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Abstract— In many systems the state variables are defined on
a compact set of the state space. To estimate the states of such
systems, the constrained particle filters have been used with
some success. The performance of the standard particle filters
can be improved if the measurement information is used during
the importance sampling of the filtering phase. It has been
shown that the particles obtained in such a way approximate
the true state of the system more accurately. The measurement
is incorporated into the filtering algorithm through a user-
specified detection function, which aims to detect the saturation
as it occurs. The algorithm derived from the aforementioned
principle is called the Saturated Particle Filter (SPF). In our
previous work we have derived a complete SPF framework
for the class of systems with one-dimensional constraints. In
this paper we derive a novel Convex SPF that extends our
method to multidimensional systems with convex constraints.
The effectiveness of the new method is demonstrated using an
illustrative example.

I. INTRODUCTION

Dynamic filters are commonly used in various engineering
problems that are modeled by aStochastic Dynamical Sys-
tem (SDS). When a SDS has linear dynamics and additive
Gaussian noises it is well known that the optimal estimator,
in the mean square error(MSE) sense, is theKalman
Filter (KF) [1], [2]. In case of nonlinear and/or non-Gaussian
noises, in general, the optimal solution is computationally
intractable. Thus, one needs to rely on suboptimal solutions.
Several versions of the KF that give a suboptimal solu-
tion have been developed to address the nonlinear filtering
problem [3]. These include, among others, the Extended
Kalman Filter [2], the Unscented Kalman Filter [2], [4],
[5], and the Gauss-Hermite Filter [6], [7]. All of these
methods are classified as parametric, i.e., they solve a finite
dimensional estimation problem. Parametric filters are simple
to implement and very effective when applied to stochastic
processes that can be accurately approximated by Gaussian
processes. However, in case of highly nonlinear and non-
Gaussian dynamical systems, their performance deteriorates.

As an alternative to parametric methods, the non-
parametricParticle Filter (PF) has been proposed [2], [8]
as a tool to solve a general filtering problem. This algorithm
aims to estimate aProbability Density Function(PDF) of
the state rather than a point statistic of the state. Thus, the
estimation problem becomes infinite dimensional.

The PF approximates a PDF of the state of the sys-
tem by a set of points which are obtained by utilizing
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the Importance Sampling method [8], and then weighted
according to the Bayes rule. The PF is based on a Monte
Carlo approximation and it has been proven [9] that under
mild technical assumptions the PF-based PDF converges to
the true posterior PDF as the number of samples grows.
However, for highly nonlinear and non-Gaussian systems the
PF might require a large number of samples to achieve an
accurate estimate. This makes the algorithm computationally
expensive, especially in high-dimensional systems, and asa
consequence, it limits its on-line applicability. It has been
noted [10], [11], [8], [2] that the choice of the importance
sampling density is a crucial step towards reducing the
computational costs of PFs, and therefore making the method
more feasible for on-line applications.

The properties of the PF have been extensively studied in
recent years [2], [8], [9], and many versions of the PF have
been developed for specific types of problems [8], [12], [13],
[14]. In particular, state estimation of aConstrained Stochas-
tic Dynamical System(CSDS) attracted much attention [15],
[16], [12], [13], [14], [17]. The CSDS is a system for which,
at each time stepk, at least one of the state variables is
restricted to a compact set. These systems are frequently met
both in industrial applications [18], [19], and in theoretical
research [12], [20], [15]. To estimate the states of the CSDS
one can use the constrained PF [16], [12], [13], [14]. This
method produces a state estimate that does not violate the
physical constraints of the system that is achieved either by
discarding unsuitable particles [16], [13], or by projecting
them on a boundary of the constraint region [12], [14]. The
latter approach is specially suitable for systems characterized
by PDFs that are singular (discontinuous) at the boundary
of the constraint region. The boundary of such a set is
denoted by the saturation region and the particles located at
this boundary are called the saturated particles. The system
defined by this type of PDF is called [17] theSaturated
Stochastic Dynamical System(SSDS), which is a special
class of the CSDS.

An efficient method for estimating the states of SSDSs, the
Saturated Particle Filter (SPF), has been proposed in [17].
The SPF combines the projection approach of [12] with a
novel sampling method that effectively detects the saturation
moment, and forces the particles to rapidly jump to that part
of the state space which is close to the saturation region. Such
sampling is obtained by designing an importance density
function that makes use of both the measurement and the
knowledge of the system constraints. Several resampling
methods suitable for SPF have been derived in [21]. Fur-
thermore, also in [21], it has been shown that the SPF
asymptotically converges to the true posterior PDF.



The SPF proposed in [17] has been derived for a
special class of SSDSs, namely for systems that al-
low only one-dimensional saturation, i.e., ifxk =
[

xk(1) · · · xk(n)
]T

is ann-dimensional state variable
then only one of the variablesxk(1), · · · , xk(n) can be
saturated. The framework of [17] can be easily extended to
systems with multidimensional saturations provided that the
saturated variables are independent. However, the extension
for general multidimensional SSDSs is not straightforward.
In this paper we aim to fill this gap in the SPF framework
by deriving the Convex Saturated Particle Filter (CSPF),
which is applicable to multidimensional systems with convex
constraints imposed on the states. The assumption of the
convexity of the constraints, from the practical perspective,
is not very restrictive. In fact a stronger condition of linear
constraints is commonly met in the literature [15], [19], [14],
[22].

