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Abstract— In many systems the state variables are defined on the Importance Sampling method [8], and then weighted
a compact set of the state space. To estimate the states of suchaccording to the Bayes rule. The PF is based on a Monte
systems, the constrained particle filters have been used with Carlo approximation and it has been proven [9] that under
some success. The performance of the standard particle filters . . .
can be improved if the measurement information is used during mild technical qssumptlons the PF-based PDF converges to
the importance sampling of the filtering phase. It has been the true posterior PDF as the number of samples grows.
shown that the particles obtained in such a way approximate However, for highly nonlinear and non-Gaussian systems the
the true state of the system more accurately. The measurement PF might require a large number of samples to achieve an
is incorporated into the filtering algorithm through a user- ;.. rate estimate. This makes the algorithm computatjonal

specified detection function, which aims to detect the saturation . iallv in high-di : | ¢ nal
as it occurs. The algorithm derived from the aforementioned expensive, especially In high-dimensional systems, aral as

principle is called the Saturated Particle Filter (SPF). In our ~COnsequence, it limits its on-line applicability. It hasebe
previous work we have derived a complete SPF framework noted [10], [11], [8], [2] that the choice of the importance

for the class of systems with one-dimensional constraints. In sampling density is a crucial step towards reducing the

this paper we derive a novel Convex SPF that extends our compytational costs of PFs, and therefore making the method
method to multidimensional systems with convex constraints. - . L
more feasible for on-line applications.

The effectiveness of the new method is demonstrated using an . . o
illustrative example. The properties of the PF have been extensively studied in

recent years [2], [8], [9], and many versions of the PF have
I. INTRODUCTION been developed for specific types of problems [8], [12], [13]

Dynamic filters are commonly used in various engineerinf4l- In particular, state estimation ofGonstrained Stochas-
problems that are modeled byStochastic Dynamical Sys- ¢ Dynamical SysterfCSDS) attracted much attention [15],
tem (SDS). When a SDS has linear dynamics and additivie-6]; [12], [13], [14], [17]. The CSDS is a system for which,
Gaussian noises it is well known that the optimal estimatofit €ach time stefk, at least one of the state variables is
in the mean square error(MSE) sense, is thekalman restricted to a compact set. These systems are frequently me
Filter (KF) [1], [2]. In case of nonlinear and/or non-GaussiarP0th in industrial applications [18], [19], and in theooei
noises, in general, the optimal solution is computatignall'®séarch [12], [20], [15]. To estimate the states of the CSDS
intractable. Thus, one needs to rely on suboptimal solstion®n€ can use the constrained PF [16], [12], [13], [14]. This
Several versions of the KF that give a suboptimal soluMethod produces a state estimate that does not violate the
tion have been developed to address the nonlinear filterif§lysical constraints of the system that is achieved eitier b
problem [3]. These include, among others, the ExtendedScarding unsuitable particles [16], [13], or by projegti
Kalman Filter [2], the Unscented Kalman Filter [2], [4], them on a boundary of the constraint region [12], [14]. The
[5], and the Gauss-Hermite Filter [6], [7]. All of these latter approach is sp_eC|aIIy sm_table f_or systems charizet
methods are classified as parametric, i.e., they solve a finRY PDFs that are singular (discontinuous) at the boundary
dimensional estimation problem. Parametric filters arepigm Of the constraint region. The boundary of such a set is
to implement and very effective when applied to stochastigenoted by the saturation region and the particles located a
processes that can be accurately approximated by Gaussigi§ boundary are called the saturated particles. The rsyste
processes. However, in case of highly nonlinear and nof€fined by this type of PDF is called [17] tHaturated
Gaussian dynamical systems, their performance detesiratStochastic Dynamical Syste(®SDS), which is a special

As an alternative to parametric methods, the norflass of the CSDS. o
parametricParticle Filter (PF) has been proposed [2], [8] AN efficient methoq for estimating the states of SSDSs,the
as a tool to solve a general filtering problem. This algorithnpaturated Particle Filter (SPF), has been proposed in [17].
aims to estimate #robability Density FunctionPDF) of ~1he SPF combines the projection approach of [12] with a
the state rather than a point statistic of the state. Thies, tROVel sampling method that effectively detects the sanmat
estimation problem becomes infinite dimensional. moment, and forces the particles to rapidly jump to that part

The PF approximates a PDF of the state of the sy@-f the state space which is close to the saturation regiarh Su

tem by a set of points which are obtained by utilizingsampl'ng is obtained by designing an importance density

function that makes use of both the measurement and the
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The SPF proposed in [17] has been derived for A saturated system is obtained by imposing extra conditions
special class of SSDSs, namely for systems that abn the system defined by (1). Namely, we consider systems
low only one-dimensional saturation, i.e., if; = that satisfy the following definition:

