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Abstract—This research proposes a neural network-based
super-twisting controller for robot joints. A modified fast non-
singular terminal sliding surface is introduced, which not only
avoids singularity but also increases the convergence rate of the
sliding mode control. To address the challenge of system un-
certainty modeling, a type-2 fuzzy single hidden layer recurrent
neural network (T2FSHLRNN) is proposed. The T2FSHLRNN,
configured as a weighted combination of a type-2 fuzzy neural
network and a single hidden layer network, demonstrates strong
global learning ability. Leveraging its internal and external
double-layer feedback mechanism, the network can incorporate
both current and previous error information during the approxi-
mation process, effectively improving the approximation accuracy
and reducing system chattering. Furthermore, an adaptive gain
function is proposed and an adaptive terminal super-twisting
controller based on T2FSHLRNN (ATSC-T2FSHLRNN) is de-
veloped. The system’s stability under unknown disturbance is
ensured using Lyapunov synthesis. Based on this, the online
parameter learning algorithm for T2FSHLRNN and the vari-
able gains of the ATSC are derived. Simulations confirm the
effectiveness of the proposed ATSC-T2FSHLRNN.

Index Terms—Robot joint, super-twisting controller, type-2
fuzzy neural network, unknown disturbance, variable gains.

I. INTRODUCTION

ROBOT joints find extensive applications in diverse fields,
including industrial manufacturing, logistics warehous-
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ing, medical, service, military defense, education, scientific re-
search, and other fields. High precision control of robot joints
is of utmost importance. It is a key factor in enhancing the
motion accuracy of robots, strengthening their task-execution
capabilities, ensuring stable operation, and promoting intelli-
gent collaborative operations [1], [2]. This research focuses
on the control design for robot joints composed of harmonic
reducer and motor (RJCHRM).

Traditional control methods for RJCHRM such as PID
control [3], [4], backstepping [5], [6], feed-forward [7] and
singular perturbation methods [8] can achieve good control
performance. However, these methods are suitable for occa-
sions where the servo accuracy requirements are not very
high. To attain better dynamic performance of joint modules,
PID and robust control were combined to design a model-
based robust controller and achieved good results in dealing
with system uncertainties [9], [10]. In the Active Disturbance
Rejection Control (ADRC) of the joint module designed in
[11], the resilience to uncertainties was enhanced through the
utilization of a reduced-order state observer. For flexible joint
robots equipped with low-precision sensors, [12] proposed an
adaptive tracking control scheme. For vibration suppression
in elastic joint manipulators, a type-2 fuzzy controller was
designed in [13]. A modified sliding mode control (SMC) rely-
ing on fuzzy system uncertainty identification was proposed in
[14], and was used to improve the precision of electromagnetic
torque control. To address the speed fluctuation within the
gimbal system, a state observer and SMC-based composite
controller was proposed in [15]. [16] and [17] fused type-2
fuzzy systems with SMC for robotic manipulators to enhance
adaptability and robustness under uncertainties and faults. To
further improve the robustness and tracking performance of
robotic manipulators, [18] integrated neural networks with a
type-2 fuzzy system into SMC.

Even though the previously mentioned controllers had ob-
tained good results, they still presented certain issues in prac-
tical use. The PD-based robust controllers in [9], [10] faced
difficulties when dealing with highly nonlinear systems and
also had challenges in parameter adjustment. The design of the
improved ADRC in [11] was based on many assumptions, and
the parameter adjustment was relatively complex. The adaptive
control method [12] required much prior system knowledge,
had parameter convergence issues, weak robustness and anti-
interference, and high computational complexity that affected
real-time performance. The fuzzy controller in [13] could
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effectively deal with uncertainties and nonlinearities during
the dynamic process, but its accuracy was relatively low under
steady-state conditions. The controller based on SMC in [14],
[15] exhibited chattering. Although [16], [17], and [18] were
able to mitigate the chattering issue of SMC to some extent,
they still faced challenges such as rule design relying on expert
experience and limited dynamic learning capability. It can be
seen that the control design problem for RJCHRM is very
challenging.

Among existing control algorithms, SMC has received
widespread attention. However, a significant drawback of
SMC is the chattering phenomenon. Super-Twisting SMC
(STSMC) can suppress chattering by making the control law
continuous through hiding the discontinuous term in the first
derivative, and it is easier to design and implement compared
with higher order SMC [19]. A novel model-free STSMC
strategy for permanent magnet synchronous motor (PMSM)
was presented in [20]. [21] proposed an adaptive neural
network-based backstepping STSMC framework that achieves
high-precision trajectory tracking for underwater manipulators.
To enhance current tracking accuracy in active power filter,
[22] proposes an adaptive STSMC based on a type-2 fuzzy
hybrid neural network. However, there is very little research
on SMC, particularly on STSMC in the RJCHRM field. It
is of significant academic research value to design STSMC
controllers for the RJCHRM, where the current of the PMSM
is utilized as the control input, and the output angle or torque
of the harmonic reducer is regarded as the output.

For practical engineering applications, attaining an accurate
physical system model is problematic. This poses particular
challenges to the design of SMC. Over recent years, the
excellent approximation features of feed-forward neural net-
works, such as Radial Basis Function (RBF) neural networks,
have made them a hot research topic [23]. An adaptive RBF
observer was devised to mitigate the vibration of the aeroe-
lastic system in [24]. In [25], to handle the trajectory tracking
issue of uncertain nonlinear systems, a nonlinear controller
was proposed by integrating SMC and RBF neural networks.
[26] used RBF neural networks to enhance position and
force tracking accuracy in cooperative robotic manipulators.
Although RBF has achieved good approximation results in
these studies, it also has several drawbacks such as poor
dynamic characteristics, lack of memory, and limited ability
to represent complex structures [27]. The Recurrent Neural
Network (RNN) fuses the merits of feed-forward networks
with those of feedback networks. [28] proposed an adaptive
SMC scheme using a three-layer RNN for nonlinear systems.
[29] devised a completely regulated neural network featuring
a RNN with two hidden layers and proposed an adaptive
global SMC. [30] combined SMC with RNN and proposed
an adaptive integral SMC strategy for quadrotor control.

The fuzzy neural network (FNN) [31], [32] combines the
knowledge representation ability of the fuzzy logic system
[33] and the strong self-learning skill of the neural network.
[34] developed an adaptive fuzzy random vector function link-
based SMC for robust trajectory tracking of n-link manipu-
lators. An adaptive FNN control using nonsingular terminal
SMC for active power filters to achieve finite-time convergence

was introduced in [35]. Fusing FNN with RNN can signifi-
cantly enhance the learning capabilities of complex dynamic
systems [36]. [37] proposed an impedance controller based
on the recurrent fuzzy wavelet neural network for robotic
manipulators. [38] presented a fuzzy double hidden layer RNN
control to achieve robust performance for nonlinear systems.
To further improve neural network learning performance, [39]
designed a type-2 fuzzy recurrent feature selection fuzzy
neural network by combining type-2 FNN with RNN. Inspired
by the aforementioned research, an adaptive terminal super-
twisting controller (ATSC) based on a type-2 fuzzy single
hidden layer recurrent neural network (T2FSHLRNN) for
RJCHRM is proposed in this research. Compared with existing
studies, the main contributions of this research are

1) A modified non-singular terminal sliding surface is
proposed. In contrast to the conventional non-singular
terminal sliding surface [40], the proposed sliding sur-
face converges faster.

