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Abstract—This paper presents the online identification,
based on finite impulse response filter coefficients, of a DC
motor. The coefficients are obtained based on least mean-square
identification using experimental data. They are used to
construct the Hankel matrix based on which the mathematical
model is determined. The results are subsequently compared
with a standard method in Matlab. The method is applied in real
time directly on a low-cost development board, where it
successfully replicates the identification process previously
tested in simulation. The results obtained online confirm the
accuracy and reliability of the approach in a real-time setting.
This work bridges the gap between theoretical system
identification and practical real-time implementation, enabling
motor identification with accessible hardware. The proposed
approach supports rapid prototyping, educational use, and cost-
effective industrial applications, particularly in scenarios that
require real-time system monitoring.

Keywords—identification, adaptive filters, Markov
coefficients

I. INTRODUCTION

System identification [1] builds mathematical models of
dynamic systems using measurements of the input and output
of the system. The steps usually taken in order to identify a
mathematical model are: 1) input-output data acquisition, 2)
selecting or estimating a model structure, 3) estimating the
model parameters and 4) validation of the identified model.

System identification is essential for subsequent model-
based analysis and synthesis of dynamic systems. Various
identification methods exist in the literature that can be
parametric [1], non-parametric [2], neural network
identification etc. The identification of linear time invariant
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(LTI) systems is important both in signal processing fields
such as seismic deconvolution [3], channel equalization [4] (in
communications), radar [5], and systems and control theory
[6], [7]. Many parameter estimation methods for linear
systems, such as multiple innovation parameter identification
methods [8], [9], iterative estimation methods [1], data
filtering-based estimation methods and gradient-based
estimation methods [8], assume that the system order or
structure is known. For instance, in [10], a third order
cumulants-based algorithm has been proposed for the
identification of a linear system with minimum and
nonminimum phase, excited by non-Gaussian, independent
identically distributed sequences.

Digital filters present a significant interest, as they have a
multitude of applications, see [11]. One application is the
representation of the response of a process to impulse by finite
impulse response (FIR) filter coefficients. This can be
considered as an identification method [12] and has received
considerable attention [8]. FIR filters can be implemented in
continuous time or in discrete time. In digital signal
processing a FIR filter is a filter [13] whose impulse response
has a well-defined period and settles to zero in a finite time.
This is frequently contrasted with IIR (Infinite Impulse
Response) filters, which have the potential for internal
feedback and respond indefinitely. An Nth order discrete time
FIR filter's impulse response takes precisely N+1 samples to
reach zero. [14] shows that it is possible to construct filter
matrices that preserve the impulse response of arbitrary linear
time-invariant (LTI) systems. [2] focuses on the Kronecker
product decomposition of impulse responses, together with
low-rank approximations. It proposes two (iterative/recursive)
algorithms: an iterative Wiener filter, with improved
performance compared to the conventional Wiener filter, and
a recursive adaptive least-squares algorithm.

Although deriving a mathematical model based on
impulse response has been well-documented in the literature
[1], its real-time application has not been sufficiently
explored. In this work, we will provide a concrete example



using a DC motor with unknown parameters, subjected to real-
time testing.

Adaptive subband [12] filtering is of considerable interest
because it reduces computational complexity and improves
the convergence speed in adaptive signal processing
applications. An adaptive filter has an associated adaptive
algorithm for updating the filter coefficients to allow the filter
to operate in unknown and changing environments. Adaptive
system identification has been widely applied in active noise
control [15], digital control [16], communications [17] etc.
Online system identification, or real-time identification, is
also an important application of adaptive algorithms, allowing
models to dynamically adjust to changing conditions. In this
work we will utilize algorithms based on FIR filters, which
offer advantages in stability and computational simplicity for
real-time implementation. Using these adaptive filters, both
identification and control can be achieved in real time for
multiple-input multiple-output (MIMO) systems, as shown in
[18]; however, this requires high-processing-power
computers.

In this paper we use FIR filters for the identification of a
DC motor. The choice of a DC motor is motivated by the
simplicity of its mathematical model, the ease of access to its
internal states, and its availability for testing in laboratory
environment. However, the identification algorithm can be
applied to any system or process where the input can be
controlled and the output can be measured. It is important to
note that the process should not be too fast, ensuring that it can
be processed in real-time by the low-cost development board
with limited specifications. This broadens the algorithm’s
applicability while maintaining feasibility within constrained
hardware environments. For estimating the Markov
coefficients, which are essential for constructing the Hankel
matrix, we selected least mean-square (LMS) based on
processing cost and error performance as shown in our
previous work in [11]. Once these Markov coefficients - also
known as FIR coefficients - are obtained, we construct the
Hankel matrix and subsequently derive the motor’s
mathematical model, specifically its transfer function.