[ k(1) - z(n) ]T is ann-dimensional state variable  Definition 2 (Saturated SDSY-et {(zx,yx)} 20 be a
then only one of the variables(1),--- ,zx(n) can be SDS defined by (1). The sequence of tup{ésy, yx)};—5
saturated. The framework of [17] can be easily extended ie called aSaturated Stochastic Dynamical Systéa8&DS)
systems with multidimensional saturations provided that t if for each £k > 1 there exists a precompact [23] open
saturated variables are independent. However, the egtenssetC), C X such that:

for general multidimensional SSDSs is not straightforward 1) the support of the conditional distribution of the
In this paper we aim to fill this gap in the SPF framework statexy1 given x; and u, is contained within the
by deriving the Convex Saturated Particle Filter (CSPF), closure of theC), (denoted byC}), i.e.,

which is applicable to multidimensional systems with conve

constraints imposed on the states. The assumption of the P (k41 € Chlar, ur) =1, )
convexity of the constraints, from the practical perspecti 2 the transition probability of the state,.; belonging
is not very restrictive. In fact a stronger condition of &me to 9C%, givenzy, anduy, is positive, i.e.,
constraints is commonly met in the literature [15], [194]1

[22]. P (241 € OCk|wg, ug) > 0, )

The paper is organized as follows: in Section II-A the where dC;, denotes the topological boundary of the
mathematical framework of the Convex Saturated Stochastic setC..

Dynamical System is defined and the estimation problem is In what follows we consider the SSDSs such that for each
stated. In Section 1I-B the standard solution to the presipu ;. ~ | the constraint region of the variable,.,, which

formulated problem is given. The novel Convex Saturateg; pe dependent on the previous state and the previous

Particle Filter is derived in Section Ill. In Section IV thew input u, is a convex set. The precise conditions that such
filter is compared with the benchmark method. Section \éystems need to satisfy are listed in Definition 3.
concludes the paper.

Definition 3 (Convex SSDS):et ¥y be the collection of

Il. PRELIMINARIES measurable subsets af. The SSDS{(zy, yx)}, =5 is called
This section contains preliminaries and basic motivationthe Convex Saturated Stochastic Dynamical SySEE8SDS)
for the development of the Saturated Particle Filter. Firstf there exist a functiorC' : X x 4 — X » and measurable
the mathematical framework that we use to model saturatégnctions f;, : X x U x X — X such that for eactt > 1
processes is defined. Next, the basic facts about Parti¢cle following hold:

Filtering are recalled. 1) for every convexA € Yy the seth; (A) is convex,
A. System Definition 2) for everyx € X and everyu € U the setC(z,u) is
precompact, open and convex such that C (z,u)

For then,-dimensional state spaceg, then,,-dimensional 3) for everyz € X and everyu € U the setfk (2, u, X)

input spacé/{, and then,-dimensional observation spagg

X ) . . ' K is convex,
the generic stochastic dynamical system is defined by: 4) the state evolution (la) is described by:
Definition 1 (Stochastic Dynamical SystenThe if fr (g, uk, wg) € C(xg, uk)
Stochastic Dynamical SysteniSDS) is defined as a oz 4
pair {(zy,yx)},>c composed of dependent discrete-time Tht1 = i (@, ur, wi) (4a)
stochastic processe$z;}; 20, and {y;},;2 that evolve otherwise
according to: Tp+1 = OC (k, ur) nR° (xk,f(xk,uk,wk) )
Tt1 = fi (Th, uk, w) (1a) (4b)
yr = hi (zx, uk) + g, (1b) whereR? is defined by
zo~po (), (1c) R (z1,x) == {xx +t(x —xx) : t > 0}. (5)

Wg]leretﬁ)’“t ?nlfl Uk lare m‘*'ttr:*a”{ 'tndEpendzrlLGagSS'ant_Var"Note that from the properties of convex sets, the intersacti
zpaecst’ayaresapeec\t/i?/;e?m- Xe : Zexsfch Py isez;) (;grsvsziibllo "in (4b) contains exactly one element. Thug, ; is uniquely

. Ve Tk - . SO gefined. There are other possibilities to define the prajasti
nonlinear) function that describes the state evolution,:

. . . . »  than it is done in (4b) (e.g., projection on the closest point
X xY — Y is a(possibly nonlinear) function that establishe h Th S h th h
the observation modely;, denotes the deterministic input at%n the boundary). The projection approach that we have

. X o . 7" " chosen is motivated by the fact that the discretizations of
_tlme stepk, andpy is a_PDF of the initial stateo, which is piecewise linear continuous systems would have such inter-
independent of the noisas; and v sections as defined by (4b). The bourd?(zy,,ux)}, > of

The stochastic process defined by (1) is Markovian, whica CSSDS form a (possibly unbounded) stochastic process
allows for the recursive estimation of the state of the syiste taking values inXy. Also, it is worth noting that when the



system is not saturated functiorfs and f, are equal. To
help understand the meaning of (4)—(5) we have illustrated
a possible trajectory of the stochastic proces@%}xﬁ)

and {C (zy, ux)}; =5 in Figure 1.

