cannot be applied. Therefore we use a PF which is briefly

described in the next section.

IV. PARTICLE FILTERS

The PF uses a probabilistic model which is based on

equations (14) - (17) and specifies the probability density

functions (PDF) for the state transition function and the

measurement function, respectively:

p(xk|xk−1), p(yk|xk) .

The objective is to recursively construct the posterior PDF

p(xk|yk) of the state, given the measured output. The PF

works in two stages:

1) The prediction stage uses the state-transition model

(14) - (16) to predict the state PDF one step ahead.

The PDF obtained is called the prior.

2) The update stage uses the latest measurement to cor-

rect the prior via the Bayes rule. The PDF obtained

after the update is called the posterior PDF.

Particle filters represent the PDF by N random samples

(particles) xi with their associated weights wi, normalized

so that
∑N

i=1 w
i = 1. At time instant k, the prior PDF

p(xk−1|yk−1) is represented by N samples xi
k−1 and the

corresponding weights wi
k−1. To approximate the posterior

p(xk|yk), new samples xi
k and weights wi

k are generated.

Samples xi
k are drawn from a (chosen) importance density

function q(xi
k|xi

k−1, yk), and the weights are updated, using

the current measurement yk

w̃i
k = wi

k−1

p(yk|xi
k) p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, yk)
(28)

and normalized

wi
k =

w̃i
k

∑N

j=1 w̃
j
k

.

The posterior PDF is represented by the set of weighted

samples, conventionally denoted by:

p(xk|yk) ≈
N
∑

i=1

wi
kδ(xk − xi

k) .

Here, we choose the importance density q(xk|xk−1, yk)
equal to the state-transition PDF p(xk|xk−1). The weight

update equation (28) then becomes:

w̃i
k = wi

k−1p(yk|xi
k) .

The PF algorithm is summarized in Algorithm 1.

A common problem of PF is the particle degeneracy: after

several iterations, all but one particle will have negligible

weights. Therefore, particles must be resampled. A standard

measure of the degeneracy is the effective sample size,

computed by:

Neff =
1

N
∑

i=1

(wi
k)

2

If Neff drops below a specified threshold NT ∈ [1, N ],
particles are resampled by using Algorithm 2.



Algorithm 1 Particle filter

Require: p(xk|xk−1), p(yk|xk), p(x0), N , NT

Initialize:

for i = 1, 2, . . . , N do

Draw a new particle: xi
1 ∼ p(x0)

Assign weight: wi
1 = 1

N

end for

At every time step k = 2, 3, . . .
for i = 1, 2, . . . , N do

Draw particle from importance distribution:

xi
k ∼ p(xi

k|xi
k−1)

Use measured yk to update the weight:

w̃i
k = wi

k−1p(yk|xi
k)

end for

Normalize weights: wi
k =

w̃i
k∑

N
j=1

w̃
j

k

if 1∑
N
i=1

(wi
k
)2

< NT then

Resample using Algorithm 2.

end if

Algorithm 2 Resampling

Require: {(xi, wi)}Ni=1

Ensure: {(xi
new, w

i
new)}Ni=1

for i = 1, 2, . . . , N do

Compute cumulative sum of weights: wi
c =

∑i

j=1 w
j
k

end for

Draw u1 from U(0, 1
N
)

for i = 1, 2, . . . , N do

Find x+i, the first sample for which wi
c ≥ ui.

Replace particle i: xi
new = x+i, wi

new = 1
N

ui+1 = ui +
1
N

end for

The state estimate is in general computed as the weighted

mean of the particles:

x̂k =
N
∑

i=1

wi
kx

i
k .

For more details on particle filters, refer to [10], [11], [12].

V. ESTIMATION RESULTS

The PF presented in Section IV is applied to simulated

data, obtained with the dynamic sedimentation model de-

scribed in Section II-B. For simplicity reasons the sampling

time Ts is set to one. For illustrative purposes a separate data

set is generated for both loading phases. In each case, the

value of the average grain diameter dm is changed twice

during the phase. In the real process this corresponds to

approaching a dredging area with a different type of the in

situ material. To analyze the tracking properties of the filter,

each change in dm is set to be steep (during the real dredging

operation those transitions are generally smoother).

The hopper used for the simulations is of a rectangular

parallelepiped form with the base area A = 600[m2].
Furthermore, it is assumed that the excavated soil is sand

with the mean grain diameter dm varying between 0.35[mm]
and 0.7[mm]. In such a regime, for the given hopper width,

the soil dependent parameters ke, ρs, vs0 and β can be

approximated by the following functions of dm [2], [6], [7]:

ke(dm) = 28.06
√

dm − 6.35 (29)

ρs(dm) = 34.81
√

dm + 1926 (30)

vs0(dm) =
8.925

dm

(√

1 + 95
ρq − ρw

ρw
d3m − 1

)

(31)

β(dm) =
4.7 + 0.41

(

−2.289 + 41.53dm + 118.6d2m
)0.75

1 + 0.175 (−2.289 + 41.53dm + 118.6d2m)
0.75

(32)

The results were obtained with N = 1000 particles and the

threshold NT for an effective sample size was experimentally

set to 500 (i.e., 50% of the number of particles N ). The

standard deviations of the variables defined in Section II-B

are as follows: σm = 1000, σd = 0.1, σo
t = 0.1, σo

s = 0.05
and σapprox = 0.001.