The paper is organized as follows: in Section II-A the
mathematical framework of the Convex Saturated Stochastic
Dynamical System is defined and the estimation problem is
stated. In Section II-B the standard solution to the previously
formulated problem is given. The novel Convex Saturated
Particle Filter is derived in Section III. In Section IV the new
filter is compared with the benchmark method. Section V
concludes the paper.

II. PRELIMINARIES

This section contains preliminaries and basic motivations
for the development of the Saturated Particle Filter. First,
the mathematical framework that we use to model saturated
processes is defined. Next, the basic facts about Particle
Filtering are recalled.

A. System Definition

For thenx-dimensional state spaceX , thenu-dimensional
input spaceU , and theny-dimensional observation spaceY,
the generic stochastic dynamical system is defined by:

Definition 1 (Stochastic Dynamical System):The
Stochastic Dynamical System(SDS) is defined as a
pair {(xk, yk)}

+∞
k=0 composed of dependent discrete-time

stochastic processes{xk}
+∞
k=0, and {yk}

+∞
k=0 that evolve

according to:

xk+1 = fk (xk, uk, wk) , (1a)

yk = hk (xk, uk) + vk, (1b)

x0 ∼ p0 (·) , (1c)

wherewk and vk are mutually independent Gaussian vari-
ables that take values in the state spaceX and the observation
spaceY respectively,fk : X × U × X → X is a (possibly
nonlinear) function that describes the state evolution,hk :
X×Y → Y is a (possibly nonlinear) function that establishes
the observation model,uk denotes the deterministic input at
time stepk, andp0 is a PDF of the initial statex0, which is
independent of the noiseswk andvk.

The stochastic process defined by (1) is Markovian, which
allows for the recursive estimation of the state of the system.

A saturated system is obtained by imposing extra conditions
on the system defined by (1). Namely, we consider systems
that satisfy the following definition:

Definition 2 (Saturated SDS):Let {(xk, yk)}
+∞
k=0 be a

SDS defined by (1). The sequence of tuples{(xk, yk)}
+∞
k=0

is called aSaturated Stochastic Dynamical System(SSDS)
if for each k ≥ 1 there exists a precompact [23] open
setCk ⊂ X such that:

1) the support of the conditional distribution of the
statexk+1 given xk and uk is contained within the
closure of theCk (denoted byCk), i.e.,

P
(

xk+1 ∈ Ck|xk, uk

)

= 1, (2)

2) the transition probability of the statexk+1 belonging
to ∂Ck, givenxk anduk, is positive, i.e.,

P (xk+1 ∈ ∂Ck|xk, uk) > 0, (3)

where ∂Ck denotes the topological boundary of the
setCk.

In what follows we consider the SSDSs such that for each
k ≥ 1 the constraint region of the variablexk+1, which
will be dependent on the previous statexk and the previous
input uk, is a convex set. The precise conditions that such
systems need to satisfy are listed in Definition 3.

Definition 3 (Convex SSDS):Let ΣX be the collection of
measurable subsets ofX . The SSDS{(xk, yk)}

+∞
k=0 is called

theConvex Saturated Stochastic Dynamical System(CSSDS)
if there exist a functionC : X × U → ΣX and measurable
functions f̃k : X × U × X → X such that for eachk ≥ 1
the following hold:

1) for every convexA ∈ ΣX the sethk (A) is convex,
2) for everyx ∈ X and everyu ∈ U the setC(x, u) is

precompact, open and convex such thatx ∈ C (x, u)
3) for everyx ∈ X and everyu ∈ U the setf̃k (x, u,X )

is convex,
4) the state evolution (1a) is described by:

if f̃k (xk, uk, wk) ∈ C (xk, uk)

xk+1 = f̃k (xk, uk, wk) , (4a)

otherwise

xk+1 = ∂C (xk, uk) ∩R0
(

xk, f̃ (xk, uk, wk)
)

,

(4b)

whereR0 is defined by

R0 (xk, x) := {xk + t (x− xk) : t ≥ 0} . (5)

Note that from the properties of convex sets, the intersection
in (4b) contains exactly one element. Thus,xk+1 is uniquely
defined. There are other possibilities to define the projections
than it is done in (4b) (e.g., projection on the closest point
on the boundary). The projection approach that we have
chosen is motivated by the fact that the discretizations of
piecewise linear continuous systems would have such inter-
sections as defined by (4b). The bounds{C (xk, uk)}

+∞
k=0 of

a CSSDS form a (possibly unbounded) stochastic process
taking values inΣX . Also, it is worth noting that when the



system is not saturated functions̃fk and fk are equal. To
help understand the meaning of (4)–(5) we have illustrated
a possible trajectory of the stochastic processes{xk}

+∞
k=0

and{C (xk, uk)}
+∞
k=0 in Figure 1.

We are interested in continuous state space, therefore
it is reasonable to assume that for every time stepk the
random variablẽfk (xk, uk, wk) has a continuous PDF. This,
however, does not hold for the variablesxk. Indeed, from (4)
it follows that each variablexk+1 has singularities at the
boundary ofC (xk, uk). This means that the PDF ofxk+1

is continuous in the interior of the setC (xk, uk) and has
discontinuities at the boundary∂C (xk, uk). However, as
we will see in Section III, the PDF ofxk+1 restricted
to ∂C (xk, uk) is a continuous function.