We are interested in continuous state space, therefore
it is reasonable to assume that for every time dtethe
random variablggk (zk, uk, wi) has a continuous PDF. This,
however, does not hold for the variables. Indeed, from (4)
it follows that each variabler;,,; has singularities at the
boundary ofC (zj,uy). This means that the PDF aof;,
is continuous in the interior of the sét (x4, u;) and has

86’ ((L’k,uk)

R (g, Tht1)

discontinuities at the boundar§C (zy,ur). However, as RY (Ik,fk (Ik,wc,’wk))
we will see in Section Ill, the PDF ofr;,, restricted Fig. 2: The relation between R!(zj,zri1)
to OC (w, uy) is a continuous function. and RO (zy, fi (xk, up, wy)) when the saturated state

By (4)—(5) the conditional density of the variabig,

. : ) S of the systemey.1 € 9C (zx,uy) is obtained by projecting
given the previous state, and inputu; is given by: H

the unsaturated state of the syst¢m(zy, uy, wy) onto the
saturation boundargC' (x, ug).
P(zry1 = x|z, up) =
P (fk (T, up, wy) = 33\?%%) 1c(ay up) () (6a)
P
+ {/ P (fk (zh, ug, wi) = Z|$k7uk) dHl(Z)} 1oC(zg,up) (X)) o
R1(zy,)
(Gb) 02.

where1,4 (-) denotes the indicator function of a sét H, o
denotes thex-dimensional Hausdorff measure [24], aRd
is a set defined by

R (zg,2) = {ap +t(x —ap) : t > 1}. @)

Hausdorff measure can be seen as a generalization of the
Lebesgue measure to general metric spacEsp). It is

used to assign a “proper” measure to low dimensional
objects embedded into higher dimensional space (é-g., P
dimensional Hausdorff measure of a curve embeddediifito -
with metric p measures the curve’s length with respecp)o 0z
For any setD C X the n-dimensional Hausdorff measure
of D is defined by:

“+o0 oo
Hp(D) = lim inf {Z_} (diam(U;))™ : D C L:Jl Us, diam(U;) < 5} :
Figure 2 plotsRO (xx, fi (x, uk, wy)) versusR! (zx, z).
A comparison of a PDF of an unsaturated vari-

able fi (z1,u, w;) with the PDF of a saturated vari-
able x, is presented in Figure 3.

Fig. 3: The PDF of the unsaturated variatfiézy, ug, wy,)
Having the CSSDS defined in such a way, we are intefabove) and the PDF of the saturated variable, (below)
ested in estimating the actual statg of the system from given the previous state, and inputu,. The PDF of the
the available measuremenjs. The Markovian character of unsaturated variable is continuous (above) whereas the PDF
the CSSDS makes it possible, for estimation purposes, & the saturated variable (below) has a continuous part (6a)
employ recursive algorithms utilizing Bayes’ theorem,.e.gand a singular mass (6b) concentrated on the saturation
the PF. region 9C (zy,ux) = 9 ([-2,1.5] x [—1.5,2]).
There are many variations of PFs [8], which employ
various importance densities and resampling algorithros. F
the sake of comparison, as a benchmark solution to the
estimation problem suitable to saturated systems we chosge particles violating the state constraints onto the damn
the Constrained Bootstrap Particle Filte(CBPF), i.e., the before the resampling takes place, which is an approach
Bootstrap Particle Filter(BPF) [8] modified by projecting described in [12].



ki >k +1 ki = ki +2 ki — ki +4

z(1) z(1) (1) z(1)
Fig. 1: Evolution of a two dimensional CSSD&k}:ZO‘S, from zj, (star) to zx, 44 (dots) and its constraint re-
gions {C(xk,uk)}ﬁj‘g (shaded ellipses). When the unsaturated varigfal€ry, ux,wy) (empty squares) exceeds the

saturation boundargC (z, uy) it is projected on the appropriate point (dots) at the séitmeboundary.

B. Particle Filtering utilized by the BPF [9], [28], [29], is to use the transition

The PF is a Monte Carlo-type algorithm that represent@enSity as an importance density:
the estimated PDF of the state. by N random sam-
ples (particles){x};}jv=1 with their associated (normalized)

weights {w;}il that are generated using ttf®equential Such a choice of the importance density is particularly

Q (zlz)_y up—1,y%) =P (z = 2|2}, u—1) . (12)

Importance SamplingSIS) method [25], [8]. appealing because, due to (12), the weight update (10) is
These pairs approximate the true PDF by: simplified to:
N ~i _ _ i
Plax=alye) & Y wldo (w—af),  (9) @ = eorP (e (@, 00) = el = 3i) - (13)
=1 However, this comes with a price, namely that the most
whered, denotes the Dirac delta at zero. recent measuremeny, is not used during the drawing of

The SIS is a recursive algorithm that uses the most recethte particle.
observationy,, to compute{(xi,w,i)}?il in two steps. In case of saturated processes the measurememan
First, for everyi = 1,..., N, a sampler’, is drawn from provide information of crucial importance, thus its loss
a (chosen)importance densityQ(-|z} _;,ux—1,y%). Next, during sampling is highly undesirable. The need of a special
using the most recent observatign, the weightsw! are type of importance density that exploits a specific struetir
updated according to the Bayes’ rule the CSSDS and also accounts for the latest measureypent

. . led to the development of the SPF [17], [21]. The SPF was
P (P (wk, vp) = yk|x7c) P (zx = @la)_1, 1) derived for a special class of CSSDSs, namely, for systems
Q@ |@f,_ 1 uk—1, yr) that allow only one-dimensional saturation [17]. In the thex
(10)  section we generalize it to multidimensional CSSDSs.

