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Abstract

A large class of nonlinear systems can be well approximated by Takagi-

Sugeno (TS) fuzzy models, with linear or affine consequents. However, in prac-

tical applications, the process under consideration may be affected by unknown

inputs, such as disturbances, faults or unmodeled dynamics. In this paper, we

consider the problem of simultaneously estimating the state and unknown inputs

in TS systems. The inputs considered in this paper are 1) polynomials in time

(such as a bias in the model or an unknown ramp input acting on the model)

and 2) unmodeled dynamics. The proposed observer is designed based on the

known part of the fuzzy model. Conditions on the asymptotic convergence of

the observer are presented and the design guarantees an ultimate bound on the

error signal. The results are illustrated on a simulation example.
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1. Introduction

Many problems in decision making, control, and monitoring require the esti-

mation of states and possibly uncertain parameters, based on a dynamic system

model and a sequence of noisy measurements. For such a purpose, dynamic sys-

tems are often modeled in the state-space framework, using the state-transition

model, which describes the evolution of states over time, and the sensor model,

which relates the measurements to the states.

A generic method for the design of an observer valid for all types of nonlinear

systems has not yet been developed. Moreover, a large class of nonlinear systems

can be well approximated by TS fuzzy models [1], which in theory can approxi-

mate a general nonlinear system to an arbitrary degree of accuracy [2]. Stability

conditions have been derived for TS fuzzy systems, most of them relying on the

feasibility of an associated system of linear matrix inequalities (LMIs) [3–5]. A

comprehensive survey on the analysis of fuzzy systems can be found in [6].

For a TS fuzzy model, well-established methods and algorithms can be used

to design observers that estimate unmeasurable states. Several types of such

observers have been developed for TS fuzzy systems, among which: fuzzy Thau-

Luenberger observers [3, 7], reduced-order observers [5, 8], and sliding-mode

observers [9]. In general, the design methods for observers also lead to an LMI

feasibility problem.

Adaptive observers are observers that simultaneously estimate the states

and unknown parameters, by processing the measurements online. For SISO

LTI systems, the adaptive observer design has been largely investigated (see [10]

and the references therein).

A general tendency in case of nonlinear systems, both in adaptive controller

and observer design [11–15] is to assume that the system is SISO and in observer

canonical form. By using a quadratic Lyapunov function, ensuring strictly pos-

itive real conditions, the Kalman-Yakubovic-Popov lemma is applied and the

adaptive laws are deduced from the Lyapunov synthesis. A shortcoming of

these observers is that they do not incorporate prior information (such as an
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approximate model) and that they cannot be used when physical states have

to be estimated, or when a model is not in a canonical form. Robust versions

of these adaptive observers have also been derived for systems affected by a

bounded disturbance, by adding a robustness term [11, 13, 15–17]. In many

cases, when using both an observer and a controller, the robustness term is

incorporated in the controller instead, to deal with the approximation error

and disturbances [12, 14, 18], [19], amended in [20]. Results for MIMO sys-

tems include high gain observers [21], special observer canonical forms of the

system [22, 23], linearly parameterized neural networks [24, 25] and observers

based on a known linear part of the model [26]. A linear observer applied for

a nonlinear system in general can be used only in a small neighborhood of the

linearization point. Moreover, such an observer can only deal with constant or

slowly varying inputs [27].

In this paper, we consider polynomial unknown inputs (such as a bias in the

model or an unknown ramp input acting on the model) and uncertainty in the

model dynamics. Model-based observer design in the presence of bounded un-

known inputs has been investigated recently [28–32]. However, these approaches

estimate only the states, and attenuate the effect of the disturbances, but do not

estimate the unknown inputs. Our objective is to estimate both the state and

the unknown input from the available input and output information. The design

of observers to estimate unknown inputs is an important problem, since in many

cases not all the inputs are known [27, 31, 32], but is needed for proper planning

and control. For instance, in machine tool and manipulator applications, the

cutting force exerted by the tool or the exerting force/torque of the robot is of

interest, but it is very difficult or expensive to measure [26, 33]. Load estimation

in e.g., electricity distribution networks [34], or wind turbines [35] is necessary

for proper planning and operation. In biomechanics, the myoskeletal system

can be regarded as a dynamic system, where segment positions and trajectories

are the system outputs and joint torques are the non-measurable inputs [36].

In traffic control, time-varying parameters have to be tracked, which can be

regarded as unknown inputs [37]. In chaotic systems, for chaos synchronization
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and secure communication, one has to estimate not only the state, but also the

input signal[38]. The class of adaptive observers has received considerable in-

terest in fault detection and identification, where the unknown inputs represent

the effect of actuator failures or plant components and its presence has to be

detected as soon as possible. However, many of these methods only detect the

fault or attenuate its effect on the states [39], and rarely reconstruct it [40].

We develop a method to design observers for TS fuzzy systems with poly-

nomial unknown inputs or unmodeled dynamics. The idea behind this type

of design is that, in practice, a TS representation of a nonlinear system may

be obtained by identifying LTI models in different operation points. However,

such models are often inaccurate. By estimating the unknown inputs or un-

modeled dynamics, the accuracy of the identified models can be improved. The

observers are designed based on the already identified model, such that, together

with the appropriate update law estimating the unknown inputs, they ensure

the convergence of the estimation error.

The structure of the paper is as follows. Section 2 reviews stability conditions

for TS fuzzy systems and observers. Section 3 presents the model and the

observer considered. The proposed design for observers in the case of polynomial

unknown inputs is described in Section 4. Section 5 presents the observer for

estimating unmodeled dynamics. Related work is presented in Section 6. An

example is given in Section 7. Finally, Section 8 concludes the paper.