2) A T2FSHLRNN is introduced, which not only takes
into account the fuzzy inference ability of the T2FNN,
but also incorporates the feature extraction ability of
the hidden layer network. A double-layer (internal and
external) feedback mechanism is designed. This design
allows the network to take into account both the current
and previous error information during the approximation
process, thus enhancing the approximation accuracy. In
addition, the center and base width coefficients can be
adjusted adaptively to achieve optimality. In comparison
to [41], the novel neural network exhibits enhanced
approximation capabilities.

3) For the control of RJCHRM, an adaptive gain function
and an ATSC based on T2FSHLRNN are proposed. The
adaptability is manifested in two aspects. First, the pro-
posed neural network is combined with the STSMC and
parameter learning algorithms are designed, allowing the
neural network to adaptively approximate the system
uncertainties. Second, variable gains of the STSMC are
designed, enabling the system to maintain stability even
in the presence of unknown disturbances.

4) The system’s stability is proven by Lyapunov synthesis.
Furthermore, three simulation experiments are designed
to verify the proposed controller. The experimental
findings indicate that compared with [15], [41], the
steady-state and transient performance are significantly
improved.

II. PROBLEM DESCRIPTION

A. Robots joint model composed of harmonic reducer and
motor

A typical RJCHRM system is shown in Fig. 1. It consists
of a PMSM, a harmonic reducer, and a load. In order to
attain high-precision control, these components are treated
holistically. The Lagrange energy method [15] is adopted to
model the RJCHRM. All notations are specified in Table 1.

The energy composition of the RJCHRM includes both
kinetic and potential components. The kinetic portion arises
from the motor rotor and load motion, whereas the potential
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TABLE I
KEY SYMBOLS USED IN MODELING

Symbol Description Unit Symbol Description Unit

P Elastic potential energy J fs Friction coefficient −
Kl Kinetic energy (Load side) J f1 Friction coefficient −
Fl Power loss (Load side) J f2 Friction coefficient −
Km Kinetic energy (Motor side) J µf Friction coefficient −
Fm Power loss (Motor side) J a0 Taylor expansion coefficient −
Jm Moment of inertia of the motor rotor kg ·m2 a1 Taylor expansion coefficient −
Jl Moment of inertia of the load kg ·m2 a2 Taylor expansion coefficient −
θm Angular displacement (Motor side) rad a3 Taylor expansion coefficient −
θl Angular displacement (Load side) rad id d-axis current A
τ Electromagnetic torque of the motor N ·m iq q-axis current A
Bm Viscous coefficient of the motor N ·m · s/rad uq q-axis voltage V
τfm Friction torque of the harmonic reducer (Motor side) N ·m L Stator inductance H
τkm Elastic deformation torque (Motor side) N ·m np Number of poles −
N Transmission ratio − R Stator resistance Ω
τfl Friction torque of the harmonic reducer (Load side) N ·m K Torque constant of motor Nm/A
τkl Elastic deformation torque (Load side) N ·m Imax Max continuous current A
fv Friction coefficient − ψf Rotor flux Wb
fc Friction coefficient − θd Desired angular position rad

Fig. 1. (a) Structure of harmonic reducer; (b) Energy distribution model of
RJCHRM.

energy primarily stems from the harmonic reducer’s elastic
deformation. The total kinetic energy of the system satisfies

K = Km +Kl =
1

2
Jmθ̇

2
m +

1

2
Jlθ̇

2
l . (1)

Let L = K − P and Q = τ − Bmθ̇m − τfm, then the
dynamic model of RJCHRM is

d
dt

(
∂L
∂θ̇m

)
− ∂L

∂θm
= Q. (2)

Combining (1) with (2) leads to

d
dt

(
∂K
∂θ̇m

)
− ∂K

∂θm
+ ∂P

∂θm
= τ −Bmθ̇m − τfm, (3)

where P is a function of θm, and ∂P/∂θm = τkm [15] .
Introducing θm = θlN into (3) one obtains

Jlθ̈l
N

+ Jmθ̈m +Bmθ̇m +
τfl
N

+
τkl
N

= τ.

Here, we use a Stribeck model to calculate τfl and a third-
order Taylor expansion to calculate τkl . The Stribeck model
[9] is

τfl = fv θ̇l + fn1 + fn2,

fn1 = fcsgn
(
θ̇l

)(
1− exp

(
−f1sgn

(
θ̇l

)
θ̇l

)µf
)
,

fn2 = fssgn
(
θ̇l

)
exp

(
−f2sgn

(
θ̇l

)
θ̇l

)µf

.

The third-order Taylor expansion for calculating τkl is

τkl = a0 + a1∆θ + a2∆θ
2 + a3∆θ

3,

∆θ = θm/N − θl.

For PMSM, vector-oriented control stands out as the pre-
dominantly utilized control approach. The zero d-axis current
control is one of the most typical approaches [9], which
achieves the desired torque solely through q-axis current
regulation. The mathematical model of a PMSM in the d-q
reference frame is

i̇d = 0,

i̇q = −R
L
iq − npθ̇m

ψf
L

+
uq
L
,

τ =
3

2
npψf iq.

Let x1 = θl and x2 = θ̇l be the state variables, and u = iq
be the system input. Then, the RJCHRM’s model is obtained
as {

ẋ1 = x2,

ẋ2 = f + bu+ g,
(4)

where f = ax2, a = −NBm+fv/N
Jl/N+JmN

, b = 3
2

npψf

Jl/N+JmN
, and

g = − fn1+fn2+τkl

Jl+JmN2 .
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B. Proposed sliding surface

Building upon the traditional non-singular sliding surface, a
modified fast non-singular terminal sliding surface (MFNTSS)
is introduced:

s = ė+ ξ1|e|msgn (e) + ξ2δ (e) , (5)

where ξ1 > 0, ξ2 > 0, m > 1, n = p/q, 0 < p < q < 2p. p
and q are odd numbers. The tracking error e is

e = θd − θl,

where θd represents the desired angular position. δ (e) in (5)
is designed as

δ (e) =

{
en, |e| ≥ ∆s,

ω1e+ ω2e
2, |e| < ∆s,

(6)

where ∆s represents a very small positive number. ω1 and ω2

are designed as

ω1 = (2− n)∆n−1
s , ω2 = (−1 + n)∆n−2

s . (7)

The derivative of δ (e) is

δ̇ (e) =

{
nen−1ė, |e| ≥ ∆s,

ω1ė+ 2ω2eė, |e| < ∆s.
(8)

The analysis of (5) through (8) demonstrates that the
proposed sliding surface is differentiable everywhere, and its
derivative is also continuous. To illustrate the advantages of
MFNTSS, Fig. 2 compares MFNTSS and the traditional non-
singular terminal sliding surface [40]. The parameters are
chosen as: ξ1 = 2, ξ2 = 2, m = 3, p = 3, q = 5, ∆s = 0.01.
The convergence speed of the MFNTSS surpasses that of the
conventional sliding surface by a notable margin.