~1 1
Wi = Wi_1

and normalized

w}; = W . (11) I1l. CONVEX SATURATED PARTICLE FILTER
. ) s . In this section we propose a new SPF that is designed for
On the practical side, a common problem of PFs igg5pss. The CSPF is capable of quickly detecting whether
the particle degeneracy: after several iterations, allfewt o ot saturation occurred by comparing the measurements
particles will have negligible weights. When that occurs MoSith the state constraints. This information is used toifsyc
of the computational power is wasted on updating negligiblg, e the particles to the region of higher probability, whic
weights and the accuracy of the algorithm strongly deterip,gs 1o improved accuracy of the estimate. This procedure
orates since the true pdf is approximated only by a smalbngers possible the reduction of the number of particled us
set of significant particles. The degeneracy phenomengy pr thys reducing the computational load of the algorithm
can be circumvented by the appropriate resampling of thehe getection of the saturation is achieved by a detection

particles [2], [21], [26], [27]. o function introduced in Definition 4.
The best possible importance density is the true poste-

rior pdf itself [25]. However, in general, it is impossible Definition 4 (Detection function)A function o : ) X
to sample from it and hence, in practice one needs to rely x ¥y — R is called adetection functiorfor a CSSDS if
on suboptimal importance densities. A popular approackor every time stefk, every precompact open convex set



Yy, everyy € Y andzy, z2 € 0A the implication holds: Using (16)—(17), and the detection function we define
the importance densit®* of the new CSPF by:

ly — hi (x1)]] > ly — b (z2)|| =

Q* (elah u k1) = 08 () 1o (o 0y () (182)
a(y,z1, by (A)) < a(y, 2, hg (A)) . (14) g . |
TP (Fe g wi) = @l un) Toag ) (@) (18D)

Intuitively, a function for which the condition (14) holds
true serves as a ‘pseudo’-metric between the points at thelt can be easily seen th@™ defines a probability measure,
boundaryd A of the convex setd and, through observation i.e.,, Q¥ is positive, and it integrates to one. The importance
model hk' the measuremeny c y Note that in the density of the CBPF flltel’ isa SpeCial C&S@’f with o = 0.
definition of the detection function in it not required that ~ Given the particlez} and the inputu,, a new parti-
the inverse of the measurement functibp exists. Some cle zj, is drawn from the importance densify®. The
indication on how this function should be tuned can béandom sample forn“ is obtained in two steps. First, the
found in experimental results presented[17], [21], [3CjeT algorithm determines whether the particlg, saturates,
properties of the detection functions are further expldinel-€- @1 € 9C (zj, ux) (with the probabilityg;*) or not

while discussing the numerical example in Section Iv.  (Wwith probability 1 —g¢;*). Next, if the saturation was detected
Let us now consider the SSDS defined by (1)—(4). Futhe particlez;, , , is drawn from:

thermore, |et{(x§;,w;i)}ij\i1 be the approximation of the @ ()

true PDF of the state of the process at time step~or ffcﬂ ~ Tlac(ri . )(.)_ (19)
eachi ¢ {1,..,N}, given the previous particlej, the 4; TroTE
probability that the particlery ,, will saturate, i.€.} 1, € | case the saturation was not detected the pariile, is
oC (.I‘Z,Uk) follows from (6b) drawn from:

i 7 7 1 r 7
P ($k+1 €0C (xkvuk) = T41 1_711_1[» (fk (a:k,uk,wk) = °|9€k) 10(%’11,,6) () . (20)

)
fi. () = 2|z}, uy, ) dH1 (2)dHp, -1 (x), . o ,
~/(96'(z']i€,uk) /Rl(I;;,z)P Jie iy, i) Z‘x’“’u’“> Hi(z)dHn, —1(2) The associated weights,  , are derived from the general
(15)  principle (10) applied to the importance density (18)zif, ,

whereR! is defined by (7). saturates then, by (16) and (17), the weight , is given

For the ease of notation the right-hand side of (15) is calletc)iy: _
the predicted probability of saturatioand denoted ag, i.e., qi (%H) P
4 (x;<:+1) 21
g = /  i(@)dH,, (), (16a) (21)

aC(xk,uk)

w}iﬂ X wi (hk+1 (karlakarl) = yk+1|$§c+1) )

if 2, does not saturate, the weigh . , is updated by:

. ) ) ; ; 1—q; i
whereg; (+) is defined by: Wh g o w,@ﬁﬁ” (Prgr (@rg1s Vkg1) = Yr1lThqr) -