2. Stability of Fuzzy Systems and Observers

Though the consequents of dynamic TS fuzzy systems are usually chosen

linear or affine, it is well-known that the stability of these local models does not

imply the stability of the overall fuzzy system. In the full fuzzy model, the local

models are blended, and the particular blending of several local models may be

strongly nonlinear, which influences the stability. Several stability conditions

have been derived to ensure the stability of the system for any normalized mem-

bership function, independent of the operators used in the antecedent rules [3].
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Most of these conditions depend on the feasibility of an associated LMI prob-

lem. In this section, we introduce the notations used throughout the paper and

review some conditions for the stability of fuzzy systems and observer design.

Throughout the paper it is assumed that the membership functions of the TS

system are normalized.

2.1. Preliminaries

Throughout the paper I denotes the identity matrix of the appropriate di-

mension, H(A) denotes the Hermitian of the matrix A, i.e., H(A) = A + AT .

Definition 1. Uniform ultimate boundedness [41] The solutions of ẋ = f(t,x)

are uniformly ultimately bounded with ultimate bound b if there exist b, c > 0

and for every 0 < a < c, there exists T = T (a, b) ≥ 0 such that

‖x(t0)‖ ≤ a =⇒ ‖x(t)‖ ≤ b ∀t ≥ t0 + T

2.2. Autonomous Fuzzy Systems

Consider the autonomous fuzzy system:

ẋ =
m∑

i=1

wi(z)Aix (1)

where Ai, i = 1, 2, . . . , m represents the ith local linear model, wi is the corre-

sponding normalized membership function, and z the vector of the scheduling

variables.

For system (1), several stability conditions have been derived. Among them,

a well-known and frequently used condition is formulated below [3].

Theorem 1. System (1) is exponentially stable if there exists P = PT > 0 so

that H(PAi) < 0, for i = 1, 2, . . . , m. ¤
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Remark: Less conservative, but more complex conditions can be obtained

by using relaxations for LMIs [3, 6, 42, 43].

A condition on the convergence rate of system (1) was also derived from

Theorem 1 [3].

Theorem 2. The decay rate of system (1) is at least α, if there exists P =

PT > 0, so that

H(PAi) + 2αP < 0 i = 1, 2, . . . , m

¤
Stability conditions similar to those of Theorem 1 can be used if the system

considered is subjected to disturbances. Consider the following perturbed fuzzy

system:

ẋ =
m∑

i=1

wi(z)Aix + Df(t, x) (2)

where D is a perturbation distribution matrix and f is Lipschitz in x, i.e., there

exists µ > 0 so that ‖f(t,x)‖ ≤ µ‖x‖, for all t and x. With these assumptions,

a sufficient stability condition can be formalized by the following theorem [42].

Theorem 3. System (2) is exponentially stable if there exist matrices P = PT ,

Q = QT , so that

P > 0 Q > 0

µ ≤ λmin(Q)
‖PD‖

H(PAi) < −2Q i = 1, 2, . . . , m

(3)

where λmin is the smallest eigenvalue. ¤

Several variants of the above theorem exist, together with algorithms to compute

robustness measures [42].

Other approaches, based on partitioning the state-space into regions deter-

mined by simultaneously active membership functions can be found in [4, 44, 45].

Similar conditions for the discrete-time case are described in [46].
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2.3. Fuzzy Observers

Consider now the affine fuzzy system

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)Cix

(4)

and an observer of the form

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(ẑ)Cix̂.

(5)

As before, it is assumed that the membership functions are normalized.

Depending on the explicit form of the error dynamics given by ė = ẋ − ˙̂x, the

theorems presented in Section 2.2 can be directly applied, or similar conditions

may be derived to ensure the convergence to zero of the estimation error. For

the design, two cases are distinguished: 1) the scheduling vector z does not

depend on the estimated states, i.e., ẑ = z and 2) ẑ depends on (some of) the

states to be estimated.

2.3.1. The scheduling vector does not depend on the estimated states

In this case, the error system can be written as:

ė =
m∑

i=1

m∑

j=1

wi(z)wj(z)(Ai − LiCj)e

=
m∑

i=1

wi(z)wi(z)(Ai − LiCi)e +
m∑

i=1

m∑

j=1
j>i

wi(z)wj(z)(Ai − LiCj + Aj − LjCi)e.

(6)

Using a Lyapunov function of the form V (t) = eT Pe, with P = PT > 0,

basic sufficient stability conditions for this system were derived in [3]:

Theorem 4. The system (6) is GAS, if there exists P = PT > 0 so that for

i = 1, 2, . . . , m and j = 1, 2, . . . , m:

H(P (Ai − LiCj + Aj − LjCi)) < 0 ∀j ≥ i : ∃z : wi(z)wj(z) 6= 0 (7)
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A well-known condition on the design of the observer for the system (1), so

that a desired convergence rate α is guaranteed, has also been obtained in [3]

by appropriately modifying Theorem 2.

2.3.2. The scheduling vector depends on the estimated states

The second case is when the scheduling vector depends on the states to

be estimated. For the simplicity of the notation, only the case with common

measurement matrices (Ci = C, i = 1, 2, . . . , m) is presented. Then, the

observer (5) becomes:

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ = Cx̂

(8)

and the error dynamics can be expressed as:

ė =
m∑

i=1

wi(ẑ)(Ai − LiC)e +
m∑

i=1

(wi(z)− wi(ẑ))(Aix + Biu + ai) (9)

For such a system, sufficient stability conditions are given by the following

theorem [42].

Theorem 5. The error dynamics (9) is exponentially stable, if there exist µ >

0, P = PT > 0, Q = QT > 0 so that for all i = 1, . . . , m

H(P (Ai − LiC)) ≤ −Q

Q− µ2I P

P I


 > 0

‖
m∑

i=1

(wi(z)− wi(ẑ))(Aix + Biu + ai)‖ ≤ µ‖e‖

(10)

i.e.,
∑m

i=1(wi(z)− wi(ẑ))(Aix + Biu + ai) is Lipschitz in e. ¤

Note that since fuzzy systems are generally defined on a compact set, the con-

dition that “there exists µ > 0 so that ‖∑m
i=1(wi(z)−wi(ẑ))(Aix+Biu+ai)‖ ≤
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µ‖e‖” is satisfied if wi(z), i = 1, 2, . . . , m are differentiable w.r.t. x almost ev-

erywhere and have a bounded first derivative for almost all x. In practice,

most membership functions used satisfy this condition, which is therefore not

restrictive.