Fig. 2. Comparation between MFNTSS and traditional sliding surface [40].

Remark 1: The advantages of MFNTSS are:

1) Superior convergence: Thanks to the design of the expo-
nential term ξ1|e|msgn (e), the system will have a faster
convergence rate when it is far from the equilibrium
state.

2) Non-singular: There are no negative exponent terms
when |e| < ∆s in (5).

3) Practicality: The term ė in (5) and (8) does not contain
an exponential, making it easier to combine MFNTSS
with complex algorithms.

C. Ideal super-twisting controller

The SMC law can be divided into the equivalent control
law and the switching control law. To derive the equivalent
control law, the derivative of (5) is calculated as

ṡ = ë+ ξ1m|e|m−1
ė+ ξ2δ̇ (e) . (9)

Substituting (4) into (9) yields

ṡ = ë+ ξ1m|e|m−1
ė+ ξ2δ̇ (e)

=
(
θ̈d − bu− f − g

)
+ ξ1m|e|m−1

ė+ ξ2δ̇ (e) .

Let ṡ = 0, the equivalent control law can be deduced:

ueq =
1

b

(
ξ1m|e|m−1

ė+ ξ1δ̇ (e) + θ̈d − (f + g)
)
. (10)

The switching control law of STSMC is [41]
usw = −v/b

v = −ζ1|s|
1
2 sgn (s) + w

ẇ = −ζ2sgn (s) ,

(11)

where v is a robustness term, ζ1 > 0, ζ2 > 0 are the fixed
gains.

By combining (10) and (11), the ideal STSMC law can be
obtained as

u = ueq + usw

= 1
b

(
ξ1m|e|m−1

ė+ ξ1δ̇ (e) + θ̈d − (f + g)
)
+ 1

b (−v) .

A rational choice of values for ζ1 and ζ2 can ensures system
stability [41].

III. THE PROPOSED NEURAL NETWORK

In practical control systems, there are various uncertainties.
For example, system parameters may change due to factors
such as environmental variations and equipment aging. This
parametric uncertainty can affect the performance of the
system. A new type of neural network is proposed in this
section for the online approximation of uncertainty modeling
of RJCHRM.

A. Structure of T2FSHLRNN

The T2FSHLRNN (Fig. 3) is a network featuring two
feedback loops. Within its external and internal feedback
loops, the output signal from the preceding step is fed back
to the respective layer. The network consists of eight layers,
namely the input layer, the membership layer, the rule layer,
a second input layer, the hidden layer, the fusion layer, the
type-reduction layer and the output layer. The basic functions
of each layer are introduced as follows.

Layer 1-the first input layer: The primary role of this layer
is to receive the incoming signal. X1 =

[
x11, x

1
2, . . . x

1
m

]T ∈
Rm×1 and the output signal exY from the eighth layer. The
connection weight between the output layer and this layer is
WO = [wO1, wO2, . . . , wOm]

T ∈ Rm×1. The output of the
i-th node is given by:

y1i = xi · exY ·WOi (i = 1, 2, . . . ,m) ,
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with the output of the layer being

Y 1 =
[
y11 , y

1
2 , . . . y

1
m

]T ∈ Rm×1.

Layer 2-the membership layer: Each output from the first
layer is interfaced with two neurons within this layer. The
neurons execute a fuzzification operation on the input signals
by means of the type-2 fuzzy membership function, thereby
augmenting the neural network’s capacity to cope with non-
linearities.

The membership degree is calculated using the Gaussian
function [39]. Define the lower and upper limits of fuzzifica-
tion as

µi
j
= exp

−
(
x2i j − qij

)2(
pi
j

)2
 , µij = exp

(
−
(
x2i j − qij

)2(
pij
)2

)
,

where x2ij = y1i is the input to node j of this layer, qij is the
center, and pij and pi

j
are the upper and lower base widths of

the type-2 Gaussian membership function. Each node’s output
is

y2ij =
[
µij
]
=
[
µi
j
, µij

]
(i = 1, 2, . . .m; j = 1, 2, . . . , n) .

Define the center vector as
Q =

[
q11 , q

1
2 , . . . , q

1
n, q

2
1 , q

2
2 ,

. . . , q2n, q
m
1 , q

m
2 , . . . , q

m
n

]
∈ Rmn×1,

and the upper and lower base width vectors as

P =
[
p11, p

1
2, . . . , p

1
n, p

2
1, p

2
2,

. . . , p2n, p
m
1 , p

m
2 , . . . , p

m
n

]
∈ Rmn×1,

P =
[
p1
1
, p1

2
, . . . , p1

n
, p2

1
, p2

2
,

. . . , p2
n
, pm

1
, pm

2
, . . . , pm

n

]
∈ Rmn×1.

The output vector of the membership layer is

Y 2 =
[
y211, y

2
12, . . . y

2
1n, y

2
21, y

2
22,

. . . y22n, . . . , y
2
m1, y

2
m2, . . . y

2
mn

]T
=
[
µ1
1, µ

1
2, . . . µ

1
n, µ

2
1, µ

2
2,

. . . µ2
n, . . . , µ

m
1 , µ

m
2 , . . . µ

m
n

]T ∈ R2mn×1.

Layer 3-the rule layer: integrates the output data of the
second layer. This layer computes

Fj =
[
f
j
, f j

]T
=
[
µ1
j
· µ2

j
· . . . · µm

j
, µ1

j · µ2
j · . . . · µmj

]T
.

The values are normalized

FNj =
[
f
Nj
, fNj

]T
=

 f
j

n∑
j=1

f
j

,
f j
n∑
j=1

f j


T

,

and the output vector of this layer is obtained as

Y 3 = [FN1, FN2, . . . , FNn]
T ∈ Rn×1.

Layer 4-the second input layer: This layer is used to transfer
the output of the first layer. , i.e.,

Y 4 =
[
y41 , y

4
2 , . . . y

4
m

]T
= Y 1 =

[
y11 , y

1
2 , . . . y

1
m

]T ∈ Rm×1.

Fig. 3. Structure diagram of T2FSHLRNN.

Layer 5-the hidden layer: extracts input features and im-
proves approximation accuracy. To mitigate the computational
complexity, a single hidden layer is used. In addition, a
feedback loop is formed within this layer so as to feedback
the output of the neurons from the previous operation step.
The output of each node is

φk = exp

−

m∑
i=1

(
y4i + wIk · exφk − ck

)2
b2k

 ,

resulting in Y 5 = [φ1, φ2, . . . φm]
T ∈ Rm×1, where

k = 1, 2, . . . , n, ck is the center vector and bk is the base width
of the Gaussian function, wIk is the weight of the internal
feedback loop, and exφk is the output signal of the k-th hidden
layer at the previous time instant. The center, the base width
and the weight vectors are

C = [c1, c2, . . . , cn] ∈ Rn×1,

B = [b1, b2, . . . , bn] ∈ Rn×1,

WI = [wI1, wI2, . . . , wIn] ∈ Rn×1.
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Layer 6-the fusion layer: integrates the output signals from
the third and fifth layers. For the j-th node in this layer, fusion
yields

Mj = FNj · φj =
[
f
Nj
, fNj

]T
· φj

=
[
f
Nj

· φj , fNj · φj
]T

=
[
M j ,M j

]T
.