. . ' (22)
qi(x) = /R1 . P (f’f (@h uk, w) = Z|xk»“’€) dHy(2). The new CSPF is summarized in Algorithm 1.
(hoe) (16b) The proposed CSPF combines the previous stateith
The saturation of a particle ., can be seen as project- the most recent measgreinmql to compute the updated
ing $Z+1 ontodC (xfg,uk) which is equivalent to the generic prqbabllltles of s_aturatloqi (2) ar_1d the total updated prob-
projection approach of [12]. Indeed, it makes no differenc@Pility of saturationgi*. The function
whether the ‘bad’ particles drawn from an unconstrained
continuous distribution are projected on the saturatigiore
or each particle is set to saturation region with the predict ,
probability of saturation. The resulting sets of partickee IS @ continuous PDF 0AC (z},, uy).
equivalent in the statistical sense. Note that since each particlg, has dynamics of its own,
Let o be a given detection function satisfying Defini-for i # j the constraint region§' (z,ux) andC (mfc,w)
tion 4. Furthermore, assume that the measuremgni do not need to overlap. As a consequence it is possible
becomes available. Then, for ea¢h € {1,...,N} and that thei-th saturation regiordC (%, us) nontrivially in-
eachz € 9C (z},u;) we define theupdated probability tersects with the admissible (unsaturated) part of jth

oC (xh,up) > x ai' (@) (23)

(0%
K3

of saturationg;": constraint regionC' xi,uk). Thus, a region of the state
. . space that is admissible to all the particlgs; }, is given
4 = /ac N (z)dHp, -1(z), (178) by ), C (i, us), and is also convex.
(i) For large values of;* the algorithm forces the particles to
where be close to the saturation regidiC' (=}, ux) associated to

4 the i-th particle, whereas for small values ¢f the particles
¢ (@) o< gi(z) + a (yrg1, 2, C (@, ) - (17b) are set further from the saturation region. Moreover, the



Algorithm 1 Convex Saturated Particle Filter
Require: {(zf,wi) )}
i i N
Ensure: { (2} 1,wiy1) by
for i =1,2,...,N do
Compute the probability; according to (16a)
Compute the probability* according to (17a)
Draw from the standard uniform distribution ~
U(0,1)
if v < gf* then
Particlex), , saturates:
% ()

(e
k3

-4 (Ii+1)

"-’2-&-1 X wy, -
(zkﬂ)
else

Particlez]_ , does not saturate:

Tty ™ 00w ur) )

- P (Rht1 (Tht1, Vks1) = Ykg1|Th 1)

4q;

. 1 ~ .
Ty~ 1_7%_? (fk (T, wi) = '\xi) Lo(ei ) ()

W1 O wiﬁﬂ” (Prr1 (®ag1, V1) = Ukt1|2haq)

7

end if
end for

particles that hit the boundary of the constraint regioanits
to (23), are forcibly moved to that part of the saturatio
region that has the highest probability. Figure 4 scheralyic

describes the differences between the Unconstrained BeF, g

CBPF and the CSPF for a large valuegf.

Finally, we have to mention that the accuracy of the CSP,

estimate depends on the user-specified detection functi
which must be chosen appropriately to the CSSDS und
consideration. This is a subject of ongoing research.

IV. NUMERICAL SIMULATIONS

To illustrate the estimation abilities of the newly pro-

n

4

I: UBPF )
h};+1 (yk+1)

II: CBPF

lll: CSPF

*

Fig. 4: Visualization of the distribution of particles obted
by the Unconstrained BPF (top), CBPF (middle) and the
CSPF (bottom). Some of the particles obtained by the Uncon-
strained BPF violate the physical constraiysC (z},, uy

f the system (shaded area and the redigd éx};,ukg
ounded by it), others are located far from the actual mea-
]s_urement (star). The larger the size of a patrticle the higher
its weight. The CBPF projects the unphysical particles onto
Re relevant saturation regions (inside the shaded aref), b

bes not move the remaining particles. The CSPF projects
the ‘bad’ particles onto the saturation region and forces th
remaining particles to concentrate closer to the saturatio
region. Moreover, weights of the repositioned particles ar
appropriately rescaled.

posed CSPF we compare it with the CBPF applied to a

simple CSSDS that models the motion of a two-dimensional ] ) )
object under random disturbance. We assume a static senéfiereéw, andu,, are two-dimensional zero-mean Gaussian
placed at the origin that measures the distance and thariables with the covariance matricés, = > 0
bearing of the moving object. This model is a version of a 05
classical nonlinear tracking problem discussed, e.g.28,[ and ¥, = 0.1 0

[11], [31]. In this motivating example we discuss in detail. t 0 d OiOOtth locity of the obiect 1
how to overcome the difficulties of practical implementato Inputu corresponds to the velocity of the object &=

. . . is the sampling period. The constraint imposed on such a
?I;?e CSPF that arise from the extra integrations steps-(16 ystem is defined by

respectively. The controlled

We consider the unconstrained system defined by: C (g, ur) =
T 2 2
z(1) } [ x(1) } [ u(1) ] {x Sk + Tsup — )" (2p + Toup, — ) < r{Jug| }7
= + T, + wg, (24a
0 L [ ] e e (25

y(1) _ \/(x(l))Q + (x(z))Q . (24b) vyhert_er is the user-specified parametgr that., in our simula-
(2) z(2) k tion, is set tor = 2. Thus, the constraint regiof (x, u)
Y k arctan =% ) ) . .
x(1) k is a ball centered i), + uy, with radiusr||ug||.