3. Problem statement

Consider the following fuzzy system:

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai + Mid)

y =
m∑

i=1

wi(z)Cix

(11)

where Ai, Bi, Mi, ai, Ci, i = 1, 2, . . . , m are known and the vector d is an un-

known input. Design of unknown input observers is very important in practice,

since, in many cases, not all the inputs are known. Moreover, these inputs can

represent disturbances acting on the process, effects of uncertain dynamics or

actuator failures. In this paper we consider two types of unknown inputs: 1)

polynomials in time and 2) unmodelled dynamics of some of the states. Our

goal is to design a stable observer to estimate simultaneously both the state

vector x and the unknown inputs d.

The observer considered is of the form:

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Mid̂ + Li(y − ŷ))

ŷ =
m∑

i=1

wi(ẑ)Cix̂

˙̂
d = f(d̂, w(ẑ), x̂, y)

(12)

where Li, i = 1, 2, . . . , m, are the gain matrices to be designed for each rule,

and f , the update law for d, should be determined so that the estimation errors

x− x̂ and d− d̂ converge asymptotically to zero.

Two main cases can be distinguished, depending on whether or not the

scheduling vector depends on the states to be estimated. The observer design

is considered in both cases.
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4. Polynomial unknown inputs

In this section, we consider the case when the unknown input is or can be

approximated by a polynomial function in time. Such inputs may represent

biases in the model, time-varying disturbances acting on the process, or the

degradation in time or even failure of actuators. We give conditions to design a

fuzzy observer and we also give a bound on the estimation error.

4.1. Observer Design

Consider the TS fuzzy system of the form

ẋ =
m∑

i=1

wi(z)(Aix + Biu + Mid + ai)

y =
m∑

i=1

wi(z)Cix

(13)

where there exists p ∈ N so that d(p) = 0, i.e., the unknown input is a p− 1-th

order polynomial in time. It is assumed that the states, the unknown input d,

and the derivatives of d are observable from y.

4.1.1. Case 1

If z does not depend on x̂, then

Theorem 6. The estimation error using the observer

˙̂x =
m∑

i=1

wi(z)[Aix̂ + Biu + Li(y − ŷ) + Mid̂ + ai]

ŷ =
m∑

i=1

wi(z)Cix̂

d̂
(p)

=
m∑

i=1

wi(z)Λp
i (y − ŷ)

d̂
(k)

=
m∑

i=1

wi(z)(Λk
i (y − ŷ) + d̂

(k+1)
)

for k = 1, . . . , p− 1

(14)
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is exponentially stable if there exist P = PT > 0, Li, Λk
i , i = 1, 2, . . . , m,

j = 1, 2, . . . , m, k = 1, 2, . . . , p so that

H




P




Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0

−Λ1
i Cj − Λ1

jCi 0 2I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj − Λp−1

j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0







< 0

∀j ≥ i : ∃z : wi(z)wj(z) 6= 0

(15)

Proof: An extended error system, containing both the state error and the

derivatives of the input error d̄ = d− d̂, can be expressed as:

ėa =




ė

˙̄d
¨̄d
...

d̄
(p)




=
m∑

i=1

wi(z)wi(z)




Ai − LiCi Mi 0 · · · 0

−Λ1
i Ci 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i Ci 0 0 · · · I

−Λp
i Ci 0 0 · · · 0







e

d̄
...

d̄
(p−1)




+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)




Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0

−Λ1
i Cj − Λ1

jCi 0 2I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj − Λp−1

j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0







e

d̄
...

d̄
(p−1)




(16)
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Using a quadratic Lyapunov function for the extended error vector V =

eT
a Pea, the derivative is expressed as:

V̇ =
m∑

i=1

wi(z)wi(z)eT
aH




P




Ai − LiCi Mi 0 · · · 0

−Λ1
i Ci 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i Ci 0 0 · · · I

−Λp
i Ci 0 0 · · · 0







ea

+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)eT
aH




P




Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0

−Λ1
i Cj − Λ1

jCi 0 2I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj − Λp−1

j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0







ea

which is negative definite if the condition (15) is satisfied. ¤
Remark: In order to design observers with a desired convergence rate α, The-

orem 2 can be applied. The estimation error of the observer (14) converges

with a rate at least α if there exists P = PT > 0, Li, Λk
i , i = 1, 2, . . . , m,

j = 1, 2, . . . , m, k = 1, 2, . . . , p so that

H




P




Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0

−Λ1
i Cj − Λ1

jCi 0 2I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj − Λp−1

j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0







+ 4αP < 0

∀j ≥ i : ∃z : wi(z)wj(z) 6= 0
(17)

The proof follows directly.

4.1.2. Case 2

A similar observer can also be designed if z depends on x̂. For the simplicity

of the notation, only the case when the measurement matrix is common for all
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rules is presented. Note, however, that if the measurement matrices are different

for the rules, the observer can be designed analogously.

