Saturated Particle Filter: Almost Sure Convergence and Improed
Resampling

Abstract— Nonlinear stochastic dynamical systems are widely PF algorithm is based on the Monte Carlo method originally
used to model physical processes. In many practical applica- proposed by Ulam and von Neuman (see [15] and the
tions, the state variables are defined on a compact set of the references therein).

state space, i.e., they are bounded or saturated. To estimate . . ..
the states of systems with saturated variables, the Saturated The properties of the PF have been extensively studied in

Particle Filter (SPF) has recently been developed. This filter recent years [12], [16], [17], and many versions of PF have
exploits the structure of the saturated system using a specific been developed for specific types of problems [16], [18],

importance sampling d_istribution. In thi_s paper we i_nvestigate [19], [20], [21], [22]. In particular, the Saturated Palgic
the asymptotic properties of the filter, in particular its almost Filter (SPF) has been proposed in [23] as a method to

sure convergence to the true posterior PDF. Furthermore, an . - .
improved SPF is developed that uses a novel resampling proce- estimate the states of a Saturated Stochastic Dynamical

dure to overcome the practical shortcomings of the original SPF.  System (SSDS). A system belongs to the SSDS class if
We prove that this new filter also converges almost surely to at each time steg: for at least one of the state variables

the true posterior PDF. Both versions of the SPF are presented the probability that it saturates is strictly positive [23he
in easy to implement algorithmic forms. point that belongs to the boundary of such a set is called
the saturation point. These systems are frequently found
. INTRODUCTION both in industrial applications [24], [25], and in theooeaii
Various practical problems require extracting informatio research [20], [26].
of interest from an uncertain or dynamically changing en- Under certain conditions, the states of the SSDS can be
vironment. Such problems are often represented in a stadstimated by a parametric Unscented Kalman Filter [27],
space form as Stochastic Dynamical Systems (SDS). In tli@8], [29]. Nevertheless, the flexibility of the nonparanet
SDS framework the required information is modeled as aRF makes it a more suitable algorithm for the severely non-
unknown state or parameter of the system that needs linear SSDS [30], [20], [31], [23]. On the downside, however
be estimated from available measurements. If the unknowhe PF is based on the Monte Carlo approximation, hence
property changes as the system evolves, the estimate hasttmight require a large number of samples to achieve an
be updated each time a measurement becomes available. &ocurate estimate. This makes the algorithm computational
this purpose the Bayesian dynamic filter has been developatkpensive, and consequently, limits its on-line appliliigbi
The Bayesian dynamic filter is a recursive algorithm thaThe choice of the importance sampling density is a crucial
uses prior knowledge of the system and the most currestep toward reducing the computational costs, and therefor
measurement to compute the posterior estimate. This risaking the filter feasible for on-line applications. Thissha
achieved by utilizing the Bayes theorem (Chapter 1 of [1])been an active field of research in recent years. In [20], [31]
The posterior estimate is a probability density functioDFP the constrained PF has been proposed that produces a state
of the state of the system. estimate that does not violate the physical constrainthef t
The posterior PDF can be analytically computed onlgystem. This is done by discarding unsuitable particle$, [31
for systems with linear dynamics and additive Gaussiaar by projecting them on a constraint set [20]. The SPF
noises [2], [3], i.e., for a very restricted class of systeins combines the projection approach with a novel sampling
case of nonlinear or/and non-Gaussian noises, in geneasal itmethod to effectively detect the saturation moment, and
impossible to compute the exact form of the posterior PDForces the particles to rapidly jump to the part of the state
Therefore, one needs to rely on approximations. Two typegpace close to the saturation point [23]. This makes the SPF
of approximations can be distinguishedarametric and a powerful tool for solving the estimation problem for SSDS.
non-parametric The posterior PDF is parametrically ap- Since the PF approximates the true posterior PDF by
proximated if it can be characterized by a function thah set of N discrete samples the question that naturally
depends on a finite number of parameters. In other wordatises is whether the approximation converges to the true
the approximation of the posterior PDF belongs to a finitelyposterior PDF asN — oo, and if yes in what sense?
parameterized family of functions, e.g., Gaussians [4], [5Extensive studies on the convergence properties of the PF
[6], [7], sum of Gaussians [8], [9], [10], Pearson [11]. Ifhave been conducted in [1], [17] and [32]. In both [1]
such a parameterization is impossible, the posterior PDF cand [17] two types of convergence have been discussed, 1)
be approximated with a non-parametric PDF of an arbitrarglmost sure convergence and 2) convergence in the mean
shape [12], [13], [14]. Among the non-parametric methodssquare error sense, and conditions that guarantee either ty
the Particle Filter (PF) has gained the most popularity. Thef convergence have been derived. The focus of [32] is more



on investigating relations between the sample &zand the At time instant k£, the previous posterior PDFrj,_;;_;

time stepk. Moreover, [32] presents a number of interestings represented byV samples{m};_l}]{l and the corre-
;essiiur:ztcr)?garding asymptotic behavior of the variance ef thsponding Weights{w};_l}il. To approZ;imate the true pos-
In this paper we consider the almost sure convergend8Or k|, NEW S?mmes{%}ij\;l and We'ghts{wi}i]\;,
of the SPF to the true posterior PDF. First, we derivé&r® generated using thBequential Importance Sampling
sufficient conditions for the almost sure convergence of tH!S) method [34], [16]. The SIS method is a recursive
SPF defined in [23]. Next, we propose an improved versiofilgorithm that uSes the most recent observagprio com-
of the SPF with a novel resampling procedure and we provélte {(zj,wi)},_, in two steps. First, for every =
that it also converges almost surely to the true posterids -V, samplez} is drawn from a (chosenimportance
PDF. In both cases we discuss the practical meaning of tHernel Ky (z} |z},_;, yx). Next, using the most recent ob-
constraints that ensure the filter's convergence progertieservationy;, the weightsw; are updated according to the
Furthermore, both algorithms are presented in an easy-tgayes rule

implement algorithmic form. ) S
P 9 gr(yk|zy) Ke—1(xp]7),_4)

The paper is structured as follows. In Section Il we present O =wi = — (6)
background information regarding the PF, the SPF, and the K1 (g |2h 1, Ur)
stochastic systems. In Section Ill we discuss asymptotig,y hormalized
properties of the originally proposed SPF. The improved ; @i
version of the SPF is derived in Section IV, where we also Wy = SV o (7)
Jj=1

prove the almost sure convergence of the new SPF to the
true posterior PDF and discuss the practical properties ghe posterior PDFr,;, is represented by the set of weighted

the improved SPF. Section V concludes the paper. samples, conventionally denoted by:
I[I. PRELIMINARIES N
In this section we give an overview of the basic definitions Thik & Tl = > wid(@x — 2}), (8)
and properties concerning the asymptotic behavior of Parti i=1

cle Filters (PF). This section presents background materigyheres denotes the Dirac delta at zero.

therefore the theorems are given without proofs. For deail | theory, the best possible importance density is the

proofs, see [17], [33]. posterior PDFmy ;. itself. For every other choice of the

A. Particle Filter importance density the variance of the weighs} }._,
Definition 1 (Stochastic Dynamical Systenfhe increases over time [34]. Since it is generally impossible