By (4)–(5) the conditional density of the variablexk+1

given the previous statexk and inputuk is given by:

P (xk+1 = x|xk, uk) =

P

(

f̃k (xk, uk, wk) = x|xk, uk

)

1C(xk,uk)
(x) (6a)

+

[

∫

R1(xk,x)
P

(

f̃k (xk, uk, wk) = z|xk, uk

)

dH1(z)

]

1∂C(xk,uk)
(x) ,

(6b)

where1A (·) denotes the indicator function of a setA, Hn

denotes then-dimensional Hausdorff measure [24], andR1

is a set defined by

R1 (xk, x) := {xk + t (x− xk) : t ≥ 1} . (7)

Hausdorff measure can be seen as a generalization of the
Lebesgue measure to general metric spaces(X, ρ). It is
used to assign a “proper” measure to low dimensional
objects embedded into higher dimensional space (e.g.,1-
dimensional Hausdorff measure of a curve embedded intoRd

with metricρ measures the curve’s length with respect toρ).
For any setD ⊂ X the n-dimensional Hausdorff measure
of D is defined by:

Hn(D) := lim
δ→0

inf

{

+∞
∑

i=1

(diam(Ui))
n : D ⊂

+∞
⋃

i=1

Ui, diam(Ui) < δ

}

.

(8)

Figure 2 plotsR0
(

xk, f̃k (xk, uk, wk)
)

versusR1 (xk, x).
A comparison of a PDF of an unsaturated vari-

able f̃k (xk, uk, wk) with the PDF of a saturated vari-
ablexk+1 is presented in Figure 3.

Having the CSSDS defined in such a way, we are inter-
ested in estimating the actual statexk of the system from
the available measurementsyk. The Markovian character of
the CSSDS makes it possible, for estimation purposes, to
employ recursive algorithms utilizing Bayes’ theorem, e.g.,
the PF.

There are many variations of PFs [8], which employ
various importance densities and resampling algorithms. For
the sake of comparison, as a benchmark solution to the
estimation problem suitable to saturated systems we chose
the Constrained Bootstrap Particle Filter(CBPF), i.e., the
Bootstrap Particle Filter(BPF) [8] modified by projecting

C (xk, uk)

xk xk+1
f̃k (xk, uk, wk)

∂C (xk, uk)

R1 (xk, xk+1)

R0
(

xk, f̃k (xk, uk, wk)
)

Fig. 2: The relation between R1 (xk, xk+1)

and R0
(

xk, f̃k (xk, uk, wk)
)

when the saturated state

of the systemxk+1 ∈ ∂C (xk, uk) is obtained by projecting
the unsaturated state of the system̃fk (xk, uk, wk) onto the
saturation boundary∂C (xk, uk).
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Fig. 3: The PDF of the unsaturated variablef̃ (xk, uk, wk)
(above) and the PDF of the saturated variablexk+1 (below)
given the previous statexk and inputuk. The PDF of the
unsaturated variable is continuous (above) whereas the PDF
of the saturated variable (below) has a continuous part (6a)
and a singular mass (6b) concentrated on the saturation
region∂C (xk, uk) = ∂ ([−2, 1.5]× [−1.5, 2]).

the particles violating the state constraints onto the boundary
before the resampling takes place, which is an approach
described in [12].
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Fig. 1: Evolution of a two dimensional CSSDS{xk}
+∞
k=0, from xk1

(star) to xk1+4 (dots) and its constraint re-
gions {C (xk, uk)}

+∞
k=0 (shaded ellipses). When the unsaturated variablef̃k (xk, uk, wk) (empty squares) exceeds the

saturation boundary∂C (xk, uk) it is projected on the appropriate point (dots) at the saturation boundary.

B. Particle Filtering

The PF is a Monte Carlo-type algorithm that represents
the estimated PDF of the statexk by N random sam-
ples (particles)

{

xi
k

}N

i=1
with their associated (normalized)

weights
{

ωi
k

}N

i=1
that are generated using theSequential

Importance Sampling(SIS) method [25], [8].
These pairs approximate the true PDF by:

P (xk = x|yk) ≈
N
∑

i=1

ωi
kδ0

(

x− xi
k

)

, (9)

whereδ0 denotes the Dirac delta at zero.
The SIS is a recursive algorithm that uses the most recent

observationyk to compute
{(

xi
k, ω

i
k

)}N

i=1
in two steps.

First, for every i = 1, ..., N , a samplexi
k is drawn from

a (chosen)importance densityQ(·|xi
k−1, uk−1, yk). Next,

using the most recent observationyk, the weightsωi
k are

updated according to the Bayes’ rule

ω̃i
k = ωi

k−1

P
(

hk (xk, vk) = yk|x
i
k

)

P
(

xk = x|xi
k−1, uk−1

)

Q(xi
k|x

i
k−1, uk−1, yk)

(10)
and normalized

ωi
k =

ω̃i
k

∑N
j=1 ω̃

j
k

. (11)

On the practical side, a common problem of PFs is
the particle degeneracy: after several iterations, all butfew
particles will have negligible weights. When that occurs most
of the computational power is wasted on updating negligible
weights and the accuracy of the algorithm strongly deteri-
orates since the true pdf is approximated only by a small
set of significant particles. The degeneracy phenomenon
can be circumvented by the appropriate resampling of the
particles [2], [21], [26], [27].