The observer considered is of the form

˙̂x =
m∑

i=1

wi(ẑ)[Aix̂ + Biu + Li(y − ŷ) + Mid̂ + ai]

ŷ = Cx̂

d̂
(p)

=
m∑

i=1

wi(ẑ)Λp
i (y − ŷ)

d̂
(j)

=
m∑

i=1

wi(ẑ)(Λj
i (y − ŷ) + d̂

(j+1)
)

for j = 1, . . . , p− 1

(18)

Then the extended error system becomes:

ėa =
m∑

i=1

wi(ẑ)




Ai − LiC Mi 0 · · · 0

−Λ1
i C 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i C 0 0 · · · I

−Λp
i C 0 0 · · · 0







e

d̄
...

d̄
(p−1)




+
m∑

i=1

(wi(z)− wi(ẑ))(I 0 . . . 0)T · (Aix + Biu + Mid + ai)

(19)

Assuming that ‖∑m
i=1(wi(z) − wi(ẑ))(Aix + Biu + Mid + ai)‖ ≤ µ‖e‖, and

therefore it is also Lipschitz in ea, with the same Lipschitz constant, the stability

conditions become:

Corollary 1. The error system (19) is asymptotically stable, if there exist P =
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PT > 0, Q = QT > 0, Li, Λj
i , i = 1, 2, . . . , m, j = 1, 2, . . . , p so that

H




P




Ai − LiC Mi 0 · · · 0

−Λ1
i C 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i C 0 0 · · · I

−Λp
i C 0 0 · · · 0







< −Q

‖
m∑

i=1

(wi(z)− wi(ẑ))(Aix + Biu + Mid + ai)‖ ≤ µ‖e‖

Q− µ2I P

P I


 > 0

(20)

The proof follows directly.

4.2. Bound on Errors

In most cases, the unknown input is not polynomial, but it is possible to

determine a bound on some derivative of it. Therefore, consider the case when

there exists p ∈ N so that d(p) is bounded by a known constant, i.e., ‖d(p)‖ < µd,

and d(j), j = 1, 2, . . . , p are observable from y. In this case, although the

estimation error does not converge to zero, it is bounded, and an upper bound

on it can be computed as follows.
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4.2.1. Case 1

If the scheduling vector does not depend on x̂, the error system can be

written as:

ėa =
m∑

i=1

wi(z)wi(z)




Ai − LiCi Mi 0 · · · 0

−Λ1
i Ci 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i Ci 0 0 · · · I

−Λp
i Ci 0 0 · · · 0




ea +




0

0

0
...

d(p)




+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)




Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0

−Λ1
i Cj − Λ1

jCi 0 2I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj − Λp−1

j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0




ea

(21)

Theorem 7. The error described by (21) is ultimately bounded by a ball with

radius

γ =

√
λmax(P )
λmin(P )

λmax(P )µd

σλmin(Q)
(22)

if there exist P = PT > 0, Q = QT > 0, Li, Λk
i , i = 1, 2, . . . , m, k =

1, 2, . . . , p, j = 1, 2, . . . , m so that

‖d(p)‖ < µd

H




P




Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0

−Λ1
i Cj − Λ1

jCi 0 2I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj − Λp−1

j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0







< −4Q

∀j ≥ i : ∃z : wi(z)wj(z) 6= 0

(23)

for i = 1, 2, . . . , m, where σ ∈ (0, 1) and λmin and λmax denote the eigenvalues

with the smallest and largest absolute magnitude, respectively.
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Proof: Consider a quadratic Lyapunov function for the extended error vector,

V = eT
a Pea. Then,

V̇ =
m∑

i=1

wi(z)wi(z)eT
aH




P




Ai − LiCi Mi 0 · · · 0

−Λ1
i Ci 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i Ci 0 0 · · · I

−Λp
i Ci 0 0 · · · 0







ea

+
m∑

i=1

wi(z)
m∑

j=1
j>i

wj(z)eT
aH




P




Ai − LiCj + Aj − LjCi Mi + Mj 0 · · · 0

−Λ1
i Cj − Λ1

jCi 0 2I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj − Λp−1

j Ci 0 0 · · · 2I

−Λp
i Cj − Λp

jCi 0 0 · · · 0







ea

+
m∑

i=1

wi(z)2eT
a P

(
0 0 0 · · · d(p)T

)T

≤− 2λmin(Q)‖ea‖2 + 2λmax(P )‖ea‖µd

≤− 2(1− σ)λmin(Q)‖ea‖2 − 2(σλmin(Q)‖ea‖2 − λmax(P )‖ea‖µd)

where σ ∈ (0, 1) is arbitrarily chosen and Q = QT is a positive definite matrix

such that (23) is satisfied. Then, V̇ is negative definite if

σλmin(Q)‖ea‖2 − λmax(P )‖ea‖µd > 0

‖ea‖ >
λmax(P )µd

σλmin(Q)

Since λmin(P )‖ea‖2 ≤ V ≤ λmax(P )‖ea‖2, using Theorem 4.18 of [41] it can be

concluded that ‖ea‖ converges exponentially to a ball with radius

γ =

√
λmax(P )
λmin(P )

λmax(P )µd

σλmin(Q)
(24)

which is a global uniform ultimate bound on the estimation error [41]. ¤

Remark: This bound can be minimized by using the relaxation in [43] and

solving the following optimization problem:
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find P , Li, Λk
i , i = 1, 2, . . . , m, j = 1, 2, . . . , m, k = 1, 2, . . . , p and

maximize α1, α2, α3 subject to:

Γij = H




P




Ai − LiCj Mi 0 · · · 0

−Λ1
i Cj 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i Cj 0 0 · · · I

−Λp
i Cj 0 0 · · · 0







P = PT > 0

Γii > 0

2
m− 1

Γii + Γij + Γji < −α3I

∀i, j : ∃z : wi(z)wj(z) 6= 0

− P > −α2I

P > α1I

(25)

for all i = 1, 2, . . . , m.

4.2.2. Case 2

A similar, though notably more conservative bound can be found in the case

when z is a function of x̂. For the simplicity of the notation, the computation is

presented for the case when the measurement matrices are common for all the
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rules. The error system is that in (19) and let the condition

H




P




Ai − LiC Mi 0 · · · 0

−Λ1
i C 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i C 0 0 · · · I

−Λp
i C 0 0 · · · 0







< −2Q

P = PT > 0

Q = QT > 0

‖
m∑

i=1

(wi(z)− wi(ẑ))(Aix + Biu + Mid + ai)‖ ≤ µ‖e‖

Q− µ2I P

P I


 > 0

(26)

hold. Using a quadratic Lyapunov function for the extended error vector, V =

eT
a Pea, we obtain

V̇ =
m∑

i=1

wi(z)eT
aH




P




Ai − LiC Mi 0 · · · 0

−Λ1
i C 0 I · · · 0
...