The detection functiona for the CSPF measures thewhereX;; denotes the first diagonal entry of the matri.
difference between the distances between the inverse mea- Proof: The uniform distribution ofy;(-) follows directly
surementh; ', (yx41) (Whereh,, denotes the standard polarfrom the fact that circle®)C (a7, ux) coincide with theo-
transformation) and the pamctel + uy, and the vector at contours of the Gaussian variahle..
the boundary of the constraint regmih(xk,uk) Formula (27) can be easily obtained by the polar

o (yk+1,x, C (xZ,Uk)) -9 Hth (Yosr) — b — TSUkH « parametrization of the plan&? and by observing that

(lhii resr) = 2 = Toun|| = [higiy (gsr) — x||)(,26) P (241 € OC (zg,up)) = 1 — P(2p41 € C (g, u)) -

(28)

for 2 € OC (},uy), and user-specified parameter The ~The probability in (28) is easily computed by:
strength of the influence of the detection function (26)
depends on the value of the parameleMe can see that P (zp41 € C (w, ur))
the function defined by (26) satisfies the condition (14). In 1 1 ey
an extreme situation, wheth = 0, the functiona has zero N zyr\z |1/2 /C(mk uk)eXp <_x s x) de  (292)
influence on the algorithm and the CSPF degenerates into o1 prllunll 2
the CBPF. / / exp ( ) dzsd (29b)

With the help of a function defined by (26) it is now 27@11 2%,
possible to update the probability of saturation of all the-p . /”“k I ( 2 d (29¢)
ticles ¢, 41 by comparing the distances between the inverse ~ ¥, P 2%, =

measuremenft,;rl (yk+1) and the points at the boundary of o ) _ )
the constraint regioi” (xk,uk) Combining (28) with (29c) gives the desired (27). |

To show how such an update can be achieved we need tol0 compute integral (16) it is convenient to introduce the
consider two situations following parametrization of the boundary of the constrain

1) If the inverse observatioh; !, (yx+1) belongs to the region:
interior C' (z,ux), then for all the points at the

boundaryz € 9C (z},ux) the updated probability of OC (w, ur) =
saturationg?® {or + up + rljur|| (cos(¢),sin(e)) : ¢ € [0,27)} . (30)
o increases, if —h;t
||h_1 ( ) — ai _Hi h (ykﬂ)H Then the updated probability of saturation (17b) can be seen
de(k:;réagg;rl ifk ka ,h* o as a function defined on the interval 27):
° ’ T Mgy \Yk+
—1 i
[icis ) = 2 = | 0,27) 3 6 1> g (2 (6), (31)

2) For the inverse observatidm,;i1 (yk+1) that belongs
to X\C (z},ur) the updated probability of satura- hence the integral (17a) can be efficiently evaluated, e.g.,

tion ¢f* with the MATLAB function quad.m
. increases if |2 — hily (k)| < rlluel + The Parametrlzanon (30) is further used to obtain samples
dist (R4 (yrt1),C (), uk)), from 2.4 through the use of the inverse ofGumulative
. decreases ifl|z — bty (yesn)]| > rlluell +  Density Functmr(CDF). The procedure of obtaining such a
dist (R Ly (yrs1) . C (2, ur)). ‘pseudo’-random sample is described in Algorithm 2.

To help understand the properties of the probabilities of Note, that CDF¢) is continuous and monotone function
saturation, the second of the discussed cases is visu@izedhat can be easily evaluated for any givenThus, a solution
Figure 5. to CDH¢o) = u can be obtained by applying any of the

In order to successfully implement the CSPF for thetandard root-finding algorithms [33].
model (24)—(25) we need to tackle the following technical Using the aforementioned numerical techniques, we have

problems: simulated the system (24) with the constraint (25)foe 20
1) numerically evaluate the integrals (16), time steps. We consider three different simulation scesari
2) numerically evaluate the integral (17), to investigate various properties of the proposed CSPF:
3) draw random samples from the d|str|but|€;ﬂr 1) Scenario I: robustness with respect to the initial con-
The first problem is solved in Proposmon 1. The dition of the filter,
points 2&3 are closely connected hence are dealt with 2) Scenario II: robustness with respect to the detection
together. function a,

Proposition 1: The predicted probability of satura- 3) Scenario III: robustness with respect to the number of
tion ¢;(-) for the system defined by (24)—(25) is uniformly particles used by the filter.

distributed on the circlé)C (x’“’uk) and it integrates to All the algorithms were executed in Matlab 7.9 on a Mac
1 i . p( 22 ) i OS X with an Intel Core 2 Duo 2.66 GHz CPU with 4 GB
X

- - 27
Y11 2511 @7) RAM.
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Fig. 5: The visualization of the updated probability of sation obtained with the use of detection function (26). def
the measurement ;1 is collected (left) the probability of saturation is unifiolly distributed on the bounda@C (z, ug).
After the measuremenyj,; becomes available (right) the probability of saturationmdscaled to account for the newest
information.