The output of this layer is

Y 6 =
[
M1,M1,M2,M2, . . .Mn,Mn

]T ∈ R2n×1.

Layer 7-the type-reduction layer: combines previous infor-
mation. Its output vector is defined as

Y 7 = [ϕH , ϕL]
T
,

ϕH =
n∑
j=1

wRHj ·M j =WT
RH ·M,

ϕL =
n∑
j=1

wRLj ·M j =WT
RL ·M,

where ϕH and ϕL are the upper and lower outputs of this
layer, wRHj and wRLj are the upper and lower weights of
each node. The expressions for WRH , WRL, M and M are

WRH = [wRH1, wRHj , . . . , wRHn]
T ∈ Rn×1,

WRL = [wRL1, wRLj , . . . , wRLn]
T ∈ Rn×1,

M =
[
M1,M2, . . . ,Mn

]T ∈ Rn×1,

M = [M1,M2, . . . ,Mn]
T ∈ Rn×1.

Layer 8-the output layer: computes the average of the
signals from the 7th layer:

Y 8 = 1
2 (ϕH + ϕL) =

1
2

(
WT
RH ·M +WT

RL ·M
)

= 1
2

(
WT
RH WT

RL

)( M

M

)
= 1

2W
TM,

(12)

where the expressions of W and M are

W = [wRH1, wRHj , . . . , wRHn,

wRL1, wRLj , . . . , wRLn]
T ∈ R2n×1,

M =
[
M1,M2, . . . ,Mn,M1,M2, . . . ,Mn

]T ∈ R2n×1.

Remark 2: The proposed network has the following advan-
tages:

1) As can be inferred from the designs of Layer 2 and Layer
7, T2FSHLRNN incorporates T2FNN. In comparison
with the RNNs in [28]–[30], it can better handle the
uncertainties and ambiguities inherent in data.

2) Thanks to the double-feedback design, T2FSHLRNN
integrates RNN. This integration enables the network
to take into account both the current and previous
error information, thereby enhancing the approximation
accuracy.

3) From the perspective of the hidden layer (Layer 5),
T2FSHLRNN assimilates the feature-extraction capabil-
ity of the hidden-layer network.

4) Thanks to the fusion layer (Layer 6), when one neural
network in T2FSHLRNN is learning parameters online,
it considers the output state of another neural network.

This implies that the neural network possesses a more
robust global learning ability.

5) Initial values for the base width and center vector of
T2FSHLRNN can be specified without any constraints.
Furthermore, its parameters can be adaptively tuned, see
Section III B, to attain optimal values. In comparison
to the neural network characterized by fixed base width
and center vector [27], [41], T2FSHLRNN offers greater
convenience in application.

All these characteristics contribute to a higher approxima-
tion accuracy of T2FSHLRNN.

B. Parameter learning algorithm

The T2FSHLRNN is used to online approximate f in (4)
in this research. In order to attain this objective, the sliding
surface s is employed as the input signal for the neural
network, with (12) being the approximation value.

Assumption 1: There exist optimal parameters such that

f =
1

2
W ∗TM∗

(
s,W ∗

O, Q
∗, P

∗
, P ∗, C∗, B∗,W ∗

I

)
+ ε,

where W ∗, W ∗
O, Q∗, P

∗
, P ∗, C∗, B∗ and W ∗

I are the optimal
parameters. ε is the minimum approximation error.

The output of T2FSHLRNN is

f̂ =
1

2
ŴT M̂

(
s, ŴO, Q̂, P̂ , P̂ , Ĉ, B̂, ŴI

)
,

where Ŵ , ŴO, Q̂, P̂ , P̂ , Ĉ, B̂, ŴI are the estimated
parameters.

The discrepancy between the approximated value and the
ideal value is

f̂ − f = 1
2Ŵ

T M̂ − 1
2W

∗TM∗ − ε

= − 1
2W

∗T
(
M̂ + M̃

)
+ 1

2Ŵ
T M̂ − ε

= − 1
2W̃

T M̂ − 1
2Ŵ

T M̃ − 1
2W̃

T M̃ − ε

= − 1
2W̃

T M̂ − 1
2Ŵ

T M̃ − ε0,

(13)

where W̃ = W ∗ − Ŵ and ε0 = 1
2W̃

T M̃ + ε . To derive
the parameter learning law of the T2FSHLRNN, the Taylor
expansion of M∗ is carried out

M∗
(
Q∗,W ∗

O, P
∗
, P ∗, C∗, B∗,W ∗

I

)
= M̂

(
Q̂, ŴO, P̂ , P̂ , Ĉ, B̂, ŴI

)
+Os +

∂M
∂W∗

O

∣∣∣W∗
I =ŴI

(
W ∗
O − ŴO

)
+ ∂M

∂Q∗

∣∣∣Q∗=Q̂

(
Q∗ − Q̂

)
+ ∂M

∂P
∗

∣∣∣
P

∗
=P̂

(
P

∗ − P̂
)

+ ∂M
∂P∗

∣∣∣ P∗=P̂

(
P ∗ − P̂

)
+ ∂M

∂C∗

∣∣
C∗=Ĉ

(
C∗ − Ĉ

)
+ ∂M

∂B∗

∣∣
B∗=B̂

(
B∗ − B̂

)
+ ∂M

∂W∗
I

∣∣∣W∗
I =ŴI

(
W ∗
I − ŴI

)
.
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The difference between the approximated value M̂ and the
ideal value M∗ is

M̃
(
Q̃, W̃O, P̃ , P̃ , C̃, B̃, W̃I

)
=M∗ − M̂

= ∂M
∂W∗

O

∣∣∣W∗
O=ŴO

(
W ∗
O − ŴO

)
+ ∂M

∂Q∗

∣∣∣Q∗=Q̂

(
Q∗ − Q̂

)
+ ∂M

∂P
∗

∣∣∣
P

∗
=P̂

(
P

∗ − P̂
)
+ ∂M

∂P∗

∣∣∣ P∗=P̂

(
P ∗ − P̂

)
+ ∂M

∂C∗

∣∣
C∗=Ĉ

(
C∗ − Ĉ

)
+ ∂M

∂B∗

∣∣
B∗=B̂

(
B∗ − B̂

)
+ ∂M

∂W∗
I

∣∣∣W∗
I =ŴI

(
W ∗
I − ŴI

)
+Os

=MWO
· W̃O +MQ · Q̃+MP · P̃ +MP · P̃

+MC · C̃ +MB · B̃ +MWI
· W̃I +Os,

(14)
where MWO

, MQ, Mp, MP , MC , MB , MWI
are the derivative

of M wrt. W ∗
O, Q∗, P

∗
, P ∗, C∗, B∗ and W ∗

I . Os represents
the high order terms. MWO

, MQ, Mp, MP , MC , MB and
MWI

are the partial derivatives of M with respect to each
variable evaluated at their approximate values. As a represen-
tative example, MWO

is given by:

MWO
= ∂M

∂WO
∗

∣∣∣WO
∗=ŴO

=
[

∂M1

∂WO

∂M2

∂WO
· · · ∂Mn

∂WO

]T
2n×m

.

