
Particle Filtering for On-Line Estimation of Overflow Losses
in a Hopper Dredger
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Abstract— A particle filter is applied to the estimation of
overflow losses in a hopper dredger. The filter estimates on-
line the overflow mixture density and flow-rate, based on the
measurements of the total hopper volume, mass, incoming
mixture density and flow-rate. These data are readily available
on board of every modern hopper dredger. The main advantage
of the proposed approach is that the particle filter uses straight-
forward nonlinear mass balance equations and does not rely on
complex sedimentation models with uncertain parameters. The
performance was evaluated in simulations as well as with real
measurements and the results are encouraging. The filter can be
used to improve parameter estimation in complex mechanistic
models of the hopper sedimentation process and to facilitate
decision making on board of the hopper dredger.

I. INTRODUCTION

The optimization of dredging operations is of vital im-
portance for future improvements in efficiency, accuracy and
labor saving. This article addresses the estimation of overflow
losses, which is an essential step toward the optimization of
the separation process in the hopper. While modern hopper
dredgers are equipped with advanced dynamic positioning
and tracking systems, no on-board decision-support systems
are yet available to optimize the dredging performance under
the given operating conditions (type of soil, dredging depth,
water current, etc.). Settings of the manipulated variables
must constantly be adjusted by two operators: the ship
navigator and the dredge process operator. Consequently,
the performance and efficiency of the entire process heavily
depend on their insight and experience.

IHC Systems, a company specialized in the development
and manufacturing of automation systems for dredgers, cur-
rently cooperates with the Delft Center for Systems and
Control on the development of an adaptive decision-support
system for hopper dredgers to advise the operators on the
most suitable control strategy, given a specified performance
goal. This can be, for instance, the minimization of the
integral dredging costs per m3 of sand or the maximization of
the production per time unit. To this end, a control-oriented
dynamic model of the hopper dredger has been developed
and calibrated by using recorded process data. Based on
this model, a suitable control strategy can be derived, for
instance, by using model-predictive control. As only some
of the state variables are measured by sensors, the use of on-
line state estimation techniques is essential for an on-board
application of this system.
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Prior to stating the estimation problem, the principle of
the dredging process is briefly explained. The dredger uses
a drag head to excavate soil from the sea bottom. A mixture
of soil and water is transported through a pipe to the hopper,
which is a large storage tank inside the ship (see Fig. 1).
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Fig. 1. Schematic drawing of a hopper dredger.

The soil gradually settles at the bottom of the hop-
per, while excessive water (in fact low-density mixture) is
discharged through an overflow pipe whose level can be
adjusted (see Fig. 2). As the height of the settled sand layer
rises, so does the concentration of the overflow mixture and
eventually the losses become so high that it is no longer
economical to continue dredging. The ship then sails back
to deliver the load. After the sand is discharged, the ship sails
again to the dredging location and the whole cycle repeats.

The efficiency of the sedimentation process heavily de-
pends on the type of soil and is influenced by the flow-
rate and density of the incoming mixture and the manner
the overflow pipe is controlled. An important factor in the
optimization of the dredging performance is the minimization
of the overflow losses. This has been recognized long ago,
and in the literature, a number of sedimentation models have
been proposed [1], [2], [3], [4]. These models, however,
cannot be used as a basis for control or optimization of
the dredging process. The reason is that they are based on
detailed (often PDE) modeling of the physical phenomena
and contain too many uncertain parameters. Therefore, we
propose to use simplified models, along with advanced signal
processing and estimation techniques.

Information on the amount of overflow losses is essential
both for decision support and automatic control. Unfortu-
nately, these losses cannot be reliably measured, due to the
presence of air in the overflow pipe. However, as shown
in this paper, they can be estimated by using mathematical
models and the available on-line measurements. Two meth-
ods have been investigated:
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1) By using a model of the density profile in the mixture
above the sand bed, the overflow density can be
computed. The overflow rate can be computed based
on a hydraulic model. However, these models are
highly uncertain and contain parameters that cannot
be directly measured or estimated from on-line data.

2) Using volume and mass balance equations, the losses
can be estimated by means of a nonlinear state observer
(particle filter). As the balance equations do not contain
any uncertain parameters, one only needs to tune the
observer parameters.