7 {|u |

Algorithm 2 Drawing from% the CSPF ten times, each utilizing the same observation
: sequence. Thaverage mean square err¢dAMSE) of both
filters obtained for all three simulation scenarios are regub

Using (30) parametrize the boundary

AC (z1, up) = {z (¢) : ¢ € [0,27)} in Table I. Table Il reports the average times requir_ed for
the CBPF and the CSPF to produce a single-step estimate of
Compute thel-dimensional Jacobian [32]: the state.

Figure 6 reports the averages of ten independent runs of
— T —

J (Dyz) = y/det (Dyz? Dyw) = T |[ux] the CBPF and the CSPF each using 1000 particles. The
Compute updated probab|||ty of saturation: estimates were obtained by the CBPF and the CSPF Starting
from initial positions:[5 15]7, [10 10]7 and[15 5]7.

g = / " T (Dy) o (2 () doo

Define the CDF¢):

TABLE I: AMSE of the CBPF and the CSPF for Scenario |

Initial condition

¢ a
q; \T(p
0,21) > ¢ — /0 J (Dyx) wd@ 2(0)=[15 57T | z(0)=[10 10T | z(0) =[5 15T
Draw from the standard uniform distributian~ ¢/ (0, 1) CBPF 22.33 20.05 22.06
Find ¢ such that CDFpy) = u CSPF 591 371 5.88

Use ¢y to obtainz (¢g) - a random sample frorﬁi%

TABLE II: Average computational times (in seconds) of the

A. Scenario | CBPF and the CSPF for Scenario |
In the simulations discussed in this section the parameter - -
in the detection function (26) is set b = 5205 for Initial condition
apprqpriate scaling. The simula’Fion stgrted from the ahiti 2(0)=[15 5T | z(0)=[10 10]T | z(0)=[5 15T
conditionzy = [10 10]7 and the input signat, = [3 3]
is constant over the whole simulation. CBPF 0.2122 0.2030 0.2318
_We t_ested thg _CBPF a_lr_ld the CSPF in th_ree settings th atspr 11.6219 121172 12,7369
differ with the initial condition used by both filters. Nargel
we simulated the case with no initial offsef)’’""* =
[10 10]7, and Jtc\l(\l/gricenarios with initial offsets{ """ = 5 scenario Il
[5 157 and z; = [15 5]T. In each of the afore- he simulat _ o th , H
mentioned settings the CBPF and the CSPF use the initial!N the simulations discussed in this section we have tested
] 1 0 ) ) three different parameters in the detection function (263
covarianceP, = { 0 1 } Both filters use 1000 particles. 'r(-)\i?t(f\)l' 0 — ’r(\)li?fl\' andg = % The simulation started
To account for the probabilistic nature of the compareffom the initial conditionz, = [5 — 5|7 and the input

methods in every simulation setting we run the CBPF ansignalu;, = [3 3]7 is constant over the whole simulation.



Fig. 6: Scenario I. Trajectory of the true target (filled s@s and the estimates computed by the CBPF (solid line with
pluses) and by the CSPF (solid-dotted line) in two dimeraigriane. The estimates are obtained as the average of ten
independent filters each utilizing 1000 particles. Thenestés were obtained by the CBPF and the CSPF starting from
initial positions:[5  15]7 (left), [10 10]7 (middle) and[15 5] (right).

There is no offset in the initial conditions for the filters. I  We examined the CBPF and the CSPF using different
each of the aforementioned settings the CBPF and the CSR&mber of particles: 10, 100, and 1000. There is no offset in

use the initial covariancg, = { 0 } Both filters use 10 the initial condition of the fijlters and the initial covarizm

1
0 1 . . [
particles. is again set taP, = L 01

Similarly as in the previous section in every simulation The CBPF and the CSPF are both run ten times, each
from this section we run the CBPF and the CSPF ten time¥tilizing the same observation sequence. The AMSE cor-
each utilizing the same observation sequence. The AMSE gtsponding to this scenario are shown in Table V and the
both filters obtained for all three simulation scenarios ardverage times required for the CBPF and the CSPF to
reported in Table IIl. Table IV reports the average timefroduce a single-step estimate of the state are given in
required for the CBPF and the CSPF to produce a singldable VL.
step estimate of the state. Figure 7 reports the averages of t Figure 8 presents the averages of ten independent runs of
independent runs of the CBPF and the CSPF each using #1® CBPF and the CSPF using: 10, 100 and 1000 particles.
particles.