...
...

. . .
...

−Λp−1
i C 0 0 · · · I

−Λp
i C 0 0 · · · 0







ea

+
m∑

i=1

wi(z)2eT
a P

(
0 0 0 · · · d(p)T

)T

+ 2eT
a P

m∑

i=1

((wi(z)− wi(ẑ)))(I 0 · · · 0)T (Aix + Biu + Mid)

≤ −2λmin(Q)‖ea‖2 + 2λmax(P )µ‖ea‖2 + 2λmax(P )‖ea‖µd

≤ −2(1− σ)(λmin(Q)− µλmax(P ))‖ea‖2 − 2(σ(λmin(Q)− µλmax(P ))‖ea‖2 − λmax(P )‖ea‖µd)
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where σ ∈ (0, 1) is arbitrarily chosen and Q = QT is a positive definite matrix

such that (26) is satisfied. Then, V̇ is negative definite if

σ(λmin(Q)− µλmax(P ))‖ea‖2 − λmax(P )‖ea‖µd > 0

‖ea‖ >
λmax(P )µd

σ(λmin(Q)− µλmax(P ))

Since λmin(P )‖ea‖2 ≤ V ≤ λmax(P )‖ea‖2, using Theorem 4.18 of [41] it can be

concluded that ‖ea‖ converges exponentially to a ball with radius

γ =

√
λmax(P )
λmin(P )

λmax(P )µd

σ(λmin(Q)− µλmax(P ))
(27)

This bound can also be minimized using the conditions (25), together with the

condition λmin(Q) > µλmax(P ).

5. Estimation of unmodeled dynamics

Consider now the problem of estimating the states of a fuzzy system in the

presence of unmodeled dynamics, i.e., the fuzzy system is of the form

ẋ =
m∑

i=1

wi(z)(Aix + Biu + Mi(Aδix + Bδiu + θi))

y = Cx

(28)

where Ai, Bi, i = 1, 2, . . . , m are known and the matrices Aδi, Bδi and the

vectors θi, i = 1, 2, . . . , m are unknown, but Aδi, i = 1, 2, . . . , m are bounded

by a known bound µmax, max ‖Aδi‖ ≤ µmax. This corresponds to the situation

when part of the true dynamics is unmodeled. The goal is to determine sufficient

conditions and to design an observer that estimates x and also the constant

matrices Aδi, Bδi and the vector θi, i = 1, 2, . . . , m. Therefore, our goal is to

estimate the unknown dynamics.

For the simplicity of the computations, we present only the case when the

measurement matrix is common for all rules of the model.

Assumption 1. It is assumed that Mi, i = 1, 2, . . . , m have full column rank,

and rank(CMi) = rank(Mi), i = 1, 2, . . . , m.
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1) Case 1: Consider first the case when the scheduling vector does not de-

pend on states to be estimated. An observer of the following form is considered:

˙̂x =
m∑

i=1

wi(z)(Aix̂ + Biu + Li(y − ŷ) + Mi(Âδix̂ + B̂δiu + θ̂i))

ŷ = Cx̂

˙̂
Aδi = fi(Âδi, w(z), x̂, y)

˙̂
Bδi = gi(B̂δi, w(z), x̂, y,u)

˙̂
θi = hi(θ̂i,w(z), x̂,y)

(29)

where Li, i = 1, 2, . . . , m are the gain matrices for each rule, and the update

laws fi, gi, hi, i = 1, 2, . . . , m will be determined so that the estimation errors

x− x̂, Aδi − Âδi, Bδi − B̂δi, and θi − θ̂i converge asymptotically to zero.

The error system when using the observer (29) can be expressed as:

ė =
m∑

i=1

wi(z)[(Ai − LiC + Aδi)e + Mi(Āδix̂ + B̄δiu + θ̄i)]

ey = Ce

(30)

with Āδi = Aδi − Âδi, B̄δi = Bδi − B̂δi, θ̄i = θi − θ̂i.

Consider first the following part of the error expressed in (30):

˙̃e =
m∑

i=1

wi(z)(Ai − LiC + Aδi)ẽ (31)

Since a bound on Aδi, i = 1, 2, . . . , m is known, i.e., max ‖Aδi‖ ≤ µmax,

stability conditions for perturbed fuzzy systems can be used to render (31) stable

and to design the gain matrices Li [42]: find P = PT > 0, Q = QT > 0, Li,

i = 1, 2, . . . , m so that

µmax ≤ λmin(Q)
λmax(P )

H(P (Ai − LiC)) ≤ −2Q

(32)

Consider now a Lyapunov function of the form

V =eT Pe +
m∑

i=1

tr(ĀT
δiĀδi) +

m∑

i=1

tr(B̄T
δiB̄δi) +

m∑

i=1

(θ̄T
i θ̄i)
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for the error system (30), so that P satisfies (32). Then,

V̇ =
n∑

i=1

wi(z)eT [(Ai − LiC + Aδi)T P + P (Ai − LiC + Aδi)]e

+ 2eT P

m∑

i=1

wi(z)MiĀδix̂ + 2eT P

m∑

i=1

wi(z)MiB̄δiu

+ 2eT P

m∑

i=1

wi(z)Miθ̄i − 2
m∑

i=1

tr( ˙̂
A

T

δiĀδi)− 2
m∑

i=1

tr( ˙̂
B

T

δiB̄δi)− 2
m∑

i=1

( ˙̂θ
T

i θ̄i)

=
n∑

i=1

wi(z)eT Gie + 2
m∑

i=1

(tr(x̂eT PMiwi(z)Āδi)− tr( ˙̂
A

T

δiĀδi))

+ 2
m∑

i=1

(tr(ueT PMiwi(z)B̄δi)− tr( ˙̂
B

T

δiB̄δi)) + 2
m∑

i=1

(eT PMiwi(z)θ̄i − ˙̂
θ

T

i θ̄i)

=
n∑

i=1

wi(z)eT Gie + 2
m∑

i=1

tr((x̂eT PMiwi(z)− ˙̂
A

T

δi)Āδi)

+ 2
m∑

i=1

tr((ueT PMiwi(z)− ˙̂
B

T

δi)B̄δi) + 2
m∑

i=1

(eT Pwi(z)− ˙̂
θ

T

i )θ̄i

with Gi = H(P (Ai − LiC + Aδi)).