Both methods are presented, but as latter one proved to
be much more accurate and easier to use, detailed results
are given for this method only. Section II presents the
dynamic sedimentation model. In Section III, the estimation
problem is given and Section IV reviews the particle filtering
methodology. Section V gives the results and Section VI
concludes the paper.

II. DYNAMIC SEDIMENTATION MODEL

A dynamic state-space model of the sedimentation process
has been developed, based on [1], [3], [4]. In the sequel, all
variables are functions of time and the time argument is left
out for notational simplicity. Derivatives with respect to time
are denoted by a dot. Refer to the Appendix for a complete
list of symbols.

w

Overflow

Incoming mixture

Sand bed

Q ,i

ht

Q ,o

ρi

ρo

ρs

ρm ho

hs

Fig. 2. The sedimentation process in the hopper.

A schematic diagram of the hopper is given in Fig. 2.
The model has three states variables: the total mass in the
hopper mt, the total volume Vt of the mixture in the hopper
and the mass of the sand bed ms. While the first two states
can be derived from on-line measurements (the ship draught
and the total level ht, respectively), the mass of the sand bed
is not measurable. The flow-rate Qi of the incoming mixture
and the overflow height ho are the manipulated inputs and
the incoming mixture density ρi is in this context regarded
as a measured disturbance. The volume and mass balance
equations are given by:

V̇t = Qi − Qo (1)

ṁt = Qiρi − Qoρo . (2)

The rate of material sedimentation is as a function the settling
velocity (fs) and the scouring (erosion) effects (fe)

ṁs = fs (ρm) fe (Qo, hm) . (3)

The overflow rate Qo, the density ρo and the functions in (3)
are modeled by using static relationships as detailed below.

A. Overflow Rate

If the outgoing mixture freely flows through the overflow
pipe, the flow-rate Qo is given by [5]:

Qo = ko max(ht − ho, 0)
3
2 (4)

where ko is an uncertain parameter depending on the over-
flow pipe shape and circumference. However, if the overflow
pipe is full (e.g., because a valve inside the pipe is engaged),
the following model must be used:

Qo = k′
o

√
2g max(ht − ho, 0) . (5)

Clearly, there is a some uncertainty in the modeling of the
overflow rate. Moreover, due to the model’s switching nature,
it is not straightforward to estimate its parameters.

B. Overflow Density

The density profile in the mixture above the sand bed can
be approximated as a decreasing function of the height above
the sand. The exact form of this function is highly uncertain
and time varying. In this paper, we use the following linear
approximation:

ρo = max
(
ρs − kρ(ho − hs), ρw

)
. (6)

The slope kρ must be determined at every time instant such
that the average mixture density ρm, computed from the
mass-balance relations, equals to the average of the density
profile:

ρm =
1

hm

∫ ht

hs

max
(
ρs − kρ(h − hs), ρw

)
dh

with hm = ht − hs. Solving this constraint for the linear
model (6) yields the following equation for the slope:

kρ =

{
2(ρs−ρm)

hm
for ρm > 1

2 (ρw + ρs)
(ρs−ρw)2

2hm(ρm−ρw) otherwise

where the average mixture density is given by:

ρm =
mt − ms

Vt − ms

ρs

=
ρs(mt − ms)
Vtρs − ms

.

Validation based on measured data has shown that this model
is not very accurate, but it suffices for the tuning and first
evaluation of the particle filter.

C. Settling and scouring functions

The settling and scouring functions used in the sedimen-
tation rate equation (3) are taken from [6], [7], [4]. The
settling function fs describes how the rate of sedimentation
depends on the undisturbed settling velocity vs and the
mixture density:

fs(ρm) = Aρsvs
ρm − ρw

ρs − ρm

(
ρq − ρm

ρq − ρw

)β

. (7)

The scouring function describes the effect of erosion on the
sand bed due to the flow in the mixture (which is considered
to be equal to the overflow rate in steady state):

fe (Qo, hm) = max
(

1 − Qo
2

kchm
2 , 0

)
. (8)
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The parameters of the entire model have been determined by
fitting the outputs of the simulation model to real data from
a ship, by using non-linear least-squares optimization.