TABLE V: AMSE of the CBPF and the CSPF for Sce-

TABLE Ill: AMSE of the CBPF and the CSPF for Scenario 11 hario Il

Value of the parametef Number of particles
20 = —57T o= 79”205“ g— 005 | g_ _05 z(0)=[-15 —5T | N=10' | N=102 | N =103
k rllugll rllugll
CBPF 28.3694 27.2028 28.3694 CBPF 1438 796 267
CSPF 6.0381 2.8517 1.5484 CSPF 6.8302 | 1.8049 | 1.6583

TABLE IV: Average computational times (in seconds) of the \BLE VI- Average computational times (in seconds) of

CBPE and the CSPFE for Scenario II the CBPF and the CSPF for Scenario Il

Value of the parametef Number of particles

g— 0005 | p_ 005 _ 05 N=10! | N=10%2 | N =103
= gl = Tllugl = gl
CBPF 0.004 0.004 0.004 CBPF| 0.0034 | 0.0265 | 02191
CSPF| 01306 | 01648 | 02154 CSPF| 01406 | 13972 | 141950
) V. CONCLUSIONS
C. Scenario Il

In this paper we extended the previously proposed estima-

In the simulations discussed in this section the parametgon method, the SPF, which makes an effective use of the
in the detection function (26) is constant and is sefte  measurements during the importance sampling, to multidi-
Jiner- The simulation started from the initial condition =  mensional SSDS. Such extension requires an extra condition
[-15 —5]T and the input signal;, = [3 3]7 is again set to be imposed on the system, namely the constraints of the

constant over the whole simulation. system need to be convex setsi¥t. With the convexity




eeeeeeeee

rue state rue state
801 ——cBPF 801 —— cBPF 801 ——cBPF
CcsPF cspF
7ot CSPE 0 70
60 60 P ol
s0 50 / ol

(2)
(2)
\\\
(2)

&

Fig. 7: Scenario Il. Trajectory of the true target (filled ages) and the estimates computed by the CBPF (solid line
with pluses) and by the CSPF (solid-dotted line) in two disienal plane. The estimates are obtained as the average
of ten independent filters each utilizing 10 particles. Tlstingates were obtained by the CBPF and the CSPF starting
from the initial position[5 — 5]7. The CSPF utilize different detection functions (26) witrametersg = 295 (left),

rllull
0 = 595 (middle) andd = 2 (right). |

rllull llull

140

Fig. 8: Scenario lll. Trajectory of the true target (filledusges) and the estimates computed by the CBPF (solid life wit
pluses) and by the CSPF (solid-dotted line) in two dimeraigplane. The estimates are obtained as the average of ten
independent filters each starting from the initial positiorl5 — 5]7. The estimates were obtained by the CBPF and
the CSPF utilizing: 10 particles (left), 100 particles (aie) and 1000 particles (right).

assumption satisfied, the multidimensional detectiontfanc than the CBPF. This is due to computationally expensive pro-
can be properly defined. This function is then used to deriveedures specific for the CSPF that involve evaluation of the
the multidimensional CSPF that utilizes the measuremenitstegral (17a) and drawing samples according to Algorithm 2
to detect the saturation of the system while sampling neWowever, as it is reported in simulation Scenario Ill and in
particles. Table V the CSPF using only 10 particles achieves accuracy

We demonstrated the efficiency of our new method bgomparable_or even bet.ter than_ the accuracy achieved by
applying the CSPF to the two-dimensional motion moddhe CBRF with 1OQO partples. This means that fqr the CSPF,
with linear unconstrained dynamics, bounded disturbancé§€ family of particles might be kept small which greatly
and nonlinear noisy measurements. The simulations sugg&@guces the computational effort of the algorithm. Thus,
that for the concerned system the CSPF is as robust wigiven that the computational complexity of both compared
respect to the choice of initial condition as the CBPF issThifilters grows linearly with the number of particles used,
can be seen in Figure 6 and Table I. Simulations depicted hich can be seen in Table II, we can argue that the CSPF
Figure 7 and summarized in Table 11l suggest that apprapriaPutPerforms the benchmark CBPF in both accuracy and
choice of the detection function can further improve th&€omputational time.
performance of the CSPF. Furthermore, in the performed As could been observed in Figure 8, the performance of
simulations the CSPF achieves accurate performance usiihg filter depends on the appropriate selection of the detect
much fewer particles than the CBPF use, which can bgnction. The optimal choice of the detection function is
observed Figure 8 and Table V. connected to the construction of a proper resampling algo-
hr_ithm that yields desirable asymptotic properties of th€ES
u‘ghese topics where not discussed in current paper as they are
1stiII a matter of ongoing research.

In our simulations the CSPF outperforms the benc
mark CBPF in terms of speed of convergence to the tr
signal from the initial offset as well as the accuracy o
tracking the signal with saturated dynamics. This can be
observed in Figures 6, 7, and 8 that report the outcomes ACKNOWLEDGEMENT
of the CSPF and the CBPF.

The improved performance of the CSPF comes with the This research is funded by the dredging company IHC
price of increased computational time required by the ne8ystems B. V., P. O. Box 41, 3360 AA Sliedrecht, the
filter, which on average is approximate§8 times slower Netherlands.
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