Since V > 0 and from (32) Gi < 0, for i = 1, 2, . . . , m, V̇ < 0 is ren-

dered negative definite if tr((x̂eT PMiwi(z)− ˙̂
A

T

δi)Āδi) = 0, tr((ueT PMiwi(z)−
˙̂
B

T

δi)B̄δi) and eT PMiwi(z) − ˙̂
θ

T

i = 0, for i = 1, 2, . . . , m. The equations lead

to the update laws:
˙̂
Aδi = wi(z)MT

i Pex̂T

˙̂
Bδi = wi(z)MT

i PeuT

˙̂
θi = wi(z)MT

i Pe

(33)

Note, that in general e is not directly available. However, given Assumption 1,

there exist matrices Λi, i = 1, 2, . . . , m so that ΛiC = MT
i P : Λi = MT

i PC†,

where C† denotes the Moore-Penrose pseudoinverse of C.

Therefore, the update laws can be expressed as:

˙̂
Aδi = wi(z)MT

i PC†eyx̂T

˙̂
Bδi = wi(z)MT

i PC†eyuT

˙̂
θi = wi(z)MT

i PC†ey

(34)
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If all the rules are sufficiently excited, both the error system and the estima-

tion error of the unknown matrices are asymptotically stable. It can easily be

seen that, assuming nonzero and varying x, u, the only invariant set of the error

system (30) is e = 0, Āδi = 0, B̄δi = 0 and θ̄i = 0. If wi(z), i = 1, 2, . . . , m

are sufficiently smooth and the fuzzy model is defined on a compact set of vari-

ables, then based on Barbalat’s lemma and LaSalle’s invariance principle, the

dynamics (30), together with the update laws above are asymptotically stable.

The results can be summarized as follows:

Theorem 8. The error dynamics (30) is asymptotically stable, if the update

laws (34) are used and, furthermore, there exist P = PT > 0, Q = QT > 0, Li,

i = 1, 2, . . . , m so that

P > 0

H(P (Ai − LiC)) < −2Q i = 1, 2, . . . , m

µmax ≤ λmin(Q)
λmax(P )

(35)

¤

2) Case 2: Consider now the case when z depends on x̂. The error system

(30) becomes

ė =
m∑

i=1

wi(ẑ)[(Ai − LiC + Aδi)e + Mi(Āδix̂ + B̄δiu + θ̄i)]

+
m∑

i=1

(wi(z)− wi(ẑ)) · (Aix + Biu + Mi(Aδix + Bδiu + θi))

ey = Ce

(36)

Under the assumption that ‖∑m
i=1(wi(z) − wi(ẑ))(Aix + Biu + Mi(Aδix +

Bδiu + θi))‖ ≤ µ‖e‖, combining the conditions in Theorems 5 and 8, we get:

Corollary 2. The error system (36), together with the update laws

˙̂
Aδi = wi(ẑ)MT

i PC†eyx̂T

˙̂
Bδi = wi(ẑ)MT

i PC†eyuT

˙̂
θi = wi(ẑ)MT

i PC†ey

(37)
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is asymptotically stable, if there exist P = PT > 0, Q = QT > 0, Li, i =

1, 2, . . . , m so that

P > 0

H(P (Ai − LiC)) < −Q i = 1, 2, . . . , m

m∑

i=1

‖(wi(z)− wi(ẑ)) · (Aix + Biu + Mi(Aδix + Bδiu + θi))‖ ≤ µ‖e‖

Q− µ2I P

P I


 > 0

(38)

¤

The proof follows directly.

Remark: Note, that if the measurement matrix is different for each rule of

the fuzzy model, the update laws for the matrices of the unknown dynamics

can still be expressed as (33). Update laws similar to (34) can be derived if

there exist (
∑m

i=1 wi(z)Ci)†, ∀z (Case 1), and (
∑m

i=1 wi(ẑ)Ci)†, ∀ẑ (Case 2),

i = 1, 2, . . . , m. In this case, the update laws are

˙̂
Aδi = wi(z)MT

i P (
m∑

i=1

wi(z)Ci)†eyx̂T

˙̂
Bδi = wi(z)MT

i P (
m∑

i=1

wi(z)Ci)†eyuT

˙̂
θi = wi(z)MT

i P (
m∑

i=1

wi(z)Ci)†ey

(39)

if the scheduling vector does not depend on the states to be estimated and

˙̂
Aδi = wi(ẑ)MT

i P (
m∑

i=1

wi(ẑ)Ci)†eyx̂T

˙̂
Bδi = wi(ẑ)MT

i P (
m∑

i=1

wi(ẑ)Ci)†eyuT

˙̂
θi = wi(ẑ)MT

i P (
m∑

i=1

wi(ẑ)Ci)†ey

(40)

if the scheduling vector depends on x̂ and the observer gains are given by (35)

and (38), respectively. Note that, for this case, to have a unique solution,
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Assumption 1 has to be modified to rank(
∑m

j=1 wj(z)CjMi) = rank(Mi), i =

1, 2, . . . , m, ∀z.

Remark: The results can also be applied if the unknown matrices have slow

dynamics, such that Ȧδi ' 0, etc.

6. Related work

Our objective is to estimate the states and unknown inputs of a nonlinear

system. In this paper we consider nonlinear systems represented by TS fuzzy

models, and unknown inputs that are polynomial functions of time or can be

approximated by polynomials in time. Note that our goal is to estimate the

states of the given physically relevant model, and not a transformation of the

states. To our knowledge, no other work in the literature pertains to this class

of problems. Many existing adaptive observers [11–16, 23, 47–49] require that

the system is or can be transformed into the observer canonical form. By

assuming a canonical form, the physical meaning of the state variables is lost.