III. THE ESTIMATION PROBLEM

The volume and mass balance equations were discretized
by using the Euler method:

Vt,k+1 = Vt,k + Ts(Qi,k − Qo,k) (9)

mt,k+1 = mt,k + Ts(Qi,k ρi,k − Qo,k ρo,k) (10)

where the sampling period is Ts = 5 s, which is also the
sampling period of the on-board data acquisition system. The
state equations are augmented with a random-walk model for
Qo and ρo:

Qo,k+1 = Qo,k + εq,k (11)

ρo,k+1 = ρo,k + ερ,k (12)

Note that in this way, the use of the uncertain overflow
model (4)-(5) and the settling and scouring functions (7)-
(8) is circumvented. Furthermore, the noise does not nec-
essarily have to be additive and Gaussian, as the particle
filter assumes the most general, nonlinear state-space model
xk+1 = f(xk, uk, εx), yk = h(xk, εyk). With the following
definition of the augmented state, input and output vectors:

x =

⎛
⎜⎝

Vt

mt

Qo

ρo

⎞
⎟⎠ , u =

(
Qi

ρi

)
, y =

(
Vt

mt

)

the complete nonlinear state-space model becomes:

x1,k+1 = x1,k + Ts(u1,k − x3,k) + εx1,k

x2,k+1 = x2,k + Ts(u1,ku2,k − x3,kx4,k) + εx2,k

x3,k+1 = x3,k + εx3,k (13)

x4,k+1 = x4,k + εx4,k

yk =
(

x1,k

x2,k

)
+

(
εy1,k

εy2,k

)

The objective is to estimate Qo and ρo on-line.

IV. PARTICLE FILTER

The particle filter (PF) uses the model (13) which specifies
the probability density functions (PDF) for the state transition
function and the measurement function, respectively:

p(xk|xk−1), p(yk|xk) .

The objective is to recursively construct the posterior PDF
p(xk|yk) of the state, given the measured output yk and
assuming conditional independence of the measurement se-
quence, given the states. The PF works in two stages:

1) The prediction stage uses the state-transition model in
(13) to predict the state PDF one step ahead. The PDF
obtained is called the prior.

2) The update stage uses the latest measurement to cor-
rect the prior via the Bayes rule. The PDF obtained
after the update is called the posterior PDF.

Particle filters represent the PDF by N random samples
(particles) xi

k with their associated weights wi
k, normalized

so that
∑N

i=1 wi
k = 1. At time instant k, the prior PDF

p(xk−1|yk−1) is represented by N samples xi
k−1 and the

corresponding weights wi
k−1. To approximate the posterior

p(xk|yk), new samples xi
k and weights wi

k are generated.
Samples xi

k are drawn from a (chosen) importance density
function q(xi

k|xi
k−1, yk), and the weights are updated, using

the current measurement yk

w̃i
k = wi

k−1

p(yk|xi
k) p(xi

k|xi
k−1)

q(xi
k|xi

k−1, yk)
(14)

and normalized

wi
k =

w̃i
k∑N

j=1 w̃j
k

.

The posterior PDF is represented by the set of weighted
samples, conventionally denoted by:

p(xk|yk) ≈
N∑

i=1

wi
kδ(xk − xi

k) .

Here, we choose the importance density q(xk|xk−1, yk)
equal to the state-transition PDF p(xk|xk−1). The weight
update equation (14) then becomes:

w̃i
k = wi

k−1p(yk|xi
k) .

The PF algorithm is summarized in Algorithm 1.

Algorithm 1 Particle filter
Input: p(xk|xk−1), p(yk|xk), p(x0), N , NT

Initialize:
for i = 1, 2, . . . , N do

Draw a new particle: xi
1 ∼ p(x0)

Assign weight: wi
1 = 1

N
end for
At every time step k = 2, 3, . . .
for i = 1, 2, . . . , N do

Draw a particle from importance distribution:
xi

k ∼ p(xi
k|xi

k−1)
Use the measured yk to update the weight:
w̃i

k = wi
k−1p(yk|xi

k)
end for
Normalize weights: wi

k = w̃i
k∑N

j=1
w̃j

k

if 1∑
N

i=1
(wi

k
)2

< NT then

Resample using Algorithm 2.
end if

A common problem of PF is the particle degeneracy: after
several iterations, all but one particle will have negligible
weights. Therefore, particles must be resampled. A standard
measure of the degeneracy is the effective sample size:

Neff =
1

N∑
i=1

(wi
k)2
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If Neff drops below a specified threshold NT ∈ [1, N ],
particles are resampled by using Algorithm 2.