The identification is performed online and validated
experimentally. A comparative analysis with existing methods
is conducted. The novelty of this work lies in the real-time
implementation of the identification process. By using only a
low-cost development board, we demonstrate the feasibility of
deriving a mathematical model for a system with unknown
parameters.

The main contribution of this paper is bridging the gap
between theoretical system identification and practical real-
time implementation, using only low-cost, accessible
hardware. We show that accurate model identification for a
DC motor can be achieved in real time and under significant
resource constraints, directly enabling cost-effective scenarios
where immediate system characterization is needed. While
our study is demonstrated on a SISO system, the approach is
readily applicable to other contexts requiring real-time system
monitoring.

This paper is structured as follows. Section II presents
aspects related to the motor, the development board and the
acquisition of input-output data. The identification of the
coefficients of the FIR filter and the steps to obtain the
mathematical model are presented in Section III. A
comparison between the performed identification and a classic

method is described in Section IV. Section V presents some
conclusions and starting points for further developments.
II. SETUP

The case study we consider is the identification of the
direct current motor in Fig.1. For data acquisition the Nucleo-
64P development board, see Fig. 2, is used.

A. The motor

The motor whose dynamics is identified is the direct
current motor in Fig. 1. The parameters are not known.

The motor used for identification

Fig. 1.

The motor’s dynamics are [6]:
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where i,(t) represents the rotor’s current, w,,(t)is the
angular velocity, 6,,(t) is the angular position, R, represents
the rotor’s resistance, L, is the rotor's inductance, K, is a
proportionality constant, K; is torque constant, D, is the
viscous damping, J,, represents the equivalent moment of
inertia and u, (t) is the voltage applied to the armature.

Model (1) is in state-space form, where each variable has
a clear physical meaning. In our case, the measured output is
the angular velocity w,, of the motor, thus y = w,,.
Although our goal is to identify the motor described by (1),
the identified model will not retain this exact form, as it will
be obtained in discrete time and represents an approximation
of the original system.

B. Data acquisition
The STM32 Nucleo 64-P development board (see Fig.2.)

was used to generate the pseudo-random binary sequence
(PRBS) input and to acquire data from the motor.



Fig.2.  The development board used in the data acquisition process

The setup is presented in Fig. 3. The input is applied, and
the output is acquired using the STM32 Nucleo-64P
microcontroller. The sampling period is Ty = 5+ 1073 [sec].
The sampling period was chosen to be as small as possible to
avoid altering the captured signal, yet large enough to allow
for the data to be transmitted and processed efficiently, i.e. to
balance identification accuracy with the practical constraints
of real-time implementation. A smaller sampling period
would introduce a higher computational load, which could
hinder performance, especially if additional processing (e.g.,
filtering, control) is required in parallel. In fact, 5ms
approaches the practical lower limit for our low-cost
development board when considering concurrent processing
tasks.

Data
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Development
board

System

Fig.3. Hardware setup for data acquisition

A PRBS signal is used as input for the motor in order to
capture its response characteristics. This type of signal is
commanly used in  system identification  [1],
telecommunications [4], and signal processing to test and
analyze system responses to complex inputs. It serves as a
duty cycle for the motor and is easily generated by a
microcontroller. The period of the PRBS is also 5 ms and it
ensures that even for the shortest segment of the input signal,
several data points could be obtained for both input and output
signals. The measured output is the angular velocity of the
motor, more precisely its frequency, measured by the encoder
(1000 pulses/revolution). Both the PRBS input and the motor
output are acquired in real time and can be seen in Fig. 4.
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Fig. 4.  Acquired signals

III. SYSTEM IDENTIFICATION

In this section we discuss the steps taken to identify the
motor. Adaptive algorithms will be used to obtain FIR
coefficients, after which the Hankel matrix is formed, and then
reduced.

A. Data preprocessing and Markov coefficients

Most signals of practical interest are analog. To process
them using numerical processors, they must be sampled. Our
goal is to accurately identify the process despite these aspects.
Markov coefficients, known also as FIR coefficients,
represent the impulse response of an LTI system and
characterize the system’s output at each discrete time step
following an impulse input. To identify them we use subband
adaptive filters that return an imposed number of coefficients.