In the prediction stage of the PF designed for the constant-

volume phase, it is required, among others, to sample from

the random variable defined in (15). However, drawing from

the PDF given by (21) - (27) is in general not straightforward.

Therefore, for each particle xi
2,k−1 an approximation of a

true random sample is generated by Algorithm 3.

Algorithm 3 Approximate sampling

Require: x2,k−1, µk−1, σk−1, C1,k−1, C2,k−1, Ts, σapprox

for i = 1, 2, . . . , N do

Draw two independent samples:

xi
1 ∼ N

(

xi
2,k−1, Tsσapprox

)

xi
2 ∼ N

(

µi
k−1, σ

i
k−1

)

Perform nonlinear transformation:

x̃i
2 = TsC

i
1,k−1 max

(

0, 1− Ci
2,k−1/x

i
2

)

Assign approximated sample:

xi
2,k = xi

1 + x̃i
2

end for

Comparison of the estimated and simulated signals for the

no-overflow phase is presented in Figure 2, while Figure 3

shows the aforementioned signals for the constant-volume

phase.
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Fig. 2. Simulation results for the no-overflow phase (thin line: simulated
variable, thick line: variable estimated by the particle filter).
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Fig. 3. Simulation results for the constant-volume phase (thin line:
simulated variable, thick line: variable estimated by the particle filter).

VI. PERFORMANCE EVALUATION

From Figures 2 and 3 it can be observed that the PF

works very well and that its performance in the two loading

phases is comparable. In each case the convergence times

are approximately 40[s], 20[s] and 20[s] respectively, which

in each case is acceptable for the TSHD’s controller devel-

oped in [1]. Moreover, as has been stated before, in real

dredging operations the changes in average grain diameter

are smoother and therefore the filter converges much faster.

For both phases the estimate is slightly biased. This is due to

the difference between the models used to generate data and

to estimate the dm. However, the absolute estimation errors

are smaller than the standard deviation σd of the estimated

variable dm which make the errors acceptable. In fact for

higher values of dm the bias is negligible. This is con-

firmed by analyzing the residuals i.e. the difference between

estimated and simulated values after the filter reaches the

steady state. In case of tracking the dm equal to 0.35[mm]
the signal is underestimated. The average grain diameter

residual has a mean of −0.049[mm] and −0.047[mm] and

a standard deviation of 0.0095[mm] and 0.0077[mm] for the

no-overflow and constant-volume phase respectively. In each

loading phases the average bias is approximately 14% which

is tolerable during the actual dredging. When the true signal

is set to 0.7[mm] and 0.45[mm] the observer overestimates

the reference signal. In the former case the residual has a

mean of 0.01[mm] and 0.009[mm] and standard deviation

of 0.0064[mm] and 0.0066[mm] for the no-overflow and

constant-volume phase respectively. In the latter case the

residual has a mean of 0.014[mm] and 0.009[mm] and

standard deviation of 0.0057[mm] and 0.009[mm] for the no-

overflow and constant-volume phase respectively. In these

cases, the average bias is less than 3% for both loading

phases, which is an excellent result from a practical point

of view.

On board of the real TSHD the measurements are taken

every 5[s], and hence this is the time in which the MPC con-

troller [1] has to compute the optimal action. The proposed

PF computes the estimate in less than one second1, thus the

filter can be integrated into the aforementioned controller on

board of the commercial dredges.

1The algorithm was executed in Matlab 7 on a PC with an Intel Core 2
Duo E6550 2.33 GHz CPU with 3 GB RAM.

When the sand bed height hs approaches the total height of

the mixture ht, the performance of the filter decreases, which

can be observed in Figure 3 (last minutes of the phase). A

possible explanation is that Algorithm 3 fails to approximate

the true PDF (22) for the low values of the denominator in

(5) . Also, an estimator of dm for the third loading phase has

not been designed yet. These problems will be addressed in

our future research.

VII. CONCLUSIONS

A particle filter has been applied to the estimation of the

average grain diameter of the material excavated by a hopper

dredger. The soil-type dependent variable is estimated on

the basis of the measured total hopper volume, hopper mass,

incoming mixture density and flow-rate and the height of the

sand bed in the hopper. The performance has been evaluated

in simulations of two loading phases. During the constant-

volume phase the estimate of the overflow losses is also used

by the observer. The results are encouraging, therefore the

next step in our research will be the testing of the filter on

measured data. Furthermore, theoretical research has to be

done for reducing the estimation bias. Eventually, after the

filter is fully developed it will be integrated in an automatic

control system for the future use on board of the hopper

dredger.
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Predictive Control for optimizing the overall dredging performance
of a trailing suction hopper dredger”, Proceedings of the Eighteenth

World Dredging Congress (WODCON XVIII), 2007, pp. 1263-1274.
[2] Braaksma, J., Klaassens, J. B., Babuška R., de Keizer, C., “A compu-
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