Algorithm 2 Resampling

Input: {(xi, wi)}N
i=1

Output: {(xi
new, wi

new)}N
i=1

for i = 1, 2, . . . , N do
Compute cumulative sum of weights: wi

c =
∑i

j=1 wj
k

end for
Draw u1 from U(0, 1

N )
for i = 1, 2, . . . , N do

Find x+i, the first sample for which wi
c ≥ ui.

Replace particle i: xi
new = x+i, wi

new = 1
N

ui+1 = ui + 1
N

end for

The state estimate is computed as the weighted mean of
the particles:

x̂k =
N∑

i=1

wi
kxi

k .

For more details on particle filters, refer to [8], [9], [10].

V. RESULTS

The PF is applied to both simulated data, obtained with the
dynamic sedimentation model described in Section II, and
real data recorded during a dredging project. One dredging
cycle is selected to illustrate the results. The flow-rate and
density of the incoming mixture are shown Fig. 3.
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Fig. 3. Flow-rate and density of the incoming mixture.

The loading of the hopper is illustrated in Fig. 4, which
shows the time evolution of the measured hopper mass
and volume as a consequence of the manipulated overflow
height. In the first phase, the total level ht is lower than
the overflow level ho and the hopper is filled without any
overflow losses (both Vt and mt are the result of pure
integration). In the second phase, ht becomes greater than ho;
the steady-state overflow Qo equals the inflow Qi and the

total volume Vt remains constant. As the overflow density
ρo is lower than the inflow density ρi, the total mass mt

still increases. In the third phase, mt reaches the maximum
allowable value (given by the maximum laden draught of the
ship) and is automatically kept constant by a PID controller
which controls the overflow ho. In this phase, the volume
is decreasing until the hopper is completely filled with sand
or the overflow losses become so high that it is no longer
economical to continue dredging.
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Fig. 4. An example of dredger loading: the evolution of the hopper mass
and volume as a consequence of the manipulated overflow height. The
vertical dashed lines mark the transitions between the phases.

A. Performance Evaluation

For the simulated data, the performance of the PF can
easily be evaluated by comparing the estimated flow rate and
density to the simulated ones. The difference of these two
variables is referred to as the estimation error or residual.

However, for the real data, the overflow rate and density
measurements are not available (for reasons explained in
Section I). We use a rough estimate obtained by off-line
computation on the basis of the discretized balance equations
(9) and (10). From the volume balance (9), the overflow rate
can be estimated by direct computation:

Q̄o,k = Qi,k − 1
Ts

(Vt,k+1 − Vt,k) . (15)

From the mass balance (10), the overflow density is com-
puted by:

ρ̄o,k =
Qi,k ρi,k − 1

Ts
(mt,k+1 − mt,k)

Q̄o,k
. (16)
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As the volume and mass measurements are very noisy, an
anti-causal first-order low-pass filter is first applied to these
signals. The cut-off frequency of the filter was experimen-
tally chosen at 0.001 Hz. The direct computation results
shown in Section V-C are all obtained with the filtered data.

B. Simulation

In order to get some insight in the achievable performance,
the PF is first applied to simulated data, obtained with the
model of Section II. In Figure 5, the simulated and estimated
quantities are compared. Note that only the third phase of
the dredging cycle is shown (in the first phase, there is no
overflow and in the second phase nearly only water is being
discharged overboard).