The best possible importance density is the true poste-
rior pdf itself [25]. However, in general, it is impossible
to sample from it and hence, in practice one needs to rely
on suboptimal importance densities. A popular approach,

utilized by the BPF [9], [28], [29], is to use the transition
density as an importance density:

Q
(

x|xi
k−1, uk−1, yk

)

:= P
(

xk = x|xi
k−1, uk−1

)

. (12)

Such a choice of the importance density is particularly
appealing because, due to (12), the weight update (10) is
simplified to:

ω̃i
k = ωi

k−1P
(

hk (xk, vk) = yk|xk = xi
k

)

. (13)

However, this comes with a price, namely that the most
recent measurementyk is not used during the drawing of
the particle.

In case of saturated processes the measurementyk can
provide information of crucial importance, thus its loss
during sampling is highly undesirable. The need of a special
type of importance density that exploits a specific structure of
the CSSDS and also accounts for the latest measurementyk
led to the development of the SPF [17], [21]. The SPF was
derived for a special class of CSSDSs, namely, for systems
that allow only one-dimensional saturation [17]. In the next
section we generalize it to multidimensional CSSDSs.

III. CONVEX SATURATED PARTICLE FILTER

In this section we propose a new SPF that is designed for
CSSDSs. The CSPF is capable of quickly detecting whether
or not saturation occurred by comparing the measurements
with the state constraints. This information is used to forcibly
move the particles to the region of higher probability, which
leads to improved accuracy of the estimate. This procedure
renders possible the reduction of the number of particles used
by PF, thus reducing the computational load of the algorithm.
The detection of the saturation is achieved by a detection
function introduced in Definition 4.

Definition 4 (Detection function):A function α : Y ×
X ×ΣX → R is called adetection functionfor a CSSDS if
for every time stepk, every precompact open convex setA ∈



ΣX , everyy ∈ Y andx1, x2 ∈ ∂A the implication holds:

‖y − hk (x1)‖ ≥ ‖y − hk (x2)‖ =⇒

α (y, x1, hk (A)) ≤ α (y, x2, hk (A)) . (14)

Intuitively, a function for which the condition (14) holds
true serves as a ‘pseudo’-metric between the points at the
boundary∂A of the convex setA and, through observation
model hk, the measurementy ∈ Y. Note that in the
definition of the detection functionα in it not required that
the inverse of the measurement functionhk exists. Some
indication on how this function should be tuned can be
found in experimental results presented[17], [21], [30]. The
properties of the detection functions are further explained
while discussing the numerical example in Section IV.

Let us now consider the SSDS defined by (1)–(4). Fur-
thermore, let

{(

xi
k, ω

i
k

)}N

i=1
be the approximation of the

true PDF of the state of the process at time stepk. For
each i ∈ {1, ..., N}, given the previous particlexi

k, the
probability that the particlexi

k+1 will saturate, i.e.,xi
k+1 ∈

∂C
(

xi
k, uk

)

follows from (6b):

P
(

xi
k+1 ∈ ∂C

(

xi
k, uk

))

=
∫

∂C(xi
k
,uk)

∫

R1(xi
k
,x)

P

(

f̃k
(

xi
k, uk, wk

)

= z|xi
k, uk

)

dH1(z)dHnx−1(x),

(15)

whereR1 is defined by (7).
For the ease of notation the right-hand side of (15) is called

thepredicted probability of saturationand denoted asqi, i.e.,

qi :=

∫

∂C(xi
k
,uk)

qi(x)dHnx−1(x), (16a)

whereqi (·) is defined by:

qi(x) :=

∫

R1(xi
k
,x)

P

(

f̃k
(

xi
k, uk, wk

)

= z|xi
k, uk

)

dH1(z).

(16b)
The saturation of a particlexi

k+1 can be seen as project-
ing xi

k+1 onto∂C
(

xi
k, uk

)

which is equivalent to the generic
projection approach of [12]. Indeed, it makes no difference
whether the ‘bad’ particles drawn from an unconstrained
continuous distribution are projected on the saturation region,
or each particle is set to saturation region with the predicted
probability of saturation. The resulting sets of particlesare
equivalent in the statistical sense.

Let α be a given detection function satisfying Defini-
tion 4. Furthermore, assume that the measurementyk+1

becomes available. Then, for eachi ∈ {1, ..., N} and
eachx ∈ ∂C

(

xi
k, uk

)

we define theupdated probability
of saturationqαi :

qαi :=

∫

∂C(xi
k
,uk)

qαi (x)dHnx−1(x), (17a)

where

qαi (x) ∝ qi(x) + α
(

yk+1, x, C
(

xi
k, uk

))

. (17b)

Using (16)–(17), and the detection functionα, we define
the importance densityQα of the new CSPF by:

Qα
(

x|xi
k, uk, yk+1

)

:= qαi (x)1∂C(xi
k
,uk)

(x) (18a)

+
1− qαi

1− qi
P

(

f̃k (xk, uk, wk) = x|xi
k, uk

)

1
C(xi

k
,uk)

(x) . (18b)

It can be easily seen thatQα defines a probability measure,
i.e.,Qα is positive, and it integrates to one. The importance
density of the CBPF filter is a special case ofQα with α ≡ 0.