Stochastic Dynamical SystefSDS) is a process defined [0 Sample from the posterior PDF; one needs to rely
recursively by on suboptimal importance densities in practice. It has been

shown (see [34] and the references therein) that the impor-

Thp1 = fr (Tr, wi) (1) tance density that minimizes the variance of the weights
YN - . . . sy k—1
yr = hi, (21, v1) , (2) {wj},_, conditional upon simulated trajectorle{SC;}j:1
xo ~ po (+), (3) and the observationsyj}’;f:1 is equal toP (zx|z}_1,yk),

wherewy, andv are mutually independent random variables. & the PDF of the state; conditional upon immediately

f. is a (possibly nonlinear) function that describes thé)receding realization’, , of the simulated trajectory and the

, _Z. ; .
state evolution,k; is a (possibly nonlinear) function that most current observatiog. P (2xfz}_,, yx) is an optimal

establishes the observation model, andis a probability L?;Emeolrtagczrtd ?rr;?nnyalr:e;r:ﬁcggrilrgsgtl;nsdstse?::e[é:;nférélf-
density function(PDF) of the initial stater,. Y. ap Y ' '

[36], sampling fromP (xk\xi,fl,yk) is practically impossi-
From the model (1)—(2) we derive thiansition probabil- ble. Therefore, various suboptimal importance densitee&h
ity kernel K1 (xg|xr—1) defined by been proposed during the recent years. The simplest ctwice i

. . to use an importance density that is fixed over the time [37].
Ky (@pler) = Pu (foor (@1 wea) = @) @) o popular approach is utilized in theotstrap particle
i.e., the conditional PDF of the variablg given the previous filter (BPF) [38], [39]. The BPF samples poin{gu;;_l}%\il
statex 1, and thelikelihood functiongy. (yx|x,) defined by  from the noise distribution ofv,_,, then propagates them
. . . N . .
20) =P, (he (25, 0k) = i), 5) together with the particlegzj,_,}. ., which approximate
9i(yilzi) (hi (e, 00) = i) ®) the previous posterior PDfy,_; |1, through the prediction
i.e., the conditional PDF of the variablg given the current model (1) to obtain the particles, := fx_1 (mi-—pwi-q)
statexy. _ that approximate the predicted PDfg ;. A slightly dif-
The PF represents the pc_)sterlo_r F;VB’E’C_Of the_ State’“"k_ ferent formulation of the BPF, with particle§z}'€71}£\;1
by N random samples (particleg);, },_, with their associ-  sampled directly from the transition probabiliy(zy|zi_,),

ated Weights{w};}f.v:l, normalized so thab ", w’ = 1. is presented in [40]. Another variation of the BPF [17]



allows sampling particle%;x};fl}f;l from the weighted tran- Algorithm 2 Particle filter
sition probability - > | P (xx|z],_, ). More information INPut: Ky (zxlzr—1), Kr-1(exlzr—1,9), g (yrlzr),
on other types of importance densities can be found in [32], pO_(_IO_)* N, Nt
[41]. Initialize:
A common problem of PF is the particle degeneracy: after for ¢ =1,2,...,N.do
several iterations, all but few particles will have negigi Draw a new pamcle:ﬁg ~ p(@o)
weights. This does not come as a surprise since the variance ASSIgN weightiw, =
of the weights{w] }"" | can only increase over time. When d for
that occurs most of the computational power is wasted A\t EVery time stepk =1,2,3, ...
on updating negligible weights and the accuracy of the for i = 1727'_"7N do. o
algorithm strongly deteriorates since the posterior PR Diraw partlclei frc;m importance distribution:
is approximated only by a small set of significant particles. ~ “k ™~ K1 (2 |2),_ 1, yk)

The degeneracy phenomenon can be circumvented by mon- Use measureg, ito updatie 'Ehe weight:
gk (Yrlzy) Kip—1(zi |7y _q)

itoring the weights and resampling the particles, e.g.hwit @f = wh_y o1 (zi|7_un)

Algorithm 1, after the degeneracy is detected [12], [42B][4  end for ' y

[44]. A common measure of the degeneracy is ¢ffective Normalize weightsw}, = —x& =

sample sizeéVe, computed by [12], [45]: if —vL < Ny then s
1 Zi:l(wk)z

Neg = ——. 9) Resample using Algorithm 1.

end if

Alternatively one can test a Kullback-Leibler distance be- = . .
tween the sets of weights obtained in the consecutive iter@@nsidering only systems bounded on the positive real line.

tions [43], or simply measure the maximum weight at eacfhhis condition is of purely technical nature as any variable
iteration before resampling [43], [42]. bounded inR, by an affine change of variables, can be

transformed into a variable constrainedRn .

Definition 2 (Saturated Stochastic Dynamical System):
Let us consider a real-valued SDS with the observation
model given by

Algorithm 1 Resampling
Ooutput: {(2% ey, Weew) 1Y

new?’ new
for i =1,2,...,N do . '
Compute cumulative sum of weights? = 22:1 wi,

end for

Y = hi (Tx) + Vg, (10)

Draw u; from ¢(0, &)
fori=1,2,...,N do
Find 2+, the first sample such that > ;.

where Ev, = 0. Such SDS is calle®Gaturated Stochastic
Dynamical Systen{SSDS) if there exists a functiod :
Ry — Ry and a functionFy, : R, x R — R, such that for

Replace particle: zi.,, = #7, wi,, = + eachk > 1, the state equation takes the form:
Ui41 = U + %

end for (11)

ZTp1 = min (Fy (g, wi) , C (zr)) .

The PF that monitors the degeneracy usi¥g: is sum-

marized in Algorithm 2. In the above definition the functioh}, corresponds to the

transition function of the “unsaturated” system, i.e., the
B. Saturated Particle Filter system with the state that is not bounded by the funofion
We start with a definition of the class of systems we ana®n example of SSDS is discussed in Section IV-D.3.
lyze. The goal of this paper is to investigate the asymptotic In order to online estimate the states of the SSDSSuei-
properties of the SPF with a new resampling algorithm. Thugated Particle Filter(SPF) has been developed [23]. The SPF
to make the argument simpler, we restrict our consideratioris a SIS-type of algorithm that samples particfes,, , } .,
to the SPF defined on one dimensional SDS. To properfyom a special importance kerngk (-|x§€,yk+1) that is
extend the SPF method to the higher-dimensional systems wieosen in such a way that the distribution of these partisles
have to identify right conditions that need to be imposed ofcloser” to the posterior PDFr 1|41 than the distribution
the dynamical system (1)—(3), e.g., the constraints oftidte s of the particles obtained by the BPF, i.e., by sampling
variables need to be convex. These are subject of ongoifigm the transition probability kernek (|m}€) The SPF's
research that is beyond the scope of this paper. Howevénproved estimation performance comes from the use of the
the general concepts of the SPF, new resampling and ttetection functiomnvhose purpose is to quickly detect whether
asymptotic properties of the algorithm are well captured bthe saturation occurred by comparing the measurements
the one-dimensional case hereby discussed. Another assuwith the state constraints. In other words, the detection
tion, which greatly simplifies the calculations that follow function is intended as a “pseudometric” betwegn; and



hi41 (C (x})). This extra information is used to force theThe associated weights; , , are computed using (6). ;
particles to move to the “appropriate” region already in thaaturates, i.egz;;'€+1 =C (mL) then, by the definitions of;,

sampling step of the algorithm. In general, the choice

detection function depends on the dynamics of the system
under consideration. For the class of systems presented in

Definition 2 let us introduce:
Definition 3 (Detection function)Let « : R — R be a
function for which the following conditions are satisfied:

1) « is non-decreasing,
2) there existg)y € R such thata(yg) = 0.