These results were obtained with N = 1000 particles and
zero-mean Gaussian noise distributions with the following
standard deviations: σ(εx) = [0, 3000, 0.2, 5]T and
σ(εy) = [10, 12000]T . These standard deviations were tuned
experimentally. Note that there is no need for additional
state-transition noise in the volume equation (9), as noise
is already added to the flow Qo in the random-walk model
(11). The threshold NT for effective sample size is set to
900 (i.e., 90% of the number of particles N ).
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Fig. 5. Simulation results (thin line: simulated variables, thick line:
variables estimated by the particle filter).

From Fig. 5, one can already see that the estimation results
are very good. This is confirmed by analyzing the distribution
of the residuals (Fig. 6). The overflow residual has a mean of
-0.023 m3/s and standard deviation of 0.345 m3/s. The largest
estimation errors are about 1 m3/s which is about 10% of the
nominal overflow range.

The estimate of the overflow density is slightly biased; the
residual has a mean of 3.613 kg/m3 and standard deviation
of 13.226 kg/m3. The largest estimation errors are about
40 kg/m3 which is about 10% of the nominal overflow
density range.
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Fig. 6. Simulation results: distribution of the residuals.

C. Real Data

Figure 7 shows the Qo and ρo estimated by the PF in a
comparison to the signals obtained by (15)-(16). Note in the
first place that the measured flow and density patterns are
different from the simulated ones (shown in Fig. 5). This
is due to the mismatch between the real process and the
mechanistic model presented in Section II.

In Fig. 7, it can further be seen that the PF provides much
smoother estimates than the direct computation method.
Moreover, the PF can be readily applied on-line. However,
one must be aware of the fact that the PF results are
influenced by the random sampling of the particles. This
influence decreases when more particles are used, but, at the
same time, the computational costs become larger. In our
application, this is not a problem, as the dredging process is
relatively slow.
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Fig. 7. Results obtained with the measured data (thin line: estimates through
the direct computation (15)-(16), thick line: estimates by the particle filter).

Figure 8 gives an impression of the variation in the
estimated density trajectories. The gray band delimits the

5755

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on June 9, 2009 at 06:52 from IEEE Xplore.  Restrictions apply.



minimal and maximal density estimates over 25 independent
filter runs on the same data. The bold line is mean of these
runs. The PF parameters were the same as with the simulated
data.
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Fig. 8. Variance in the trajectories estimated by the particle filter.

VI. CONCLUSIONS

A particle filter was applied to the estimation of overflow
losses in a hopper dredger. The overflow losses, represented
by the overflow mixture density and flow-rate are estimated
on the basis of the measured total hopper volume, hopper
mass, incoming mixture density and flow-rate.

The proposed approach uses straightforward nonlinear
mass balance equations and does not rely on the complex
overflow and sedimentation models (4)–(8) which contain
many uncertain parameters and functional relationships.

The performance was evaluated in simulations and with
real measurements. The results are encouraging, although
the random nature of the particle filter results in a relatively
large variance in the estimated state trajectories. In our
future research, the filter will be used to improve parameter
estimation in complex mechanistic models of the hopper
sedimentation process. It will also be integrated in a decision-
support tool for the future use on board of the hopper dredger.
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APPENDIX

This appendix gives the list of symbols used throughout
the paper. Subscript k denotes the discrete time index, a hat
(̂ ) denotes variables estimated by the particle filter and a
bar (̄ ) denotes estimates obtained by direct computation.

Variables:
hm height of the mixture layer
ho height of the overflow pipe
hs height of the sand bed
ht total height of hopper content

ms mass of sand bed
mt total hopper mass
Qi incoming mixture flow-rate
Qo outgoing mixture flow-rate
u input variable
Vt total hopper volume
x state variable
y output variable
ε noise disturbance
ρi incoming mixture density
ρm density of mixture in hopper
ρo outgoing mixture density

Parameters:
A hopper area
g acceleration due to gravity
kc scouring parameter
ko parameter for free overflow
k′

o full overflow parameter
N number of particles
NT resampling threshold
vs undisturbed settling velocity
Ts sampling period
β exponent in fs

ρq quartz density
ρs density of sand bed
ρw water density

Probabilities and distributions:
p(·) probability or PDF
p(·|·) conditional probability or PDF
q(·|·) proposal (importance) density function
U(u1, u2) uniform distribution
N (m, σ) normal distribution
σ(·) standard deviation of a random variable
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