Given the particlexi
k and the inputuk, a new parti-

cle xi
k+1 is drawn from the importance densityQα. The

random sample formQα is obtained in two steps. First, the
algorithm determines whether the particlexi

k+1 saturates,
i.e., xi

k+1 ∈ ∂C
(

xi
k, uk

)

(with the probabilityqαi ) or not
(with probability1−qαi ). Next, if the saturation was detected
the particlexi

k+1 is drawn from:

xi
k+1 ∼

qαi (·)

qαi
1∂C(xi

k
,uk) (·) . (19)

In case the saturation was not detected the particlexi
k+1 is

drawn from:

x
i
k+1 ∼

1

1− qi
P

(

f̃k (xk, uk, wk) = •|xi
k

)

1
C(xi

k
,uk) (·) . (20)

The associated weightsωi
k+1 are derived from the general

principle (10) applied to the importance density (18). Ifxi
k+1

saturates then, by (16) and (17), the weightωi
k+1 is given

by:

ωi
k+1 ∝ ωi

k

qi
(

xi
k+1

)

qαi
(

xi
k+1

)P
(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

,

(21)
if xi

k+1 does not saturate, the weightωi
k+1 is updated by:

ωi
k+1 ∝ ωi

k

1− qi

1− qαi
P
(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

.

(22)
The new CSPF is summarized in Algorithm 1.
The proposed CSPF combines the previous statexi

k with
the most recent measurementyk+1 to compute the updated
probabilities of saturationqαi (x) and the total updated prob-
ability of saturationqαi . The function

∂C
(

xi
k, uk

)

∋ x 7→
qαi (x)

qαi
, (23)

is a continuous PDF on∂C
(

xi
k, uk

)

.
Note that since each particlexi

k has dynamics of its own,

for i 6= j the constraint regionsC
(

xi
k, uk

)

andC
(

x
j
k, uk

)

do not need to overlap. As a consequence it is possible
that the i-th saturation region∂C

(

xi
k, uk

)

nontrivially in-
tersects with the admissible (unsaturated) part of thej-th
constraint regionC

(

x
j
k, uk

)

. Thus, a region of the state

space that is admissible to all the particles
{

xi
k

}

i
is given

by
⋂

i C
(

xi
k, uk

)

, and is also convex.
For large values ofqαi the algorithm forces the particles to

be close to the saturation region∂C
(

xi
k, uk

)

associated to
the i-th particle, whereas for small values ofqαi the particles
are set further from the saturation region. Moreover, the



Algorithm 1 Convex Saturated Particle Filter

Require:
{(

xi
k, ω

i
k

)}N

i=1

Ensure:
{(

xi
k+1, ω

i
k+1

)}N

i=1
for i = 1, 2, . . . , N do

Compute the probabilityqi according to (16a)
Compute the probabilityqαi according to (17a)
Draw from the standard uniform distributionu ∼
U (0, 1)
if u ≤ qαi then

Particlexi
k+1 saturates:

xi
k+1 ∼

qαi (·)

qαi
1
∂C(xi

k
,uk)

(·)

ωi
k+1 ∝ ωi

k

qi

(

xi
k+1

)

qαi

(

xi
k+1

)P
(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

else
Particlexi

k+1 does not saturate:

xi
k+1 ∼

1

1− qi
P

(

f̃k (xk, wk) = •|xi
k

)

1
C(xi

k
,uk)

(·)

ωi
k+1 ∝ ωi

k

1− qi

1− qαi
P
(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

end if
end for

particles that hit the boundary of the constraint region, thanks
to (23), are forcibly moved to that part of the saturation
region that has the highest probability. Figure 4 schematically
describes the differences between the Unconstrained BPF, the
CBPF and the CSPF for a large value ofqαi .

Finally, we have to mention that the accuracy of the CSPF
estimate depends on the user-specified detection function,
which must be chosen appropriately to the CSSDS under
consideration. This is a subject of ongoing research.

IV. NUMERICAL SIMULATIONS

To illustrate the estimation abilities of the newly pro-
posed CSPF we compare it with the CBPF applied to a
simple CSSDS that models the motion of a two-dimensional
object under random disturbance. We assume a static sensor
placed at the origin that measures the distance and the
bearing of the moving object. This model is a version of a
classical nonlinear tracking problem discussed, e.g., in [28],
[11], [31]. In this motivating example we discuss in detail
how to overcome the difficulties of practical implementations
of the CSPF that arise from the extra integrations steps (16)–
(17).

We consider the unconstrained system defined by:
[

x(1)
x(2)

]

k+1

=

[

x(1)
x(2)

]

k

+ Ts

[

u(1)
u(2)

]

k

+ wk, (24a)

[

y(1)
y(2)

]

k

=





√

(x(1))
2
+ (x(2))

2

arctan x(2)
x(1)





k

+ vk (24b)

h−1
k+1 (yk+1)

I: UBPF

h−1
k+1 (yk+1)

II: CBPF

h−1
k+1 (yk+1)

III: CSPF

Fig. 4: Visualization of the distribution of particles obtained
by the Unconstrained BPF (top), CBPF (middle) and the
CSPF (bottom). Some of the particles obtained by the Uncon-
strained BPF violate the physical constraints

⋃

i C
(

xi
k, uk

)

of the system (shaded area and the region
⋂

C
(

xi
k, uk

)

bounded by it), others are located far from the actual mea-
surement (star). The larger the size of a particle the higher
its weight. The CBPF projects the unphysical particles onto
the relevant saturation regions (inside the shaded area), but
does not move the remaining particles. The CSPF projects
the ‘bad’ particles onto the saturation region and forces the
remaining particles to concentrate closer to the saturation
region. Moreover, weights of the repositioned particles are
appropriately rescaled.

wherewk and vk are two-dimensional zero-mean Gaussian

variables with the covariance matricesΣx =

[

5 0
0 5

]

and Σy =

[

0.1 0
0 0.0012

]

respectively. The controlled

input u corresponds to the velocity of the object andTs = 1
is the sampling period. The constraint imposed on such a
system is defined by

C (xk, uk) :=
{

x : (xk + Tsuk − x)
T
(xk + Tsuk − x) ≤ r2‖uk‖

2
}

,

(25)

wherer is the user-specified parameter that, in our simula-
tion, is set tor = 2. Thus, the constraint regionC (xk, uk)
is a ball centered inxk + uk with radiusr‖uk‖.