Then, the mapping
(Yr41,23,) = @ (k1 — huga (C (7)) (12)

is called adetection function

This is not the only possible way of defining detectio

functions. Nevertheless, throughout this paper we stithito

definition because for the one dimensional SSDS it illusgat

well the idea behind the SPF method.

Since there is one to one relation between the detection

function defined by (12) and, in what follows, we do not
make a distinction between these two objects.

With the use of the detection functiom we define the
probabilities of saturation [23]:

Definition 4 (Probabilities of saturation)fFor every: =
1,..., N the predicted probability of saturationy; is given

by
+o0
qi = /
C(a,)

and theupdated probability of saturation* is given by

P (F;C (zg,wy) = z|m}c) dz, (13)

1 if ¢+a (yk+1 — hit1 (C (%))) > 1,
q = 0 if g+« (yk+1 - hk+_1 (C (‘T;c))) <0,
q; +« (yk+1 — hpgr (C (x;c))) otherWise14)

Using ¢ defined in (14), and the detection function
we define the importance densify, of the SPF by:

Ky (z]2h, ynya) == 28 (C (2) — )

11:(2?@ (B (2k, wi) = al},) Lo.c()) (z), (15)

+

whered denotes the Dirac delta function, aﬂﬂ) (=) is

an indicator function on the intervab, C (z%)).

It can be easily seen thd;, defines a probability kernel.

adind ¢, the weightw;, , follows the formula:

W1 X w,@q—;gk+1 (yk+1‘x2+1) ) (17)
1

if 2}, does not saturate, the weighf , is updated by:

i i 1—ai i
W41 X Wy ng-&-l (yk+1|$k+1) . (18)

The SPF algorithm, developed in [23], is summarized in
Algorithm 3. Note that the updated probability of saturatio
depends on the choice of the detection functioiT herefore,
throughg*, the SPF also depends on

Algorithm 3 Saturated PF for a given

dnput: { ()} o
Output: { ()41, wii1) b,
for i =1,2,...,N do
Compute the probability; according to (13)
Compute the probability* according to (14)
Draw u ~ U (0,1)
if uw<g® then
Particlex} , , saturates:

zi ., =C (x}c)

i i 4i i
Wit1 X Wkﬁgkﬂ (Z/k+1|37k+1)

K3

else _
Particlez;  , does not saturate:
i 1—gq i
Tk~ T P (Fk (zg, wg) = o\xk) 1[0)0(%)) (o)

K2

W1 X W, 1_o° q; Jk+1 (yk+1|$§c+1)
7

end if
end for

Up to this point we have defined the framework of SSDS
and we have formulated the SPF algorithm solving the
filtering problem for SSDS. More details concerning these
topics can be found in [23]. Next, we present several coscept
from stochastic systems theory.

C. Stochastic Systems Theory

We start this section with giving the basic definitions that
are further used to establish the asymptotic properties of
the SPF. Then, we recall the theorems dealing with the con-
vergence properties of the Particle Filters. A comprelvensi

The importance density of the BPF filter is a special caseverview of the presented topics can be found in [17], [33],

of K, with o = 0.

Given the particlex,, a new particlexj  , is drawn
from the importance densityx;, (-|%, yr+1). By (15) the
particle = ,, saturates, i.e.r,,, = ng}é) with the
probability ¢*, and with probabilityl — ¢* it is drawn from

1
1 —q

P (Fk (mk7wk) = £E|.’L‘]L€) 1[070(%")) (l’) (16)

and [1].

Definition 5 (Feller kernel):The transition probability
kernel K(—|-) on (X,Xx,P) has theFeller property if,
for every continuous and bounded functignthe function

z %/ o(z)K(dz|z) (29)
X

1Weak Feller property by the definition of [33].



is continuous and bounded [1]. measure’¥ € P (X) composed ofV discrete random mea-
sures. TheParticle Filter is an operato;’ that transforms
Ahe empirical measure,i\l’ «» Which approximates the state of
Jfhe system at timé;, into the empirical mec'zlsure,i\ﬂrwwrl
at timek + 1:

In the following, we show that the PF can be defined
an operator on the space of probabilistic measé),
whereX is a given vector space. The construction of such
abstract operator requires some extra effort, but it allog/s
to derive simple conditions that guarantee good asymptoticmivﬂ‘k+1 = kY (Wﬁk) = [V o a0 N oby] (Wﬁk) .
behavior of a generic PF. (24)

We start by introducing the operators [17] that will be used
in the proof of convergence.

Let K, be a transition probability kernel on the probability The relation between this abstract definition and the stan-
space(X, Y x,P) defined by (4) and lef<;, be an arbitrary dard formulation of the PF is the following:

probability kernel that is absolutely continuous with resp 1) Prediction stage:First, the predicted state density is

to Ky. Furthermore, ley, be a likelihood function defined computed by applying the operatdy,, defined in
by (5) and letw, be aweighted likelihood functioulefined Definition 6, to the empirical measuvqi\"k_ Then the
by: predicted state density is approximated yrandom
_ k1 (ylz) Ky (x|z)) samples obtained by applying the sampling operator
Wk (va‘xk) T B . (20) .
Ky (z|zg,y) cN' (Definition 8) to by, (Tl']i\‘/k)

Definition 6 (Prediction operator):The prediction opera- ~ 2) Update stageAfter the prediction stage, the updated
tor by maps the probabilistic measurec P (X) into the state density is computed as the output of the update
probabilistic measuréy, (v) € P (X), defined by operatora;, (Definition 7) applied toc" o by, (Wﬁk)

N Finally, applying the operatar" to the updated state
[br (V)] (A) = /X K (Alzg, yp+1) v (dz) (21) density corresponds to the resampling step of the PF.

The asymptotic properties of the PF can be established
from the following theorem:

Definition 7 (Update operator)For giveny;,; and xy, Theorem 1 (Convergence of the generic PF [1 7kt
the update operatora; maps the probabilistic measureus assume that for eaéhthe importance kernek, is Feller,
v € P(X) into the probabilistic measure, (v) € P (X), and the likelihood functionw; is bounded, continuous,
defined by and strictly positive. Furthermore, let¥ be a resampling
operator such that for every bounded functiorthere exists

/ o (x) [ag (V)] (dzx) := {/ o (z) wi (Yea1, z|lTR) v (dx)} a constantZ such that:
X b's

for every A € X x.