Substituting (14) into (13) yields

f̂ − f = − 1
2W̃

T M̂ − 1
2Ŵ

T M̃ − ε0

= − 1
2W̃

T M̂ − 1
2Ŵ

T
(
MWO

· W̃O +MQ · Q̃+MP · P̃

+M · P̃ +MC · C̃ +MB · B̃ +MWI
· W̃I +Os

)
− ε0

= − 1
2W̃

T M̂ − 1
2Ŵ

TMWO
· W̃O − 1

2Ŵ
TMQ · Q̃

− 1
2Ŵ

TMP · P̃ − 1
2Ŵ

TMP · P̃ − 1
2Ŵ

TMC · C̃
− 1

2Ŵ
TMB · B̃ − 1

2Ŵ
TMWI

· W̃I −Om,
(15)

where Om = 1
2Ŵ

TOs + ε0.
The following parameter learning algorithms are designed:

˙̂
W = ˙̃W =

ϖ1

2
sM̂, (16)

˙̂
WT
O = ˙̃WT

O =
ϖ2

2
sŴTMWO

, (17)

˙̂
QT = ˙̃QT =

ϖ3

2
sŴTMQ, (18)

˙̂
P
T
=

˙̃
P
T
=
ϖ4

2
sŴTMP , (19)

˙̂
PT = ˙̃PT =

ϖ5

2
sŴTMP , (20)

˙̂
CT = ˙̃CT =

ϖ6

2
sŴTMC , (21)

˙̂
BT = ˙̃BT =

ϖ7

2
sŴTMB , (22)

˙̂
WI

T

= ˙̃WI

T

=
ϖ8

2
sŴTMWI

, (23)

where ϖ1, ϖ2, ϖ3, ϖ4, ϖ5, ϖ6, ϖ7, ϖ8 are learning rates.

IV. ATSC BASED ON T2FSHLRNN

In practical control systems, the system is often influenced
by disturbances. Experimental determination of the supremum
values for both the disturbance term and its temporal derivative
poses significant practical challenges in physical implementa-
tions. If the coefficients of the super twisting control are fixed
like in [21], then when facing disturbances, the control system
may not be able to compensate effectively. Variable gains for
super-twisting control are proposed to handle the uncertain
disturbances in this section.

A. Design of ATSC based on T2FSHLRNN

Compared with the ideal STSMC law in Section II.C, a
novel robust term is designed as (24), while the other parts
remain unchanged. v = −χ1

(
|s|

1
2 sgn (s) + χ3|s|φsgn (s)

)
+ w

ẇ = −χ2

(
1
2 + χ3

(
φ+ 1

2

)
|s|φ−1/2

+ χ2
3φ|s|

2φ−1
)
sgn (s) .

(24)
In (24), χ1, χ2 are adaptive gains, χ2 > 0, φ > 1. This

research proposes the following adaptive gain function

χ̇1 =

{
π1
√

γ1
2 tanhκ (|s| − µ) , χ1 > χ∆

ρ, χ1 ≤ χ∆ ,

χ2 = σχ1 +
1
2

(
λ+ 4σ2

)
,

(25)

ρ = π1
√
γ1/2, (26)

σ =
π2
π1

√
γ2
γ1
, (27)

where π1, γ1, µ, λ, χ∆, κ, π2, γ2 are positive constants that
need to be designed, and χ1 (0) > χ∆.

Assumption 2: The disturbance and its derivative are
bounded as:

|d| ≤MD,
∣∣∣ḋ∣∣∣ ≤Md,

where MD and Md are unknown positive constants.
Remark 3: Rationality analysis of Assumption 2.
1) In practical scenarios, disturbances that impact actual

systems generally possess finite energy and a restricted
rate of change. Consequently, Assumption 2 has become
a prevalent postulate within the domain of disturbance
rejection control, as seen in [42]. Its efficacy has been
corroborated through multiple successful controller de-
sign implementations, see e.g., [24], [42], [43].

2) Under the STSMC framework established in [42], the
system boundaries must be presumed identifiable. How-
ever, precise numerical values delineating the boundaries
of the disturbance and its derivative are not needed in
Assumption 2. Merely establishing the existence of such
boundaries suffices. When contrasted with the approach
in [42], Assumption 2 herein is more accommodating.

Remark 4: Advantages of the proposed robust term.
1) The proposed robust term and parameter selection does

not require prior knowledge of disturbance bounds
or their derivatives, fundamentally avoiding the gain-
overestimation problem compared with [42];
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Fig. 4. Control scheme of RJCHRM.

2) Through the introduced feedback term χ3|s|φsgn (s) in
robust term, the designed ATSC can exhibit superior
convergence speed versus [41] even when system states
remain distant from the sliding surface.

Fig. 4 depicts the control scheme of RJCHRM. RJCHRM
transmits the angle and angular velocity in real-time to ATSC-
T2FSHLRNN. ATSC-T2FSHLRNN calculates the ideal re-
quired current. Then, PMSM Vector-Oriented Control mod-
ulates the actual control current for the PMSM, thus closing
the loop.

B. Stability analysis

In order to demonstrate the system’s stability, the following
Lyapunov function is selected:

V = V1 + V2,

where

V1 = V0 +
1

2γ1
(χ1 − χ∗

1)
2
+

1

2γ2
(χ2 − χ∗

2)
2
,

V0 = ZTPZ,

Z =

[
|s|

1
2 sgn (s) + χ3|s|φsgn (s)

w

]
=

[
ψ (s)

w

]
,

P =

[
p11 p12

p21 p22

]
=

[
λ+ 4σ2 −2σ

−2σ 1

]
,

V2 = 1
2s

2 + 1
2ϖ1

W̃T W̃ + 1
2ϖ2

W̃T
O W̃O + 1

2ϖ3
Q̃T Q̃

+ 1
2ϖ4

P̃
T
P̃ + 1

2ϖ5
P̃
T
P̃ + 1

2ϖ6
C̃T C̃

+ 1
2ϖ7

B̃T B̃ + 1
2ϖ8

W̃T
I W̃I ,

(28)

where γ1, γ2, χ∗
1, χ∗

2, λ, σ are positive constants. The
derivative of V1 is

V̇1 = V̇0 +
1
γ1

(χ1 − χ∗
1) χ̇1 +

1
γ2

(χ2 − χ∗
2) χ̇2

= ŻTPZ + ZTPŻ + 1
γ1

(χ1 − χ∗
1) χ̇1 +

1
γ2

(χ2 − χ∗
2) χ̇2

= ψ̇ (s)ZT
(
QV

TP + PQV
)
Z + 1

γ1
(χ1 − χ∗

1) χ̇1+
1
γ2

(χ2 − χ∗
2) χ̇2

= ψ̇ (s)ZTΘZ + 1
γ1

(χ1 − χ∗
1) χ̇1 +

1
γ2

(χ2 − χ∗
2) χ̇2,

(29)
where

QV =

[
−χ1 1

−χ2 0

]
, ψ̇ (s) =

1

2
|s|−

1
2 ,

Θ = QTV P + PQV

=

[
−2χ1

(
λ+ 4σ2

)
+ 8χ2σ 2χ1σ − 2χ2 + λ+ 4σ2

2χ1σ − 2χ2 + λ+ 4σ2 −4σ

]
.