The detection functionα for the CSPF measures the
difference between the distances between the inverse mea-
surementh−1

k+1 (yk+1) (wherehk denotes the standard polar
transformation) and the particlexi

k + uk and the vector at
the boundary of the constraint regionC

(

xi
k, uk

)

:

α
(

yk+1, x, C
(

xi
k, uk

))

:= θ
∥

∥h−1
k+1 (yk+1)− xi

k − Tsuk

∥

∥×
(∥

∥h−1
k+1 (yk+1)− xi

k − Tsuk

∥

∥−
∥

∥h−1
k+1 (yk+1)− x

∥

∥

)

,

(26)

for x ∈ ∂C
(

xi
k, uk

)

, and user-specified parameterθ. The
strength of the influence of the detection function (26)
depends on the value of the parameterθ. We can see that
the function defined by (26) satisfies the condition (14). In
an extreme situation, whenθ = 0, the functionα has zero
influence on the algorithm and the CSPF degenerates into
the CBPF.

With the help of a function defined by (26) it is now
possible to update the probability of saturation of all the par-
ticles xi

k+1 by comparing the distances between the inverse
measurementh−1

k+1 (yk+1) and the points at the boundary of
the constraint regionC

(

xi
k, uk

)

.
To show how such an update can be achieved we need to

consider two situations
1) If the inverse observationh−1

k+1 (yk+1) belongs to the
interior C

(

xi
k, uk

)

, then for all the points at the
boundaryx ∈ ∂C

(

xi
k, uk

)

the updated probability of
saturationqαi

• increases, if
∥

∥x− h−1
k+1 (yk+1)

∥

∥ ≤
∥

∥h−1
k+1 (yk+1)− xi

k − uk

∥

∥,
• decreases, if

∥

∥x− h−1
k+1 (yk+1)

∥

∥ >
∥

∥h−1
k+1 (yk+1)− xi

k − uk

∥

∥.
2) For the inverse observationh−1

k+1 (yk+1) that belongs
to X\C

(

xi
k, uk

)

the updated probability of satura-
tion qαi

• increases, if
∥

∥x− h−1
k+1 (yk+1)

∥

∥ ≤ r‖uk‖ +

dist
(

h−1
k+1 (yk+1) , C

(

xi
k, uk

))

,
• decreases, if

∥

∥x− h−1
k+1 (yk+1)

∥

∥ > r‖uk‖ +

dist
(

h−1
k+1 (yk+1) , C

(

xi
k, uk

))

.
To help understand the properties of the probabilities of

saturation, the second of the discussed cases is visualizedin
Figure 5.

In order to successfully implement the CSPF for the
model (24)–(25) we need to tackle the following technical
problems:

1) numerically evaluate the integrals (16),
2) numerically evaluate the integral (17),
3) draw random samples from the distributionq

α
i (·)
qα
i

.
The first problem is solved in Proposition 1. The

points 2&3 are closely connected hence are dealt with
together.

Proposition 1: The predicted probability of satura-
tion qi(·) for the system defined by (24)–(25) is uniformly
distributed on the circle∂C

(

xi
k, uk

)

and it integrates to

qi = 1−
1

Σ11

∫ r‖uk‖

0

exp

(

−
z2

2Σ11

)

dz, (27)

whereΣ11 denotes the first diagonal entry of the matrixΣx.
Proof: The uniform distribution ofqi(·) follows directly

from the fact that circles∂C
(

xi
k, uk

)

coincide with theσ-
contours of the Gaussian variablewk.

Formula (27) can be easily obtained by the polar
parametrization of the planeR2 and by observing that

P (xk+1 ∈ ∂C (xk, uk)) = 1− P (xk+1 ∈ C (xk, uk)) .
(28)

The probability in (28) is easily computed by:

P (xk+1 ∈ C (xk, uk))

=
1

2π|Σx|1/2

∫

C(xk,uk)

exp

(

−
1

2
xTΣ−1

x x

)

dx (29a)

=
1

2πΣ11

∫ 2π

0

∫ r‖uk‖

0

exp

(

−
z2

2Σ11

)

dzsφ (29b)

=
1

Σ11

∫ r‖uk‖

0

exp

(

−
z2

2Σ11

)

dz. (29c)

Combining (28) with (29c) gives the desired (27).
To compute integral (16) it is convenient to introduce the

following parametrization of the boundary of the constraint
region:

∂C (xk, uk) =

{xk + uk + r‖uk‖ (cos(φ), sin(φ)) : φ ∈ [0, 2π)} . (30)

Then the updated probability of saturation (17b) can be seen
as a function defined on the interval[0, 2π):

[0, 2π) ∋ φ 7→ qαi (x (φ)) , (31)

hence the integral (17a) can be efficiently evaluated, e.g.,
with the MATLAB function quad.m.