4
-1 N, L
" [/ o (yk+1,x|xk)u(dx)} E (/x p(x) [V (v)] (dz) —/Xsﬂ(x)V(dx)) ] <Nz
X 22) (25)
_ _ Then, asN — oo, the empirical measure,i\’JrllkJrl defined
for every continuous and bounded functipn by (24) converges almost surely towards the true posterior
Definition 8 (Multinomial sampling operator)The PDF 7k 1)pot1-
multinomial sampling operator ¢V assigns to the
probabilistic measurev € P (X) its random discrete . ASYMPTOTIC PROPERTIES OF THE SPF
approximationc™-® () according to: UNDER STANDARD RESAMPLING
1 In this section we investigate asymptotic properties of
N (V) = *25{\/-(1-)}, (23) the SPF with respect to Theorem 1. First, we prove the
N J . .
j=1 theoretical convergence of the SPF. Second, we discuss the

practical consequences of the conditions derived in the firs

whereN > 0, z € X, V;, j = 1,...,N are ii.d. random part

variables onX with the common distribution.

Equation (23) formally defines the empirical approximaZ\ Theoretical results

tion of an arbitrary distributionr by means of Monte Carlo  We start with formulating the SPF algorithm in terms of
sampling. the operator notation introduced in Section II-C.
A special case of importance sampling, which is employed Definition 10 (Saturated Particle Filter)Consider the
in the BPF, is when it is desirable to directly draw samSSDS defined by (1)-(3) and (11), and tetbe an arbitrary
ples from the transition kernek; (—|-). In such a case detection function satisfying Definition 3. Furthermore,
Ky, (—]-) := Ki (—]-), andwy, reduces tay. let K be the transition probability kernel ang, be the
Definition 9 (Particle Filter): Let ¢V be theresampling likelihood function corresponding to the state model (1)
operatoron P (X) that maps the measureinto a random and the observation model (2) respectively. Td&turated



Particle Filter (SPF) is a PF with the transition probability The term (31b) converges to zero by the Feller property

kernel K, defined by:

Ky, (#]wr, yrt1) = a1 (Ths Yat1) 0{0(an)) (@)
1 — g Tk, Y1)

+
1 — qryr (or)

Kk (£C|.’L‘k) N (26)

and with the weighted likelihood function defined by

1 —qr(zr—1)
- ARAVRTY 4 i .
1— Q? (xk—hy) [O»C(-'Lk—l))(l)

ar (Tr—1) )
——=0 zp_1)\ L ;
a7 (Te—1,Y) Sl (%)

Be (s elzin) 1= g (4]2) (

(27)

where the predicted probability of saturatign and the
updated probability of saturatiogfy are defined as:

—+o0
g (x) := Ky (dz|z)
C(x)

1 if
g (2,y) = q 0 ff

(28)

qk () + a(y — hig1 (C(2))) > 1,
qk (z) + a (y — hig1 (C(2))) <0,

of K. Thus, let us focus on (31a). We have:

C(zn) C(zo0)
/ (@) Ky (da) ) — / (@) K (da)z)
0 0

C(Z'n)
- / (@) K (dz]z) (32)
C(z0)
C(Zn)
< gl 1Kk ()l / dz (33)
C(z0)
= plloo 1K (120l IC (20) — C (20)] - (34)

The term (34) converges to zero by the continuityCof m

Lemma 2:Assume thatK is a bounded Feller kernel.
Furthermore, lety, C, z — Ky (z|-) andhy41 be continuous
functions. Then, the kerné{, defined by (26) has the Feller
property.

Proof: First, let us observe that by Lemma 1 the
function ¢, is continuous. Consequently, the functigf is
continuous by the continuity ofy, «, C andhy41 (-,0).

Let ¢ be a bounded continuous function & Then the
following holds:

(@) Ky (dz]z,y) = a4 (2,9) 9 (C(2))

ar (z) + a(y — hg1 (C (z))) otherwise
1- ql?+1(za Y) /C(Z)
_ x) Ky (dx|z) .
o) ) () Ky (dz|2)
(35)
It is easy to see that Definition 10 is an abstraction ofhe continuity of the functions in (35) follows by the
Algorithm 3. continuity of g, ¢i, @, C and by Lemma 1. ]

In what follows we derive sufficient conditions that, if Lemma 3:Assume that the likelihood functiory, is
satisfied, ensure the almost sure convergence of the SPPounded, continuous and strictly positive. Also, tet C,
the true posterior PDF,_q;+1. We start with two technical z — Kj (z[) and hx1 be continuous functions. Further-
lemmas: more, let us assume that there exist positive constahts

Lemma 1:Let K, be a bounded Feller kernel and letand M2 such that for every: € R it holds:

C : Ry — R, be a continuous function. Then, for every

i . . 0<M1§qk(w)§M2<l.
bounded and continuous functign the function

(36)

Then, if the detection function is chosen so that it satisfies
the condition:

C(z)
z— /0 o(z) K (dx|2) (30)

VeeR: —M; <a(r)<l-—M,, (37)

the weighted likelihood functionv, defined by (27) is
continuous, bounded and strictly positive.
Proof: Continuity ofwy, follows from the continuity of
9k, 9k, g5, andC.
By (37) there existg > 0 such that:

is continuous.

Proof: Let {z,} be a sequence iR, such that
zZn — zo. We have:

7M1+6§Oé(1')§17M276

C(zn) C(zo0)
/ p(z)Kg(dz|2z,) f/ o(z) K (dz|20) (38)
0 0

holds for everyr € R. Hence, for every:,y € R we have

C(zn) C(z0)
<[ ewrtdatz — [ otz G5.0) = ) + v~ s (C )
(31&) §M2+1—M2—6
C(z0) C(z0) <1l-e (39)
+ /0 (@) Ky (dzzn) _/0 (@)K (dzzo)| Similarly, we deduce that for every,y € R it holds:
(31b)

i (z,y) > e (40)



Therefore, by (27), we have The advantage of choosin§yf;, M, and o as in (42)
1 and (44) respectively, is the low computational complexity
lwillo < Nlgkllo = (41)  of determiningM;, M,, and « that satisfy condition 4) of
¢ Theorem 2. However, this approach has two shortcomings
that need to be tackled.

1) « becomes recursiveBy (44) we see that the condi-
tions thata needs to satisfy depend on the values of
q* at time stepk. Thus,« is not any more defined for
all time stepsk, but it becomes a recursive function
ay that needs to be updated at each iteration of the
algorithm.