In fault detection and isolation, observer based methods have widely

been used (see [50] and the references therein). However, these methods usually

concern linear systems [51] and they do not estimate the faults. A method for

TS systems in descriptor form has been proposed in [39] to estimate the states

in the presence of unknown inputs. This method is based either on decoupling

the unknown inputs, or on attenuating their effects on the states. If decoupling

is possible, the states are correctly estimated, and single faults can be isolated

by using a bank of observers. However, the faults (unknown inputs) cannot be

reconstructed. For the case when the decoupling of all the unknown inputs is

not possible, the authors of [39] also proposed a method to attenuate their effect

on the states. However, the estimation error is proportional with the norm of

the unknown inputs. In the current paper we consider unknown inputs that are

polynomial in time, whose norm generally grows unbounded and therefore, the

estimation error grows unlimited if the attenuating method of [39] is used.

Several methods [31, 32, 48] exist for nonlinear systems composed of a known
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linear part and a Lipschitz nonlinearity affected by unknown inputs. An

estimation method has been provided in [26] for a more general class of nonlinear

systems, where the known part of the nonlinearity is Lipschitz in the states and

inputs. However, this method relies on an assumption (Assumption 2 in [26])

related to a rank condition on a matrix composed of the direct feedthrough

term and of a distribution matrix of the unknown nonlinear terms affected by

the unknown inputs. Since in this paper we do not consider unknown inputs

that affect the measurements directly, this assumption is generally not satisfied,

and therefore the method of [26] cannot estimate the unknown inputs.

For SISO LTI systems, the adaptive observer design has been largely inves-

tigated (see [10] and the references therein). However, when applying adaptive

state and input observers designed for linear systems, such as the approach

proposed in [27] for a nonlinear system, the observer can only be used in a small

neighborhood of the linearization point. Therefore, such observers are rarely

able to estimate the states and the inputs of the nonlinear system. Moreover,

they can only deal with constant or slowly varying inputs.

7. Example

We illustrate the proposed design method on a simulation example. The

system under consideration is the dynamic model of a missile, adopted from

[52], illustrated in Figure 1. The nonlinear state-space equations are:

α̇ = KαMCn(α, δ,M) cos(α) + q

q̇ = KqM
2Cm(α, δ,M)

(41)

The plant variables are given in Table 1, and the parameters in Table 2.

The Mach number M is an exogenous scheduling variable. The angle of

attack α and the pitch rate q are measured. The actual tail fin deflection and the

unknown inputs acting on the system have to be estimated. The aerodynamic
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Figure 1: Schematic representation of a missile.

Table 1: Plant variables.

α Angle of attack [deg]

q Pitch rate [deg/s]

M Mach number

δc Commanded tail fin deflection [deg]

δ Actual tail fin deflection [deg]

coefficients are expressed as:

Cn(α, δ,M) = sgn(α)[an|α|3 + bn|α|2 + cn(2−M/3)|α|] + dnδ

Cm(α, δ,M) = sgn(α)[am|α|3 + bm|α|2 + cm(−7 + 8M/3)|α|] + dmδ

The dynamics of the tail fin actuator are described by a first-order linear

model:

δ̇ = ωaδ + ωaδc

In order to use the proposed design, first an approximate TS fuzzy model

of the system (41) is constructed. For the Mach number M , five points M ∈
{2, 2.5, 3, 3.5, 4} and for the angle of attack seven points α ∈ {−15, −10, −5, 0, 5, 10, 15}
are chosen as centers of the membership functions. The membership functions

for M are depicted in Figure 2. The scheduling vector consists of the Mach

number M and the angle of attack α, which is also a state to be estimated. An

example of a rule is:
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Table 2: Plant parameters.

P0 = 973.3 Static pressure at 20000 feet [lbs/ft2]

S = 0.44 Surface area [ft2]

m = 13.98 Mass[slugs]

vs = 1036.4 Speed of sound at 20000 feet [ft/s]

d = 0.75 Diameter [ft]

Iy = 182.5 Pitch moment of inertia [slug ft2]

ωa = 225

Kα = (π/180)0.7P0S/(mvs)

Kq = (π/180)0.7P0Sd/Iy

an = 0.000103 [deg−3] am = 0.000215 [deg−3]

bn = −0.00945 [deg−2] bm = −0.0195 [deg−2]

cn = −0.1696 [deg−1] cm = −0.051 [deg−1]

dn = −0.034 [deg−1] dm = −0.206 [deg−1]

If M is approximately 3 and α is approximately 5 then ẋi = Ax + Bu + a,

with

A =




−0.0012 1.0 0.0

−0.0445 0 −0.0399

0 0 −225.0




B =
(
0 0 225

)T

a = (0.0056 0.0839 0)T

where x = [α q δ]T .

The affine consequent models in the fuzzy rules are obtained by Taylor series

expansion around each combination of the chosen M and α. To compute the

membership degree of the scheduling vector z = [M α]T , the algebraic product

operator is used.

To simulate the system, the input was randomly generated. For the consid-

ered estimations (unmodeled dynamics and unknown input, respectively), the

initial conditions for the nonlinear system were [15 2.3 3]T , while the initial
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Figure 2: Membership functions for the Mach number M.

conditions used for the states and parameters to be estimated were zero. The

LMIs for designing the observer in each case were solved using the Yalmip tool-

box [53]. The unknown input/unmodelled dynamics is assumed to affect α and

q, therefore Mi =




1 0

0 1

0 0


, i = 1, 2, . . . , m.