(30)
Substituting χ2 in (25) into (30), and we get

Θ =

[
−2χ1

(
λ+ 4σ2

)
+ 8

(
σχ1 +

1
2

(
λ+ 4σ2

))
σ 0

0 −4σ

]

=

[
−2χ1λ+ 4σ

(
λ+ 4σ2

)
0

0 −4σ

]
.

(31)
−2χ1λ+ 4σ

(
λ+ 4σ2

)
< 0, if

χ1 > 2σ
(
λ+ 4σ2

)
/λ. (32)

Moreover, V̇0 satisfies

V̇0 = ψ̇ (s)ZTΘZ ≤ ψ̇ (s) pmin (Θ) ∥Z∥22
≤ 1

2pmin (Θ) ∥Z∥ ≤ 1
2pmin (Θ)

√
V0/pmax (P )

= rV
1/2
0 ≤ 0,

(33)



9

where r = 0.5pmin (Θ) /p
1/2
max (P ), pmin (Θ) stands for the

minimum eigenvalue of Θ in (31), while pmax (P ) denotes the
maximum eigenvalue of P . Substituting (33) into (29) yields

V̇1 ≤ rV
1/2
0 + 1

γ1
(χ1 − χ∗

1) χ̇1 +
1
γ2

(χ2 − χ∗
2) χ̇2

≤ −
[
r2V0 +

π2
1

2γ1
(χ1 − χ∗

1)
2
+

π2
2

2γ2
(χ2 − χ∗

2)
2
] 1

2

+ 1
γ1

(χ1 − χ∗
1) χ̇1 +

1
γ2

(χ2 − χ∗
2) χ̇2

+ π1√
2γ1

|χ1 − χ∗
1|+ π2√

2γ2
|χ2 − χ∗

2|

≤ −rmV
1
2
1 + 1

γ1
(χ1 − χ∗

1) χ̇1 +
1
γ2

(χ2 − χ∗
2) χ̇2

+ π1√
2γ1

|χ1 − χ∗
1|+ π2√

2γ2
|χ2 − χ∗

2| ,

(34)

where π1 and π2 are positive constants, γm = min (γ, π1, π2).
According to the adaptive gains (25), χ1 and χ2 are bounded,
and therefore there must exist χ∗

1 and χ∗
2 such thatχ1 − χ∗

1 =
εχ1 < 0 and χ2 − χ∗

2 = εχ2 < 0 hold true. Then (34) can
transform into

V̇1 ≤ −rmV
1
2
1 + 1

γ1
εχ1

χ̇1 +
1
γ2
εχ2

χ̇2

+ π1√
2γ1

|εχ1
|+ π2√

2γ2
|εχ2

|

= −rmV
1
2
1 − 1

γ1
|εχ1

| χ̇1 − 1
γ2

|εχ2
| χ̇2

+ π1√
2γ1

|εχ1
|+ π2√

2γ2
|εχ2

|

= −rmV
1
2
1 − |εχ1

|
(

1
γ1
χ̇1 − π1√

2γ1

)
− |εχ2 |

(
1
γ2
χ̇2 − π2√

2γ2

)
= −rmV

1
2
1 +Ψ,

(35)

where

Ψ = − |εχ1
|
(

1

γ1
χ̇1 −

π1√
2γ1

)
− |εχ2

|
(

1

γ2
χ̇2 −

π2√
2γ2

)
.

(36)
Taking the derivative of (28) yields

V̇2 = sṡ+ 1
ϖ1
W̃T ˙̃W + 1

ϖ2
W̃T
O

˙̃WO + 1
ϖ3
Q̃T ˙̃Q

+ 1
ϖ4
P̃
T ˙̃
P + 1

ϖ5
P̃
T ˙̃P + 1

ϖ6
C̃T ˙̃C

+ 1
ϖ7
B̃T ˙̃B + 1

ϖ8
W̃T
I

˙̃W I .

(37)

Substituting (5) into (37) yields

V̇2 = s
((
θ̈d − bu− f − g − d

)
+ ξ1m|e|m−1

ė+ ξ2δ̇ (e)
)
+R

= s
(
v + f̂ − f − d

)
+R,

(38)
where d represents disturbance, and the expression of R is

R = 1
ϖ1
W̃T ˙̃W + 1

ϖ2
W̃T
O

˙̃WO + 1
ϖ3
Q̃T ˙̃Q

+ 1
ϖ4
P̃
T ˙̃
P + 1

ϖ5
P̃
T ˙̃P + 1

ϖ6
C̃T ˙̃C

+ 1
ϖ7
B̃T ˙̃B + 1

ϖ8
W̃T
I

˙̃W I .

Substituting (15) and parameter learning algorithm (16)–
(23) into (38) yields

V̇2 = s
(
v + f̂ − f − d

)
+R

= s
(
− 1

2W̃
T M̂ − 1

2Ŵ
TMWO

· W̃O − 1
2Ŵ

TMQ · Q̃

− 1
2Ŵ

TMP · P̃ − 1
2Ŵ

TMP · P̃ − 1
2Ŵ

TMC · C̃

− 1
2Ŵ

TMB · B̃ − 1
2Ŵ

TMWI
· W̃I + v −Om − d

)
+R

= s (v −Om − d) .
(39)

Substituting (24) and (25) into (39) yields

V̇2 = s (v −Om − d)

= −χ1 |s|
(
|s|

1
2 + χ3|s|φ

)
− sOm − sd

− |s|
∫
χ2

(
1
2 + χ3

(
φ+ 1

2

)
|s|φ−1/2

+ χ2
3φ|s|

2φ−1
)
dt

≤ −χ1 |s|
(
|s|

1
2 + χ3|s|φ

)
+ |s| |Om|+ |s| |d|

− |s|
∫
χ2

(
1
2 + χ3

(
φ+ 1

2

)
|s|φ−1/2

+ χ2
3φ|s|

2φ−1
)
dt

≤ |s|
(
− 1

2

∫
χ2dt+ |Om|+ |d|

)
.

(40)
According to the properties of the neural network, it is

certain that Om is bounded. Assume that the maximum value
of Om is OM , and combined with Assumption 2, we can
obtain

|Om|+ |d| ≤ OM +MD = Ω,

where Ω is an unknown positive number.
Combining (35) and (40) yields

V̇ = V̇1 + V̇2 ≤ −rmV
1
2
1 +Ψ+ |s|

(
Ω− 1

2

∫ t

0

χ2dt

)
.

Substituting (25)-(27) into (36) yields

Ψ =


− |εχ1

|
(

π1√
2γ1

tanhκ (|s| − µχ)− π1√
2γ1

)
−

|εχ2 |
(

π2√
2γ2

tanhκ (|s| − µχ)− π2√
2γ2

)
, χ1 > χ∆

0, χ1 ≤ χ∆ .