2) « becomes negligibleSince bothmin and max are
monotonic, with the increasing number of particles the

- ] image of«;, becomes narrower. This means that the
3) @, C, z = Kj (2|-) andhy ., are continuous functions, influence of oy, becomes negligible, hence the SPF
4) conditions (36) and (37) are satisfied, becomes undistinguishable from the BPF.

then ;Y (W %2’ converges almost surely towards the trugoth issues are addressed in the next section.

posterior PDF 1441

Proof: It has been proven in [17] that the multino- IV. ASYMPTOTIC BEHAVIOR OF THE SPF UNDER

mial sampling operator:N~satisfies (25). Furthermore, by NEW RESAMPLING

Lemmas 1-3, the kernek(, is Feller, and the weighted In this section we derive an improved SPF algorithm

likelihood functionwy, is bounded, continuous and strictly that allows for a recursive computation of the detection

positive. Therefore, by Theorem LY (Wﬁk converges function a;. Furthermore, by introducing a new resampling

almost surely towards the true posterior PR, jjz4;. ® procedure, we make sure that at each time stefhe
influence ofay, is not trivial.

hencew;, is bounded.
Finally, strict positivity ofw;, follows by the strict posi-
tivity of g and by (36). ]
The asymptotic properties of the SPF are described by the
next theorem:
Theorem 2 (Convergence of the SRF:—resampling):
Let us consider a SPEY with the resampling operatar"
defined by Definition 8. If

1) K is a bounded Feller kernel,
2) gy, is bounded, continuous and strictly positive,

B. Practical considerations -
] ) o A. Motivation
Let us now discuss the meaning of conditions 1)-4) of . . _ _ . . .
As it was indicated in Section lll, if there exists a particle

Theorem 2 from the practical perspective. i h that’ ~ 0 i~ 1 th b imatel
Assumptions 1)-3) of Theorem 2 ensure that the modéi such thay’ ~ 0 org” ~ 1, thena becomes approximately

is “appropriately smooth”, which is the case in most reaf€ro: and therefore its influence becomes negligible. If the

life applications. Therefore, we can safely conclude théﬁe'ghtw of such a particle:® is close to one it means that

o . . __the uncertainty associated with the estimate is very small.
conditions 1)-3) are not very restrictive from the pradtlcaTherefore in t%e next filtering step, it is reasonable tgs‘rr

point of view. th del and limit the infl f the noi t
Assumption 4) of Theorem 2 is more problematic. In ¢ moce anc fimiz 18 Iilieriee o7 Me naisy measuremen

particular, ensuring that (36) is satisfied is not trivi@chuse on the subsequent estimate. In general, the same reasoning

often the functiong;, cannot be evaluated analytically [24]. .hOIdS if there exists a "smalle such that in one of the

Fortunately, in practice, we do not need to compute th&eVals [0,€] or [1 — ¢, 1] there are enough's so that the
values gy, (x) for every z € R. It is sufficient to check weights of the associated particles almost sum up.to
whether (36) holds for every particlei_,, i.e., we need The situation is fundamentally different when we en-

to check whether there exist positive constahfs and M, c?uEte(; a lc,)iwwwf'g_%ed pa[)tlcg;elc.t forf SUCE that e'thtef
such that for every = 1, ... N q* = 0 or ¢ ~ 1. The probability of such an event is

very high, especially when we use a large set of particles,
0<M <q.<My<1 (42) vyet such a particle does not give us any important informa-
tion about the system. Nevertheless, by (44), the existence
of such a particle significantly decreases the influence of
«. To avoid this undesirable situation we need to discard

holds.
Obviously, (42) is satisfied if and only if

min {QQ} >0, (43a) the low weighted particles such that the corresponditsy
i . lay in either of the intervalg0,¢] or [1 — ¢,1], and in
max {an} <1 (43b)  their place resample an equal number of particles in the

“high probability” regions. Such resampling only slightly

Hence, for each particle the saturation event is possilie, l%nfluences the posterior PDﬁﬁk that approximates the
not certain.

- ) o true posterior PDFmy . This Is because the discussed
If conditions in (43) are satisfied, we can choessuch resampling procedure cuts only the “light” tails, i.e.,Idai
that with negligible probability mass, thus also the resampled
—min{gi}(1—€) <a< (1 — maX{QIie}) (1—¢), (44) particles add insignificant weights to the approximabitﬁ)c.
¢ ¢ Nevertheless, by applying such resampling algorithm we are
where thee > 0 is small enough so that is nontrivial. sure thatx is not trivial, and that the interval-¢, €] is in the



image ofa, i.e., ([—¢, €] C a(R)). Furthermore, the number  First, we prove the following two lemmas.
of particles remains constant throughout the filtering. Lemma 4:Let v be an arbitrary probabilistic measure on

B. New resampling (IR{+,ER+) and leté > 0 be a given positive constant.

N
Let us now formalize the heuristic approach describefurthermore, Iet{ } be a set of i.i.d. variables with

in Section IV-A. Following the convention described ina common dlStrlbuthWeo, with ¢, defined in (47). Finally,
Section Il we introduce a new resampling procedure blet ¢ be a continuous and bounded function Bn. Then,
defining a new resampling operatel acting on the space the following holds:
of probability measures ofR;, Xg, ). To define such an
operator we first need to introduce a concept of ¢hget: E AR / d <9 - 49
Definition 11 ¢—set): Consider the SPF setting according v | ¥ ( -7> R, p(@)dv() | < 2]¢lloct (49)
to Definition 10, and leyy;, be a function defined by (28).
For a givene we define the—set(). by: where|| - | IS a supremum norm oR.. 3
Proof: By (46) the distributiorv,, of the variables/;
Qe={z€R:1—e>qi(z) > e} (45) s a measure conditioned on the sef),,. Therefore, we

have:
EVG{y)—Aéwumwm>

Let us now consider an arbitrary probability measure
on (R4, g, ). For a givene we define a new probabilistic
measure/, as a measure conditioned ortl,, i.e., for every

A€ X, it holds: _ g, ((p (VJ)) _/ o(2)dv(z) (50)
Ve (A) == v (AQ.). (46) Ry
Definition 12 (Resampling operator for the SPHet v = / o()dve, () —/ o(x)dv(z)|. (51)
be a probabilistic measure ofR,,¥g, ), and leté > 0 R R

be a given constant. Lefy > 0 be the maximal positive
constant such that the-measure oif),, is greater or equal
to 1 —¢, i.e. ¢ is given by:

€0 :=max{e:v(Q)>1—¢€}. (47) /H; p(x)dve, (z) :/R I p(2)v(Qe,) " dv(z).  (52)

The new resampling operat@” assigns to every proba-
blllstlc measures € P (R+, ZR+) its random approximation Let us split the second integral in (51) into two integraleov

By the definition ofv., we can write the first integral in (51)
as

N« (1) given by Ry NQe, andR, N Q¢ respectively, i.e.,
1 & p
N () = 5 > 60 ) (48) /R+ p(z)dv(z)
j=1
where the{V;}), is a set of N iid. random variables = /ngso p(z)dv(z) +/1Rmﬂ‘;0 p(z)dv(z).  (53)

distributed according to., .
Then, by (52)—(53), the expression (51) is bounded from

Thus, the newly defined resampling operatdf, when above by

applied to a measure, returns a probabilistic measure
concentrated on the set that has-ameasure close tb — ¢.
When used in the recursive framework of the SPF, the
operatorc? guarantees that the intervikeg, o] is in the

Ammwmmeme—Amewwu>

image of the detection function, i.e., ([—¢o, €] C a(R)).