The parametrization (30) is further used to obtain samples
from qαi (·)

qα
i

through the use of the inverse of aCumulative
Density Function(CDF). The procedure of obtaining such a
‘pseudo’-random sample is described in Algorithm 2.

Note, that CDF(φ) is continuous and monotone function
that can be easily evaluated for any givenφ. Thus, a solution
to CDF(φ0) = u can be obtained by applying any of the
standard root-finding algorithms [33].

Using the aforementioned numerical techniques, we have
simulated the system (24) with the constraint (25) forT = 20
time steps. We consider three different simulation scenarios
to investigate various properties of the proposed CSPF:

1) Scenario I: robustness with respect to the initial con-
dition of the filter,

2) Scenario II: robustness with respect to the detection
functionα,

3) Scenario III: robustness with respect to the number of
particles used by the filter.

All the algorithms were executed in Matlab 7.9 on a Mac
OS X with an Intel Core 2 Duo 2.66 GHz CPU with 4 GB
RAM.
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Fig. 5: The visualization of the updated probability of saturation obtained with the use of detection function (26). Before
the measurementyk+1 is collected (left) the probability of saturation is uniformly distributed on the boundary∂C (xk, uk).
After the measurementyk+1 becomes available (right) the probability of saturation isrescaled to account for the newest
information.

Algorithm 2 Drawing from qαi (·)
qα
i

Using (30) parametrize the boundary

∂C (xk, uk) = {x (φ) : φ ∈ [0, 2π)}

Compute the1-dimensional Jacobian [32]:

J (Dϕx) =
√

det (DϕxTDϕx) = rTs‖uk‖

Compute updated probability of saturation:

qαi =

∫ 2π

0

J (Dϕx) q
α
i (x (ϕ)) dϕ

Define the CDF(φ):

[0, 2π) ∋ φ 7→

∫ φ

0

J (Dϕx)
qαi (x (ϕ))

qαi
dϕ

Draw from the standard uniform distributionu ∼ U (0, 1)
Find φ0 such that CDF(φ0) = u

Useφ0 to obtainx (φ0) - a random sample fromq
α
i (·)
qα
i

A. Scenario I

In the simulations discussed in this section the parameter
in the detection function (26) is set toθ = 0.005

r‖uk‖
for

appropriate scaling. The simulation started from the initial
conditionx0 = [10 10]T and the input signaluk = [3 3]T

is constant over the whole simulation.
We tested the CBPF and the CSPF in three settings that

differ with the initial condition used by both filters. Namely,
we simulated the case with no initial offsetxfilters

0 =
[10 10]T , and two scenarios with initial offsets:xfilters

0 =
[5 15]T and x

filters
0 = [15 5]T . In each of the afore-

mentioned settings the CBPF and the CSPF use the initial

covarianceP0 =

[

1 0
0 1

]

. Both filters use 1000 particles.

To account for the probabilistic nature of the compared
methods in every simulation setting we run the CBPF and

the CSPF ten times, each utilizing the same observation
sequence. Theaverage mean square error(AMSE) of both
filters obtained for all three simulation scenarios are reported
in Table I. Table II reports the average times required for
the CBPF and the CSPF to produce a single-step estimate of
the state.

Figure 6 reports the averages of ten independent runs of
the CBPF and the CSPF each using 1000 particles. The
estimates were obtained by the CBPF and the CSPF starting
from initial positions:[5 15]T , [10 10]T and [15 5]T .

TABLE I: AMSE of the CBPF and the CSPF for Scenario I

Initial condition

x(0) = [15 5]T x(0) = [10 10]T x(0) = [5 15]T

CBPF 22.33 20.05 22.06

CSPF 5.91 3.71 5.88

TABLE II: Average computational times (in seconds) of the
CBPF and the CSPF for Scenario I

Initial condition

x(0) = [15 5]T x(0) = [10 10]T x(0) = [5 15]T

CBPF 0.2122 0.2030 0.2318

CSPF 11.6219 12.1172 12.7369

B. Scenario II

In the simulations discussed in this section we have tested
three different parameters in the detection function (26):θ =
0.005
r‖uk‖

, θ = 0.05
r‖uk‖

, and θ = 0.5
r‖uk‖

. The simulation started
from the initial conditionx0 = [5 − 5]T and the input
signaluk = [3 3]T is constant over the whole simulation.
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Fig. 6: Scenario I. Trajectory of the true target (filled squares) and the estimates computed by the CBPF (solid line with
pluses) and by the CSPF (solid-dotted line) in two dimensional plane. The estimates are obtained as the average of ten
independent filters each utilizing 1000 particles. The estimates were obtained by the CBPF and the CSPF starting from
initial positions:[5 15]T (left), [10 10]T (middle) and[15 5]T (right).

There is no offset in the initial conditions for the filters. In
each of the aforementioned settings the CBPF and the CSPF

use the initial covarianceP0 =

[

1 0
0 1

]

. Both filters use 10

particles.
Similarly as in the previous section in every simulation

from this section we run the CBPF and the CSPF ten times,
each utilizing the same observation sequence. The AMSE of
both filters obtained for all three simulation scenarios are
reported in Table III. Table IV reports the average times
required for the CBPF and the CSPF to produce a single-
step estimate of the state. Figure 7 reports the averages of ten
independent runs of the CBPF and the CSPF each using 10
particles.