An adaptive system identification (or modeling) structure
is shown in Fig. 5, where the adaptive filter is placed in
parallel with an unknown system (or plant) to be identified.
The adaptive filter provides a linear model. The excitation
signal u(n) serves as input to both the unknown system and
the adaptive filter, while n(n) represents the disturbance (or
plant noise) occurring in the unknown system. The objective
is to model the unknown system so that the adaptive filter
output y(n) closely matches the unknown system output
d(n). This is achieved by minimizing the error signal e(n),
which is the difference between the physical response d(n)
and the model response y(n).
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Fig.5.  Block diagram of adaptive system identification

Several algorithms for obtaining the coefficients have
been tested using collected data from input and output, among
which Least Means Square (LMS), Normalized LMS
(NLMS), Affine Projection (AP) and Recursive Least Squares
(RLS). A comparison of these methods was carried out in [19],
where we evaluated their performance in estimating the
Markov coefficients. Among them, the LMS algorithm
provided the best trade-off between simplicity and accuracy,
yielding the lowest estimation error. In this paper, we build
upon those results and use the LMS-estimated coefficients for
constructing the Hankel matrix, benefiting from the
algorithm’s  computational efficiency and reliable
performance in real-time scenarios.

B. Hankel matrix decomposition

A Hankel matrix [20] is a square matrix that is constant
on any diagonal that is orthogonal to the main one. The
Hankel matrix has been found useful [6], [21] for
decomposing non-stationary signals and representing time-
frequency.

Hankel matrices are formed when, given a sequence of
input-output data, a realization of an underlying state space
model is desired. Singular value decomposition of the Hankel



matrix provides a means to compute the 4, B, and C matrices
of the linear state space realization.

After obtaining the Markov coefficients g;,,i = 0,..., M,
as described in Section III A, the Hankel matrix is constructed
as:

91 92 9p
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where p represents the number of rows and columns of the
composite matrix. For our experiments, we use M = 33,
determined experimentally.

Next, we compute the singular values. To determine the
order of the system that best reproduces its response, it is
necessary to consider the order as the number of the highest
singular values of the Hankel matrix. In this sense, according
to Fig. 6 which presents these values, we may consider order
5 (the first 5 highest values can be observed), but, as model
(1) is of order 3, we choose order 3.
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Fig. 6.  The singular values obtained
Thus, we consider a reduction to the 3rd order. For this,
H is decomposed as:
_ I, 0 (W 3
H=w, U (5 5 ) ()
where X has the largest singular values on the main diagonal.
The state, input and output matrices are computed as [21]:
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I and 0 represent the identity and 0 matrics of corresponding
dimension; ZT is the pseudo-inverse of matrix Z; n, is the
number of outputs and n,, represents the number of inputs. In
our case, they are both 1; g, represents the Oth Markov
coefficient, which has not been used in constructing the
Hankel matrix.

C. Identified model

After reducing the model to order 3, we obtain the discrete
state space representation (12), the discrete time transfer

function (13) and by Tustin approximation, with sampling
period T, = 5+ 1073 [sec] the continuous time one in (14):

094 03 =001 0.45
A= (—0.08 0.53 0.18 ) B= < 0.27 )
0.003 0.09 —0.92 —-0.02 (12)
D = (0.07)

C=1(033 -0.7 0.1)

Hpr(2)
B 0.07448 z3 — 0.07989 z2 + 0.06108 z + 0.1678 (13)

z3 — 0.545z2 — 0.8581 z + 0.5056
Hpir(s)
_ 0.2627 s3 + 1645 s% — 3.714-105s + 7.887-107 (14)

s3+1.306-10%s2 + 1.585-10°s + 3.616- 107

For evaluating the model, we use the root mean square
error (RMSE).

Rusg = [ 40" (s)

where N is the number of samples, y is the output given by
the model and d is the measured output.

The comparison of the output of (13) and the original
signal can be seen in Fig.7. The RMSE for this model is
5.2247.
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Fig. 7. Measured and simulated output

IV. RESULTS AND DISCUSSION

As baseline, we consider n4sid (numerical subspace state
space system identification) [22] implemented in Matlab.
Using a 3" order model an approximation of over 87% (with
a RMSE = 2.5641) was obtained. The result can be seen in
Fig. 8.
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The obtained transfer function is given in (16) and in
continuous time in (17).
Hpysia(2) (16)
_0.01622 z2+0.01199 z + 0.196