Note that the operator™ depends on both the sample T /R 0 p(z)dv(z) (54)
size N and the constarit > 0. In what follows we show that w08 i
the choice ofé is not arbitrary but it is strictly determined < elloe (|1 —v Q) +v (QEO)) (55)
by the sample sizéV. This is why in Definition 12 we did <||¢lloo (E+€) (56)
not use any symbol indicating the dependency:%fon ¢. = 2¢|l¢lloe (57)
C. Almost sure convergence of the SPF under the new -

resamplin . I
Piing Lemma 5:Let v be an arbitrary probabilistic measure on

In this section we prove that as the number of sample(sR Yk ) and leté > 0 be a given positive constant.
N increases, the SPF with the resampling operatdr -

N
from Definition 12 converges almost surely to the trud urthermore, |Et{V} be a set of i.i.d. variables with
posterior PDFr 4 1|p41- a common dlstrlbutlon/eo, with ¢y defined in (47). Finally,



let ¢ be a continuous and bounded function Rn. Then,
the following holds:

E, (}V S (W) - /. w(x)dl/(x)>

< %Ilwllio (3+4¢+ 6N+ N2,  (58)
where|| - ||o iS @ supremum norm oR, .
Proof:
1 & !
E, (N ]; 2 (VJ) - /ﬂh @(m)dﬂx)) (59)
1 N N :
_ N4]E" (; (@( j) - /]R+ @(x)du(m)))
(60)
. 4 N
J1s-sJa=1 k=1 R4
(61)

Because the variables are mutually independent, the sum NN
in (61) can be decomposed into the summation of the evérrhen ki, gklk

terms:
N 4
> B (@ (%) sa(x)du(an) (62)
Jj=1 R ,
+ 63152;:1 E, <<p (f/] ) —/]R cp(x)du(a:))
x E, (gp (VJ ) - /X @(x)du(x)) , (63)
and the odd terms:
4j1§;:1ﬂ<:y <<P ()~ /[ so(m)dv(x))
3
x E, <<p (v]) . /R go(x)du(:r)) (64)

2

> I <so ()~ so(x)dv(x))

j1>j22>21 k=1
Ji,d2 #Jz > 1

+12

(65)

+ 24 ZN: ﬁ(E <<p(f/,-k —/ Sﬁ(sc)dz/(x)>>

J1>..>ha=1k=1
(66)

Thus, for everyj € {1,..., N} and everyk € N we have:

k
E, <so(vj) / s@(w)dV(x)> <2l (67)

Furthermore, given Lemma 4, the first-order terms are
bounded by2||¢||-€. Therefore, by (62)—(66) and (67), the
expression (59) is bounded from above by:

24 N -

+12N<N2_1>€2+24(ZZ>€4) (68)
24 _ _ -

< ﬁH‘PHio (34 4é+6NE* + N2&) (69)

| |

Theorem 3 (Convergence of the SRF.—resampling):
Let us seté = ﬁ and leté" be the resampling operator
introduced in Definition 12. Furthermore, Ik}f be the SPF,
with the resampling operato™ such that the following
hold:

1) K is a bounded Feller kernel,
2) gx is bounded, continuous and strictly positive,
3) «o,C, z = Ky (z|-) andhy.; are continuous functions.

) converges almost surely towards the true
posterior PDFr 1441

Proof: For a givenw € P (R4, g, ), by the definition
of ¢V we have

E, [( / o) [ )] ) - / + so(x)u(dx>>4]
(3500

j=1 +

w(w)dV(I)> , (70)

~ YN

where{Vj} .
]:

according tay,,. Sinceé = \/iﬁ then, by Lemma 5, we have:

E, (}V S (1) - /| so(z)dv(x))

Jj=1

is a set of i.i.d. random variables distributed

176

(71)
thus the resampling operatet’ satisfies (25). Furthermore,
by Lemmas 1-2, the kerndl;, is Feller. Moreover, by the
definition of the operator, (36)—(37) are satisfied (with
M; = ¢g and My = 1—¢p) hence, by Lemma 3, the weighted
likelihood functionw;, is bounded, continuous and strictly
positive. Therefore, by Theorem %} (w,i\l’k) converges
almost surely towards the true posterior PBE, ;. W

D. Practical considerations
Let us now discuss the practical properties of the improved

Since v is a probabilistic measure, the integralgpp (iSPF), i.e., the SPF with the resampling operattr

is bounded from above by|¢| -

e, pl@)du(a)

in view of Theorem 3.



1) Implementation: The conditions 1)-3) of Theorem 3 Algorithm 5 SPF resampling
are consistent with the conditions 1)-3) of Theorem 2 anghpt: {(xi’wi,qi)}jvzl €0, Nt
play exactly the same role, i.e., they ensure an “apprapriat pjscarding step:
smoothness” of the model. Thanks to the construction of the piscard the particles such that one of the following holds:
operatoreY, the condition 4) of Theorem 2 is not necessary _ ‘
anymore in Theorem 3. Indeed, the conditions (36)—(37) are l—e <q or q" < e€o
always satisfied witht/; = ¢ and My =1 —-¢. Compute the degeneracy measure for the remaitVig

In practical applications at each filtering iteration we particles:
need to compute, according to (47). Since the real SPF ' , 1
algorithm approximates the true PDF by the seiofamples eff *= N (wi)2
{(a:"',wi,q"')}j.vzl, given é, we computes, by:

Resampling step:
if Nt < Nt then

€0 := max-\y € : Z w'>1—¢p. (72) resample{ (z,w’) }fil according to Algorithm 1
itl—e>qi>e else
A possible solution to the optimization problem (72) is  for i = 1it° N —N'do
presented in Algorithm 4. draw z* from
X N
Algorithm 4 Computation ofeg zt ~ { (xi, :f)}
. i i Y = Zi:l w* i=1
Input: {(w ,q )}i=1 ,€ )
Initialize e = 0 W = i (1 -N wl’)
repeat . end for
e=cty _ end if
until 37, oo w' <1—¢€
_ 1
€) — € — N

recursively. Indeed, from (44) we can see thadepends on
With ¢, chosen, the resampling procedure, representdtie set of probabilities of saturatiofy } . Therefore, for
abstractly by the operatar™, proceeds as follows. First, the recursive selection of the appropriate detection fanet
the algorithm discards the particlgs’, w?, ¢) such that we proceed as follows: First, we choose an arbitrary detecti
either1 — ¢y < ¢* or ¢* < €y. Next, the scaled degeneracyfunctioncay, and a constant > 0; Then at each filtering step

measureN/; is computed by k=1,2,... we compute the minimum and maximum of the
1 set{q;}f;l and seta;, to be equal to
e/ff = N (73) . i —1
4 _f a(z)min; {gi} (1—¢) for z<a;’,(0)
Z(W}c)z ax(2) = { ap(z) (1 —max; {q.}) (1—¢€) otherwise

] (76)
where N’ is a number of particles remaining after theThis is summarized in Algorithm 6.
discarding step. IfV/; drops below a specified threshold

N := Ny - N'/N, (74)

Algorithm 6 Update of the detection functiody

Input: {qz}il,ao,e

which means that the particles that were not discarded Compute minimum and maximum:

degenerate, all the particles are resampled according to B ) ; B ;

Algorithm 1. MIN = min {ac} MAX:= max {ai}
If the degeneracy does not occur the algorithm resam-

ples N’ particles from the conditional distributian,, which

is approximated by the empirical PDF

if 2 < ay'(0) then
ak(z) := ap(z)MIN (1 —€)
else

{ ( LW ) }N/ 5 3;@'?) = ag(2) (1 — MAX) (1 —¢)
x ,W . ena i

. J
j=1% i=1

Note that this resampling method has all the properties Note that the constamtused in Algorithm 6 can be chosen
desired from the resampling algorithm discussed in Seerbitrarily from the interval0, 1). This gives us a degree of
tion IV-A. The overall resampling procedure is summarizedreedom in choosing between the stronger influence @or
in Algorithm 5. small values ot) and a stricter upper bound for the weighted

As indicated in Section IlI-B, for the proper definition likelihood functionwy (for bigger values ofe). The exact
of the SPF the detection function needs to be defined relation between these two properties will be investigated



TABLE |
PROPERTIES OF THESPFFOR DIFFERENT DISTRIBUTIONS OF
i\ N iV
PROBABILITIES OF SATURATION{qk}Z.Zl AND WEIGHTS {wk}i:l

our further research.
The overall iISPF is summarized in Algorithm 7.