1) Adapting the TS model: Since the consequents in the fuzzy rules were

obtained by linearizing the nonlinear model, the local models represent the non-

linear system exactly only in the linearization points, i.e., in the combinations

of the points chosen for M and α. When the system is not close to the lineariza-

tion point or more than one membership function is activated, the accuracy of

the TS model decreases. This can be seen as if part of the actual dynamics

were unmodelled. In order to obtain a better approximation of the nonlinear

system, first an observer to estimate this “unmodeled dynamics” was designed,

according to Theorem 8. This observer estimates the states and updates the

system matrices according to equation (34). The estimation error for the states

is presented in Figure 3. As can be seen, the estimated states converge to the

states of the nonlinear system. As a result of using this observer, for instance

the rule corresponding to the approximation in M = 3 and α = 5 has been

changed to:

If M is approximately 3 and α is approximately 5 then ẋi = Ax + Bu + a,
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with

A =




0.0496 1.1488 0.0062

−0.0164 −0.0179 −0.0402

0 0 −225.0




B =
(

−0.0032 −0.0003 225.0
)T

a = (0.00475 − 0.0031 0)T
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Figure 3: Estimation of unmodeled dynamics: state estimation error.

2) Unknown input estimation: Now assume that an unknown input d is

acting on α and q. Three cases are considered: 1) constant input, 2) second-

order polynomial input, and 3) a non-polynomial input. The application of the

proposed approach and the obtained results are detailed in what follows.

1. In the first case, d is constant, d = [5 10]T . The observer is designed based

on the conditions of Theorem 6, with the first derivative of the unknown

input being already zero, i.e., correctly assuming a bias in the model. The

state estimation error is presented in Figure 4(a). The unknown input

and its estimate is presented in Figure 4(b). Both the estimated states

and input converge to the correct ones, as expected.

To compare with another method, we have implemented1 the approach

1We have also implemented the method described in [26]. However, due to the fact that

Assumption 2 in [26] is not satisfied, only the states are correctly estimated and not the

unknown inputs. Therefore, those results are not presented here.
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described in [27]. The state estimation error and the estimated inputs are

presented in Figures 4(c) and 4(d), respectively. As can be seen, with the

approach proposed in this paper, the estimated states and inputs converge

to their true values faster.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

Time [s]

S
ta

te
 e

st
im

at
io

n 
er

ro
r

 

 
α
q
δ

(a) Estimation error for the states using the

proposed approach.
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(b) The unknown input (thin line) and its

estimate (thick line) using the proposed ap-

proach.
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(c) Estimation error for the states using the

approach in [27].
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(d) The unknown input (thin line) and its

estimate (thick line) using the approach in

[27].

Figure 4: Estimation results for constant input.

2. In the second case, d is a second order polynomial in time, d = [5 10]T t2+

[3 1]T t + [2 4]T . The observer is designed in the same manner as for the

d in the constant input case, but using three derivatives in Theorem 6.

The estimation error for the states is presented in Figure 5(a) and the

unknown inputs and their estimates in Figure 5(b). The estimated states
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and inputs converge to the correct states and inputs as expected.

The state estimation error and the estimated inputs using the approach

in [27] are presented in Figures 5(c) and 5(d), respectively. Similarly to

the previous case, using the proposed approach, the estimated states and

inputs converge faster to their true values.
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(a) Estimation error for the states using the

proposed approach.
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(b) The unknown input (thin line) and its

estimate (thick line) using the proposed ap-

proach.
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(c) Estimation error for the states using the

approach in [27].
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(d) The unknown input (thin line) and its

estimate (thick line) using the approach in

[27].

Figure 5: Estimation results for second order input.

3. The last case considered is with the true unknown input d acting on the

system being non-polynomial, given by d = [1 3]T sin(t) + [4 2]T cos(t),

but the observer is computed by (incorrectly) assuming a linear input, i.e.,

a ramp. The estimation error for the states is presented in Figure 6(a)

31



and the unknown inputs and their estimate in Figure 6(b). The estimated

input does not converge exponentially to the exact value of the true input

(see Figure 7), but only to a ball around it. The ultimate bound on the

error (state and input), computed for this observer is 38.6 · ‖d‖/σ with

‖d‖ the norm of the input and σ arbitrarily chosen in (0, 1). However,

based on the estimation errors presented in Figures 6(a) and 7, one can

conclude that the computed bound is rather conservative.
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(a) Estimation error for the states using the

proposed approach.
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(b) The unknown input (thin line) and its

estimate (thick line) using the proposed ap-

proach.
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(c) Estimation error for the states using the

approach in [27].
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estimate (thick line) using the approach in

[27].

Figure 6: Estimation results for non-polynomial input.

The state estimation error and the estimated inputs using the approach in

[27] for this case also are presented in Figures 6(c) and 6(d), respectively.
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Figure 7: Input estimation error using the proposed approach.

As in the previous cases, using the approach proposed in this paper, the

estimates converge faster to their true values.

8. Conclusions

In this paper a method was proposed for estimating the state and unknown

inputs of TS fuzzy systems. The design of unknown input observers is important

in practice, since in many cases not all the inputs are known. These unknown

inputs can represent disturbances acting on the process, effects of unmodeled

dynamics, or actuator failures. The proposed observer was designed based on the

known part of the fuzzy model. Sufficient conditions were given for the stability

of the observer and the computation of the observer gains is based on solving a

system of LMIs. Conditions on the exponential convergence of the observer in

the case of polynomial unknown inputs were presented and the design guarantees

an ultimate bound on the error signal. In the case of estimating unmodeled

dynamics, sufficient conditions were given for the asymptotic convergence of

the observer. The design methods were illustrated on an example of a missile.

The simulation results showed that the proposed observer is able to estimate

both the states and inputs simultaneously.

In our future research, we will investigate the extension of the proposed

method to stable state-feedback controller design and also adaptive observer-

based stable control design for practical control applications. Two main chal-
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lenges that have to be solved in this context are: the controller has to com-

pensate for the unknown input that is time-varying; moreover, if the scheduling

vector depends on states that have to be estimated, the separation principle

does not hold. We will also investigate conditions under which fuzzy observers

can be used to estimate other than polynomial types of unknown inputs.
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