The solution for tanhκ (|s| − µχ) = εV is given by |s| =
µ = µχ + µV ,where εV is an extremely small positive value
and µP is a positive value. According to the dynamic changes
of s, χ1, χ2 and Ω, two potential situations must be taken into
account to guarantee the system’s stability.

Scenario 1: |s| > µ, χ1 > χ∆.
When the value of χ1 satisfies (32) and χ2 satisfies∫ t

0
(χ2/2) dt ≥ Ω, it can ensure that V̇ ≤ 0 holds. If χ1 and

χ2 do not meet the above two conditions, they will gradually
increase according to (25) until both conditions are met. Once
the condition that V̇ ≤ 0 is met, the system will initiate the
convergence process, during which |s| will gradually decline
until it reaches the value of |s| ≤ µ.

Scenario 2: |s| ≤ µ.
When χ1 > χ∆, the value of Ψ is positive. This positivity

has the potential to render V̇ positive as well. Under such
conditions, |s| will progressively exceed µ. At this point, the
controller will revert to scenario 1, causing |s| to be drawn
back to the level of |s| ≤ µ. Ultimately, |s| will stabilize
in a state where |s| ≤ µp, with µp being marginally larger
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TABLE II
RJCHRM PHYSICAL PARAMETERS

Parameters Value Unit

N 101 -
Bm 0.01 Nm/rad/sec
Jm 0.00051 kg ·m2

Jl 0.00122 kg ·m2

np 11 -
K 0.231 Nm/A
Imax 5.95 A

than µ. In conclusion, the stability of the system has been
demonstrated. To better stabilize s within a small interval,
it is necessary to design κ to be sufficiently large. Under
this condition, µ is approximately equal to µχ , where µχ
determines the size of the stable interval for s.

Although stability and convergence under arbitrary initial
conditions can be theoretically guaranteed under Assumption
1 and Assumption 2, these assumptions may not be strictly
satisfied in complex practical systems if controller parameters
are poorly designed. Through systematic parameter optimiza-
tion, steady-state tracking accuracy can be effectively tuned
to meet practical requirements. Consequently, the proposed
scheme achieves practical stability for the system.

Remark 5: Parameter design rules.
1) Parameter of MFNTSS: Design the relevant parameters

according to (6)–(8).
2) Parameters of T2FSHLRNN: The parameters of the

novel neural network mainly involve the design of the
learning rates. The larger the learning rate, the faster the
corresponding parameter evolution. However, an overly
large learning rate is prone to over-shooting. The initial
values of the remaining parameters can be randomly
chosen and subsequently updated online in accordance
with equations (16)–(23).

3) Design of variable gains of ATSC: Design the param-
eters according to (25)-(27). All parameters need to
be positive numbers. µ should be chosen to be small
enough, as it determines the final convergence range of
s.

V. SIMULATION

To validate the efficacy of ATSC-T2FSHLRNN, this re-
search conducts simulation experiments using the Mat-
lab/Simulink platform. The simulation conditions include three
types. The parameters of RJCHRM are detailed in Table
2. SMC-RBF [15] and ASTC-RBF [41] are compared. We
selected ASTC-RBF and SMC-RBF as comparative methods
because they represent a neural-network-enhanced adaptive
super-twisting control framework and a classical SMC ap-
proach, respectively, comprehensively validating the superior
performance of our method in high-precision positioning and
mechanical disturbance rejection. Specifically, in SMC-RBF,
the RBF neural network serves to approximate the model.
To ensure fairness, the optimal parameters are selected for
all three controllers, obtained through multiple simulation
analyses. The parameters of MFNTSS are ξ1 = 2, ξ2 = 2,

TABLE III
PERFORMANCE METRICS OF SINUSOIDAL TRACKING TEST

Controller SMC-RBF ASTC-RBF ATSC-T2FSHLRNN

MAXE 0.0519 rad 0.0547 rad 0.0418 rad
AVERE 0.0049 rad 0.0016 rad 0.0004 rad
RMSE 0.0059 rad 0.0030 rad 0.0020 rad

m = 3, p = 3, q = 5, and ∆s = 0.01. The param-
eters of T2FSHLRNN are ϖ1 = 10000, ϖ2 = 0.0001,
ϖ3 = 1, ϖ4 = 50, ϖ5 = 50, ϖ6 = 2, ϖ7 = 0.5, and
ϖ8 = 0.0001, Ŵ (0) =

[
0.1 0.1 0.1 0.1 0.1 0.1

]T
,

Q̂ (0) =
[
−4 0 4

]T
, P̂ (0) =

[
2.5 2.5 2.5

]T
,

P̂ (0) =
[
1 1 1

]T
, Ĉ (0) =

[
−3 0 3

]T
,

B̂ (0) =
[
3.5 3.5 3.5

]T
, ŴI (0) =

[
0.1 0.1 0.1

]T
,

ŴO (0) = 0.01, exY (0) = 0, exφ1 (0) = 1, exφ2 (0) = 1,
and exφ3 (0) = 1. The parameters of variables gain of ATSC
are π1 = 15, γ1 = 5, µ = 0.005, ρ = 2, σ = 1, λ = 2,
χ∆ = 1, χ1 (0) = 3, and κ = 1000.

A. Sinusoidal Tracking Test

The sinusoidal tracking test is used to test the approx-
imation ability of T2FSHLRNN and the dynamic tracking
performance of ATSC-T2FSHLRNN. The desired trajectory
is θd = 0.5π sin (0.25πt). Figs. 5(a)–5(l) show the simulation
results.

Fig. 5(a) shows the approximation curve of T2FSHLRNN
for the unknown model, and it can be seen that T2FSHLRNN
has superior approximation characteristics. Figs. 5(b)–5(i)
are the variation diagrams of the adaptive coefficients in
T2FSHLRNN. The parameters in the neural network can be
automatically optimized online, and they converge within a
very short time. Thus, this method is more convenient than
methods with fixed base widths and center vectors.

Fig. 5(j) shows the tracking error fluctuation range of
ATSC-T2FSHLRNN is ±0.03 deg, and the curve is smoother
compared with those of the other two controllers. To enable a
more intuitive comparison of the tracking accuracies of differ-
ent controllers, MAXE (Maximum Error), AVERE (Average
Error), and RMSE (Root Mean Square Error) are used to
evaluate the tracking performance, and the calculation results
are shown in Table 3. As can be clearly observed from Table
3, the proposed scheme has a more significant fluctuation sup-
pression effect and higher compensation accuracy. The ATSC-
T2FSHLRNN control signal (Fig. 5(k)) is the smoothest and
most consistent compared to SMC-RBF and ASTC-RBF. This
indicates that ATSC-T2FSHLRNN can effectively suppress the
chattering of RJCHRM. Although the control signal of ATSC-
T2FSHLRNN oscillates significantly in the initial stage, its
change is within an acceptable range.