Algorithm 7 improved SPF ~ <
_ NN {ai )2y Awitin, #U0,1)
Inlet' {('r;lq?‘wzkvq}cv)}i:ljakay]\]}’-‘rlaQNT k L k 21 L .
Output: {(%H’WZHa q;c+1)}i:1 » k1 N=10" | N=10" | N=10
FrEQICtllor:: N d expected number of 10 100 1000
or i =1to 0
Computeg; := ai + ok (k1 — higa (C (2}))) discarded particles
Computez;, , according to Algorithm 3 ed value of 0.05 0.005 0.0005
Computew ., , according to Algorithm 3 expected value ot : : :
;. [t _ ) . ,
Computeg;, , , := fC(TLH) P (F (wg, wi) = 2|}, ) dz {qzlc}i-il ~ N (L, L), {wlle}i]il ~ U (0,1)
end for
Resampling: N=10% | N=10* | N =10°
Computeeq aceording to Algorithm 4 . expected number of 10 100 1000
Resample particles according to Algorithm 5
for i=1to Ndo discarded particles
i . [Fo© — i
Computeyj. ., = Joez, ) P (F (zk, i) - _Z‘“Bkﬂ) dz expected value of | 0.372 0.267 0.191
end for{C}ompute the predicted probabilities of satura-
tion for the resampled particles
Update of the detection function: _ o )
Computeay,; according to Algorithm 6 influence ofay, which is determined by the value af, also

depends on the shape Mi}f\il Let us explain a nature of

this dependency by analyzing the examples from Table I.

In the first case, wher({q}c}?{:1 ~ U (0,1), the model
assigns the same probability to all the possible valuesef th
probabilities of saturatio; . In such situations the standard
Bayesian update procedure should be more than sufficient in
[—eo(1—€),e0(1—€)] C ay(R). Therefore, is never obtaining an accurate estimate. Thus, the small values, of

trivial. However, the value of, depends on the value @f and therefore the low mfluence_m‘,lcvls acceptable.
(see (47)), that in view of Theorem 3, decreases with the In the second case, whery},_, ~ N (3,15), the
rateﬁ when N — oco. This means that the measurg of values of the majority of the probabﬂmes. of saturattg.‘)pare .
the SetQEU increasesy hence by (45)_(450) decreasesy and close tO% That means that the model is very uncertain in
therefore the image af;, becomes narrower. predicting whether the saturation will occur or not. In such
The rate of decrease ef depends on the particular shapesrases the standard Bayesian approach is slow in detecting
of both the distribution of the probabilities of saturation€xtreme changes of the system (e.g., saturation). Thus, for
{qi}é\; and the distribution of Weights{w};}jvzl. The this example, it is strongly recommended to enforce the
following example illustrates this dependency. First, ust UPdate procedure. For that we require a strong influence of

assume that both se{sq,i}],\il and {w%}l\il are uniformly k> hence relatlvely large values eof. .
distributed on the interva[ll()fl}. Then, for a given number ~ Note that in both cases the expected number of discarded

of particlesN, we expect (in the statistical sense) to discar@articles is small compared to the tota}l number of particles
VN particles and the expected value af is ej%ual to Therefore, the problem of losing diversity of the sampleg [1

1 i hte is avoided.
5=~ Second, let us assume that the weigfis },_ are

again distributed uniformly on the intervid, 1], but the set ~ 3) Numerical example:We finish this section with a
{qzi}i]il is approximated by the Gaussian distribufiavith comparison of the SPF developed in [23], the |$_PF derived
mean% and the standard deviatiofg. In such a case, we M this paper, and the BPF. To illustrate the.abllltles of all
still expect to discard/N particles at each step, but this timethree methods we have chosen the SSDS given by
the value ofe, is given by + 1—‘/05en“.1 (\/Q—N - 1). Table | Trs1 = min (25 + we, C (1)) | 77)
compares the two cases for three different valuedvof

As we can see the expected value @f is strongly Y = T+ U, (78)
dependent on the distribution O{fqi}il- Therefore, the

2) Detection function: Let us analyze the problem
of o becoming negligible, mentioned in Section III-B.
By the definition of the resampling operata? and
by (76), for each time stepgt = 1,2,... the image
of a;, contains the interval—ey (1 —¢€),€0 (1 —¢)], i.e.,

where wj, is a random variable distributed according to

the exponential distribution, with parametgri.e., with the

2 il N . - .
The set{qk },.7 is bounded, therefore by saying that it is approximated 1 . .
by Gaussian distribution we mean a Gaussian with truncatisl aad expected valuéwy, = 0~". The variablev, is a zero-mean

appropriately rescaled. Gaussian variable with standard deviation The boundary



function C(-) is defined by:

10

C(z):=xz +1og(2)/0. (79) o e sate °
iSPF o o,
The state model (77) is nonlinear and non-Gaussia L I i )

whereas the observation model (78) is both linear and conc
tionally Gaussian. The stochastic process (77) is a Lindle
type process, i.e., it is a modification of the celebrdteu-
ley’s recursion one of the most studied stochastic processe
in applied probability [26], [46]. These type of processes a
extensively used in queueing theory [46], [47].

To simulate the process from the initial statg = 1, we
usedd = 1, o, = 1. The length of the simulation 20 time 2k
steps. Note, that because the variabig is exponentially
distributed, the cumulative density function of the randon

state

variable z;,; is known. Thus, the integral in (13) can be % 2 4 6 8 10 12 14 16 18 20
computed analytically: time step
g = exp (=0 (C (a) — 1)) - (80) Fig. 1. The BPF, the iSPF and the SPF with 10 particles apptiettie

. . . system (77)—(78). The thick solid line is the true value of 8tate, the
Figures 1 and 2 compare the results obtained by applyingcies denote the measurements, the thin dashed line dethetedMSE
the BPF, the iSPF, and the SPF with 10 and 1000 particlestimate obtained by the BPF, the thin solid line represemsMMSE

i ] . itpestimate of the state obtained by the iSPF and the thin sokdiith dots
respectlvely. Al three filters us.e.the model (77) (78) WItHreepresents the MMSE estimate of the state obtained by the SPF.
true parameters. The offset @b is introduced by setting the
initial statep, for all three filters topo(-) = N (+;0.5,0.1).