23— 0.8016 z2 — 0.3286 z + 0.2322

Hn4sid(5) =
—0.16 s® + 180.5s% — 7.53-10*s + 1.15-107 17

s3 + 1556 s2 +2.36-10°s + 5.264-10°

Fig. 9 shows the response of the transfer functions (13)
and (16) compared to the motor output for the PRBS input
(yellow line). Both return satisfactory results and close to the
motor output. Fig. 10 emphasizes the differences in response.
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Fig. 9. Comparison between n4sid and FIR identification
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Fig. 10. Detailed comparison

V. REAL-TIME RESULTS

Before real-time implementation, a series of timing
experiments were conducted in Matlab. The execution time
of the proposed method was approximately 0.020 seconds,
while Matlab's built-in n4sid function required around 0.30
seconds to identify a model of the same order. Even though
the built-in function is highly optimized, its execution time
remains significantly higher. A manual implementation of the
n4sid algorithm was also developed, similar to our method.
This version achieved a model fit (77.05% vs. 87.32% for the
Matlab version) and reduced execution time to approximately
0.055 seconds. However, this still represents more than

double the execution time of our method. Given the
computational limitations of low-cost embedded platforms,
such latency differences become critical when frequent
model updates are required. These results confirm that,
although real-time subspace identification is theoretically
feasible, the proposed FIR-based approach remains more
practical for fast and repeated updates. Consequently, the
identification steps for FIR method were implemented in real
time on the development board.

The execution time to process a measurement is 1.5 ms.
Then 24 ms are needed to calculate the FIR parameters and
another 14 ms for matrices 4, B, C, D. The matrices could be
recalculated each 13 samples, corresponding to 65 ms, but
the system is slowly varying and to allow for extra
computation time (or parallel tests), the matrices are
recalculated only every 100 ms, corresponding to 20
samples.

The transfer function obtained in real-time is:

Hreal—time(z)
0,075 z3 — 0.080 z% + 0.061 z + 0.168 (18)
~ 73— 054522 — 0.858 z + 0.506

which differs minimally from (13).

Comparing the Markov coefficients obtained in Matlab
and the real-time development board, respectively, can be
seen in Table 1. As can be seen, the difference is of the order
1075,

TABLE L. COMPARISON BETWEEN MATLAB AND STM32
Markov Coefficients Markov Coefficients
idx Matlab Real-time | jdx Matlab Real-time
results results results results

1 -0.00077 -0.00077 18 0.001017 0.001018
2 0.000762 0.000762 19 0.001275 0.001275
3 0.000651 0.00065 20 0.001378 0.001378
4 0.000363 0.000364 21 0.0000207 0.000021
5 0.001292 0.001292 22 0.000416 0.000416
6 0.001661 0.001661 23 0.000357 0.000358
7 0.001191 0.001191 24 0.000952 0.000952
8 0.002062 0.002062 25 0.000479 0.000478
9 0.001603 0.001603 26 0.000336 0.000337
10 0.002543 0.002542 27 0.000423 0.000422
11 0.002549 0.002548 28 0.000223 0.000224
12 0.001653 0.001653 29 0.0000693 0.000069
13 0.001226 0.001225 30 0.000552 0.000552
14 0.000903 0.000904 31 0.0004782 0.000478
15 0.00039 0.00039 32 0.000386 0.000386
16 0.001386 0.001385 33 0.000645 0.000644
17 0.000498 0.000497

Simulating the system using these values with the same
input, the output is indistinguishable from the result in Fig. 7.
This is because the small differences between the Markov
parameters obtained in real-time and those computed in
MATLAB cause only minor variations in the system’s
response and transfer function.

VI. CONCLUSIONS

This paper presented a real time practical application to
online identify a motor based on Markov coefficients, which
can yield rapid results suitable for dynamic systems in a
resource-constrained environment. The acquired data was
processed using numerical filters. Adaptive sub-band filters
were used to obtain the low-order finite impulse response



filter coefficients. The state-space model was obtained
starting from the Hankel matrix.

Real-time testing has been satisfactory, correctly
identifying the parameters by obtaining the mathematical
model using only the development board and acquired data.

Directions for further development include comparing the
models obtained by other adaptive algorithms such as NLMS,
RLS and AP; creating an interface for the user in choosing
the adaptive algorithm for obtaining the Markov coefficients,
for their number and for the order of the identified system.
Another direction of development is to apply this algorithm
to other: mechanical, electrical, etc systems. Moreover, it is
desired to obtain a model from a larger number of FIR
coefficients to improve approximation. This methodology
can be extended to any system for which the input and output
are known. Real-time identification directly from the
development board is particularly valuable in scenarios
where rapid adaptation to changing system dynamics is
crucial, such as in control systems, fault detection, and system
changes.
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