Fig. 5(l) shows the adaptive gain variation of ATSC-
T2FSHLRNN. It can be seen that under the influence of
interference, s escapes from the boundary µ. At this time, the
adaptive gain gradually increases. When s is constrained to
satisfy |s| ≤ µ, the adaptive gain undergoes monotonic decay.
s is always confined within µp, which is slightly larger than µ,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 5. (a) Effect diagram of T2FSHLRNN; (b) Adaptive curve of W ; (c)
Adaptive curve of WO; (d) Adaptive curve of Q; (e) Adaptive curve of P ; (f)
Adaptive curve of P ; (g) Adaptive curve of C; (h) Adaptive curve of B; (i)
Adaptive curve of WI; (j) Tracking error comparison of sinusoidal tracking
test; (k) Control law comparison of sinusoidal tracking test; (l) Adaptive gains
of ATSC-T2FSHLRNN of sinusoidal tracking test.

and this is consistent with the theoretical analysis in Section
IV.B.

B. Dual-sine Tracking Test

To further validate the tracking performance of the proposed
control algorithm under complex dynamic conditions, a dual-
sine trajectory θd = 0.5 (0.5π sin (0.25πt) + 0.5π sin (0.5πt))
is adopted for simulation verification [44]. All the controller

(a) (b)

(c) (d)

Fig. 6. (a) Tracking performance comparison of dual-sine tracking test;(b)
Tracking error comparison of dual-sine tracking test; (c) Control law compar-
ison of dual-sine tracking test; (d) Adaptive gains of ATSC-T2FSHLRNN of
dual-sine tracking test.

TABLE IV
PERFORMANCE METRICS OF DUAL-SINE TRACKING TEST

Controller SMC-RBF ASTC-RBF ATSC-T2FSHLRNN

MAXE 0.0818 rad 0.0956 rad 0.0598 rad
AVERE 0.0087 rad 0.0052 rad 0.0008 rad
RMSE 0.0105 rad 0.0099 rad 0.0031 rad

parameters are the same as in the previous test. The simulation
results are presented in Figs. 6(a)-6(d).

As shown in Fig. 6(a) and Fig. 6(b), the ATSC-
T2FSHLRNN can effectively track the double sinusoidal tra-
jectory, with its tracking error significantly smaller than the
other two controllers. Fig. 6(c) presents the comparison of
control laws, where the SMC-RBF still exhibits strong chat-
tering, while the other two controllers remain relatively stable.
Fig. 6(d) displays the adaptive gains of ATSC-T2FSHLRNN.
It can be observed that under the combined effect of dual-
frequency sinusoidal signals, the amplitude of s exceeding
the boundary is 0.1 deg, which is notably larger than that
in the single sinusoidal tracking scenario. After s exceeds the
boundary, the adaptive gain mechanism actively drives it back
to |s| ≤ µ. Comparative performance metrics are presented
in Table 4. The above analysis and Table 4 demonstrate that
the ATSC-T2FSHLRNN can successfully accomplish the dual
sinusoidal curve tracking task.

C. Step and Disturbance Rejection Test

The step and disturbance rejection test is used to evaluate
the transient response performance and disturbance rejection

TABLE V
PERFORMANCE METRICS OF STEP AND DISTURBANCE REJECTION TEST

Controller SMC-RBF ASTC-RBF ATSC-T2FSHLRNN

MAXE 0.000925 rad 0.000628 rad 0.000471 rad
AVERE 0.000070 rad 0.000035 rad 0.000009 rad
RMSE 0.000157 rad 0.000105 rad 0.000047 rad
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. (a) Tracking error comparison of step and disturbance rejection test;
(b) Control law comparison of step and disturbance rejection test; (c) Adaptive
gains of ATSC-T2FSHLRNN of step and disturbance rejection test; (d MAXE
values under different load disturbances; (e) AVERE values under different
load disturbances; (f) RMSE values under different load disturbances.

ability of the ATSC-T2FSHLRNN. The desired value of the
signal is θd = π/3 rad. The disturbance signal is a square-
wave signal applied at the load end, with an amplitude of 2
Nm, a period of 10 seconds, and a duty cycle of 50%. The
parameters are the same as before. Figs. 7(a)–7(c) show the
simulation results.

It can be seen from Fig. 7(a) that the ATSC-T2FSHLRNN
can quickly track the desired signal. The time required to
reach the steady state is approximately 1.8 s, which is notably
quicker than that of the other two control methods. We use
MAXE, AVERE, and RMSE during the steady-state phase to
evaluate the tracking performance, and results are presented in
Table 5. The ATSC-T2FSHLRNN exhibits more outstanding
transient response performance.

Among three controllers, ATSC-T2FSHLRNN generates the
most stable control input (Fig. 7(b)). This finding suggests that
ATSC-T2FSHLRNN effectively mitigates system chattering,
thereby averting potential damage to the actuator. Moreover,
it validates the non-singularity of the proposed controller.
Although the control signal of the ATSC-T2FSHLRNN under-
goes a more pronounced change in the initial phase compared
to the other two controllers, the magnitude of this change
remains within an acceptable threshold. This phenomenon is in
line with the faster convergence rate of ATSC-T2FSHLRNN.
Fig. 7(d) presents the adaptive gains of ATSC-T2FSHLRNN.
The variation in the adaptive gains is consistent with the
outcomes of the sinusoidal tracking test, further corroborating
the theoretical analysis presented in Section IV.B.

Upon the application of load torque, distinct abrupt varia-
tions emerge in the tracking curves of the three controllers. No-
tably, the amplitude of such variations in ATSC-T2FSHLRNN

is relatively smaller. Subsequently, the tracking trajectory of
ATSC-T2FSHLRNN rapidly converges to steady state, demon-
strating significantly faster response compared to the other two
controllers. The abrupt changes in the adaptive gain curve align
precisely with the transitions of the square-wave signal (Fig.
7(c)). As shown in Fig. 7(b), the robustness of the SMC-RBF is
achieved through control inputs with high-amplitude and high-
frequency switching characteristics. After reaching the steady
state, both inputs of ASTC-RBF and ATSC-T2FSHLRNN
exhibit extremely narrow fluctuation ranges.

Furthermore, we set the load disturbance torque at 0 Nm, 1
Nm, 2 Nm, 3 Nm, 4 Nm, and 5 Nm and conducted multiple
repeated experiments. Subsequently, the average values of the
performance metrics were calculated. To facilitate a visual
comparison of the tracking performance, these metrics are
presented in the form of a histogram in Figs. 7(d)–7(f). ATSC-
T2FSHLRNN quantitatively performs better than SMC-RBF
and ASTC-RBF on all three metrics. The above simulation
results indicate that ATSC-T2FSHLRNN significantly outper-
forms the other two controllers in terms of tracking accuracy,
response speed, anti-interference ability, and chattering sup-
pression.

VI. CONCLUSION

In this article, an ATSC-T2FSHLRNN is presented for
robot joints. An MFNTSS is devised to avoid singularity
and accelerate the convergence rate of SMC. To tackle the
uncertain modeling of robot joints, a T2FSHLRNN is intro-
duced. Variable gains are designed to ensure system stability
under unknown disturbances. Simulation results verify the
proposed method’s steady-state and transient tracking perfor-
mance and disturbance rejection capability. In future research,
experiments will be conducted to further validate the ATSC-
T2FSHLRNN’s effectiveness.
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