The resampling threshold/ is set t030% of the number 10r 5
of particles. Both the iSPF and the SPF are using the sar ] _ e state
detection functiomy given by: .;p; o o
1 if z> 27 8 o measurements o
a(z) = -1 if 2<0, (81) T
z/2—1 otherwise 6

state

wherez =y 11 — hit1 (C (z})) is evaluated at each time
step. ab

Figures 1 and 2 present the average of ten independe
filters of each type applied to the simulated signal. Fronmbot

figures we can conclude that introducing new resamplin 2r
procedure improves the performance of the SPF introduct i
in [23]. However, with the growing number of samples the ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
difference between the SPF and the iISPF becomes smal % 2 4 6 8 10 12 14 16 18 20

This is not surprising since in the view of Theorems 2 and time step

both filters converge to the same distribution as the number _ _ _ _
of samples increase. Fig. 2. The BPF, the iSPF and the SPF with 1000 particles eqbpth

. . . he system (77)—(78). The thick solid line is the true valti¢he state, the
Both simulations present results for a relatively smalkircies denote the measurements, the thin dashed line dethetedMSE

number of particles. This is because, as it was previoushgtimate obtained by the BPF, the thin solid line represemesMMSE
explained the influence of the detection function is the mo&ptimate of the state obtained by the iSPF and the thin soliith dots

. . _ represents the MMSE estimate of the state obtained by the SPF.
visible when there are few particles. In this example we can

observe that both the iISPF and the SPF outperform the BPF.
This is confirmed by comparing theean square erofs c,qe the spread is negligible, and in the former case it is

(MSE) of the three methods. Table IIl reports values of sucBynsigerable only for the BPF during the first few steps of
errors and thelr dependency on the number of p:_:lrt!cles. the simulation.

Finally, Figure 3 shows the standard deviations of
the MMSE estimates of three discussed filters. It might be V. SUMMARY
_notlced tha_t the _spread of_ the MMSE estimates of filters us- Saturated Stochastic Dynamical Systems (SSDS) are
ing ten particles is much higher than the spread of the MMSE . : .

. ; . : Severely nonlinear models that are often met in real life
estimates of filters using thousand particles. In the latter . . .

problems. Due to their complicated dynamical structure the

3By the MSE we understand the average squared deviation eftimate states or the parameters of the SSDS can be accurately

from the true value of the state, i.8,7> , (2(k) — z(k))? /20. estimated only by non-parametric filters such as Particle



TABLE I

the almost sure convergence of the posterior PDF given by
COMPARISON OF THEMEAN SQUARE ERRORS

the standard SPF to the true posterior PDF. We have also
discussed the practical advantages and shortcomings of the
N=10 | N =100 | N = 1000 standard SPF.
In Section IV we have derived the iSPF. This new algo-
rithm is different from the standard SPF in two aspects:
SPF | 0.1516 | 0.0990 0.0946 1) The detection functiony, is updated recursively at
each time stefk,
2) A novel resampling procedufé’ is used to discard the

BPF 0.3726 0.1808 0.1848

iISPF | 0.0693 0.0933 0.0880

TABLE Il low weights particlesz’ such that the corresponding
THE MSE OF THREE FILTERS THE BPF, THE SPFAND THE ISPF probability of saturationqz achieve extreme values
OBTAINED FOR DIFFERENT NUMBERS OF PARTICLESV = 10, 100, 1000. (qi ~0or qi ~ 1)_

We have shown in Theorem 3 that the iSPF also converges
almost surely to the true posterior PDF.
From Theorem 3 we have concluded that as the number

o
©
)

gosr '\ S of samplesN grows the influence of the detection function
Zort 1 ay, declines. This is not a surprise since the BPF can be
3o ' considered as a SPF with a detection functiof’” = 0.
Tosp AN Furthermore, both the iSPF and the BPF converge almost
-EOA’ \ VRN . N // . . . . .
= R S e surely to the same distribution. Thus, with the growing
Qoar ‘/ v < number of samplesV the difference between those two
%“'2’ 7/\/ estimators becomes smaller, hence the distance betwgen
o andaBFF also converges to zero.
% E = The influence of the detection functier), is most notice-

able when the number of samplasis relatively small. The
strength of the influence always depends on the distribution
of the Weights{wi,}f.\[:1 and the distribution of the probabil-

ities of saturation{q,i}jvzl. An analysis of this dependency
has been illustrated on an example described in Table I. We
have concluded that the influence ®f is much stronger in
the case when the sét];’c}il is concentrated around, i.e.,
{qi}i\; ~ N (%, 1), than in the case when the distribution

of the probabilities of sc";\turatim{q,i}iI\;1 is heavy tailed,

i.e., {q,@}jv:l ~ U (0,1). Furthermore, in Section IV-D.3
the illustrative example of SSDS is used to compare the

Fig. 3. The standard deviations of 10 MMSE estimates obtaimgd ;
the BPF (dashed line), the iSPF (solid line) and the SPFdatiited PEITOrMance of the iSPF, the SPF and the BPF.
line) with 10 particles (above) and 1000 particles (belowpled to the In general, the influence of the detection functiop can

system (77)—(78). Note that the standard deviations of ttex #mploying  be further modified by an appropriate choice of the constant
1000 particles is one order of magnitude lower than the standieviations e>0in Algorithm 6. This must be done carefully because
of filters using 10 particles. ) . ’

by (41), the value ot determines the upper bound for the
weighted likelihood functionwy, hence also the variance
of the weights{w,i}fil. The smaller thee is the wider

Filters (PF). tpe image ofay but, at the same time, the bigger is the
1 1 1 1 Oék; ’ )
The Saturated Particle Filter (SPF) exploits dynamica pper bound fotu,. The exact nature of this relation will be

systems with a specific structure that allows the state to S?Lrtlvesti ated in our further research
urate. A characteristic feature of the SPF is the incorjpmmat 9 '
of the measurement in the prediction step of the Bayesian ACKNOWLEDGEMENT
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LIST OF SYMBOLS

the update operator at time stép

the prediction operator at time stép
the multinomial sampling operator
the resampling operator

state model at time step
unsaturated state model at time step
likelihood function at time step
observation model at time stép

the particle filter at time step
distribution of the initial state



the predicted probability of saturation of the
i-th particle

the updated probability of saturation of the
i-th particle

process noise at time stép

observation noise at time stép

state variable at time stép

the state estimate at time stép

importance kernel at time stép

observation variable at time stép

saturation function

transition probability kernel at time step
importance kernel at time stdp

sample size

effective sample size

resampling threshold

random variable orX

probability with respect to state noise
probability with respect to observation noise

v
detection function
Dirac delta
characteristic  function (continuous and
bounded)
probabilistic measure o
probabilistic measure conditioned én
weighted likelihood function at time step
unnormalized weight associated with thth
particle at time stef
normalized weight associated with theh
particle at time steg
posterior measure of the state at time step
empirical approximation of sizeV of the
posterior measure of the state at time step
e-set, see Definition 11
sigma algebra on a vector spake
the space of probabilistic measures on
X7 EX)

aussian distribution with meam and vari-

ances® .
uniform distribution on intervaja, b]

supremum norm
error function defined by eff) =

% Iy et dt