TABLE III: AMSE of the CBPF and the CSPF for Scenario II

Value of the parameterθ

x(0) = [5 − 5]T θ = 0.005
r‖uk‖

θ = 0.05
r‖uk‖

θ = 0.5
r‖uk‖

CBPF 28.3694 27.2028 28.3694

CSPF 6.0381 2.8517 1.5484

TABLE IV: Average computational times (in seconds) of the
CBPF and the CSPF for Scenario II

Value of the parameterθ

θ = 0.005
r‖uk‖

θ = 0.05
r‖uk‖

θ = 0.5
r‖uk‖

CBPF 0.004 0.004 0.004

CSPF 0.1306 0.1648 0.2154

C. Scenario III

In the simulations discussed in this section the parameter
in the detection function (26) is constant and is set toθ =
0.005
r‖uk‖

. The simulation started from the initial conditionx0 =

[−15 −5]T and the input signaluk = [3 3]T is again set
constant over the whole simulation.

We examined the CBPF and the CSPF using different
number of particles: 10, 100, and 1000. There is no offset in
the initial condition of the filters and the initial covariance

is again set toP0 =

[

1 0
0 1

]

The CBPF and the CSPF are both run ten times, each
utilizing the same observation sequence. The AMSE cor-
responding to this scenario are shown in Table V and the
average times required for the CBPF and the CSPF to
produce a single-step estimate of the state are given in
Table VI.

Figure 8 presents the averages of ten independent runs of
the CBPF and the CSPF using: 10, 100 and 1000 particles.

TABLE V: AMSE of the CBPF and the CSPF for Sce-
nario III

Number of particles

x(0) = [−15 − 5]T N = 101 N = 102 N = 103

CBPF 1438 796 267

CSPF 6.8302 1.8049 1.6583

TABLE VI: Average computational times (in seconds) of
the CBPF and the CSPF for Scenario III

Number of particles

N = 101 N = 102 N = 103

CBPF 0.0034 0.0265 0.2191

CSPF 0.1406 1.3972 14.1950

V. CONCLUSIONS

In this paper we extended the previously proposed estima-
tion method, the SPF, which makes an effective use of the
measurements during the importance sampling, to multidi-
mensional SSDS. Such extension requires an extra condition
to be imposed on the system, namely the constraints of the
system need to be convex sets inRn. With the convexity
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Fig. 7: Scenario II. Trajectory of the true target (filled squares) and the estimates computed by the CBPF (solid line
with pluses) and by the CSPF (solid-dotted line) in two dimensional plane. The estimates are obtained as the average
of ten independent filters each utilizing 10 particles. The estimates were obtained by the CBPF and the CSPF starting
from the initial position[5 − 5]T . The CSPF utilize different detection functions (26) with parameters:θ = 0.005

r‖uk‖
(left),

θ = 0.05
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(middle) andθ = 0.5
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(right).
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Fig. 8: Scenario III. Trajectory of the true target (filled squares) and the estimates computed by the CBPF (solid line with
pluses) and by the CSPF (solid-dotted line) in two dimensional plane. The estimates are obtained as the average of ten
independent filters each starting from the initial position[−15 − 5]T . The estimates were obtained by the CBPF and
the CSPF utilizing: 10 particles (left), 100 particles (middle) and 1000 particles (right).

assumption satisfied, the multidimensional detection function
can be properly defined. This function is then used to derive
the multidimensional CSPF that utilizes the measurements
to detect the saturation of the system while sampling new
particles.

We demonstrated the efficiency of our new method by
applying the CSPF to the two-dimensional motion model
with linear unconstrained dynamics, bounded disturbances,
and nonlinear noisy measurements. The simulations suggest
that for the concerned system the CSPF is as robust with
respect to the choice of initial condition as the CBPF is. This
can be seen in Figure 6 and Table I. Simulations depicted in
Figure 7 and summarized in Table III suggest that appropriate
choice of the detection function can further improve the
performance of the CSPF. Furthermore, in the performed
simulations the CSPF achieves accurate performance using
much fewer particles than the CBPF use, which can be
observed Figure 8 and Table V.

In our simulations the CSPF outperforms the bench-
mark CBPF in terms of speed of convergence to the true
signal from the initial offset as well as the accuracy of
tracking the signal with saturated dynamics. This can be
observed in Figures 6, 7, and 8 that report the outcomes
of the CSPF and the CBPF.

The improved performance of the CSPF comes with the
price of increased computational time required by the new
filter, which on average is approximately58 times slower

than the CBPF. This is due to computationally expensive pro-
cedures specific for the CSPF that involve evaluation of the
integral (17a) and drawing samples according to Algorithm 2.
However, as it is reported in simulation Scenario III and in
Table V the CSPF using only 10 particles achieves accuracy
comparable or even better than the accuracy achieved by
the CBPF with 1000 particles. This means that for the CSPF,
the family of particles might be kept small which greatly
reduces the computational effort of the algorithm. Thus,
given that the computational complexity of both compared
filters grows linearly with the number of particles used,
which can be seen in Table II, we can argue that the CSPF
outperforms the benchmark CBPF in both accuracy and
computational time.

As could been observed in Figure 8, the performance of
the filter depends on the appropriate selection of the detection
function. The optimal choice of the detection function is
connected to the construction of a proper resampling algo-
rithm that yields desirable asymptotic properties of the CSPF.
These topics where not discussed in current paper as they are
still a matter of ongoing research.
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