
 

Online identification using Markov coefficients: 

application to a DC motor  
 

Simona-Daiana Stiole  

Department of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

simona.sim@aut.utcluj.ro 

Mircea Susca 

Department of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

mircea.susca@aut.utcluj.ro 

Doina Pisla  

CESTER 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

doina.pisla@mep.utcluj.ro 

Zsófia Lendek 

Department of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

zsofia.lendek@aut.utcluj.ro 

Attila Medgyesi 

Department of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

medgyesi.is.attila@student.utcluj.ro  

Calin Liviu Vaida 

CESTER 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

calin.vaida@mep.utcluj.ro

Vlad-Mihai Mihaly 

Department of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

vlad.mihaly@aut.utcluj.ro 

Anca Elena Pica 

Department of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

anca.pica@campus.utcluj.ro 

Petru Dobra 

Department of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

petru.dobra@aut.utcluj.ro 

 

Abstract—This paper presents the online identification, 

based on finite impulse response filter coefficients, of a DC 

motor. The coefficients are obtained based on least mean-square 

identification using experimental data. They are used to 

construct the Hankel matrix based on which the mathematical 

model is determined. The results are subsequently compared 

with a standard method in Matlab. The method is applied in real 

time directly on a low-cost development board, where it 

successfully replicates the identification process previously 

tested in simulation. The results obtained online confirm the 

accuracy and reliability of the approach in a real-time setting. 

This work bridges the gap between theoretical system 

identification and practical real-time implementation, enabling 

motor identification with accessible hardware. The proposed 

approach supports rapid prototyping, educational use, and cost-

effective industrial applications, particularly in scenarios that 

require real-time system monitoring. 

Keywords—identification, adaptive filters, Markov 

coefficients 

I. INTRODUCTION 

System identification [1] builds mathematical models of 
dynamic systems using measurements of the input and output 
of the system. The steps usually taken in order to identify a 
mathematical model are: 1) input-output data acquisition, 2) 
selecting or estimating a model structure, 3) estimating the 
model parameters and 4) validation of the identified model. 

System identification is essential for subsequent model-
based analysis and synthesis of dynamic systems. Various 
identification methods exist in the literature that can be 
parametric [1], non-parametric [2], neural network 
identification etc. The identification of linear time invariant 

(LTI) systems is important both in signal processing fields 
such as seismic deconvolution [3], channel equalization [4] (in 
communications), radar [5], and systems and control theory 
[6], [7]. Many parameter estimation methods for linear 
systems, such as multiple innovation parameter identification 
methods [8], [9], iterative estimation methods [1], data 
filtering-based estimation methods and gradient-based 
estimation methods [8], assume that the system order or 
structure is known. For instance, in [10], a third order 
cumulants-based algorithm has been proposed for the 
identification of a linear system with minimum and 
nonminimum phase, excited by non-Gaussian, independent 
identically distributed sequences.  

Digital filters present a significant interest, as they have a 
multitude of applications, see [11]. One application is the 
representation of the response of a process to impulse by finite 
impulse response (FIR) filter coefficients. This can be 
considered as an identification method [12] and has received 
considerable attention [8].  FIR filters can be implemented in 
continuous time or in discrete time. In digital signal 
processing a FIR filter is a filter [13] whose impulse response 
has a well-defined period and settles to zero in a finite time. 
This is frequently contrasted with IIR (Infinite Impulse 
Response) filters, which have the potential for internal 
feedback and respond indefinitely. An Nth order discrete time 
FIR filter's impulse response takes precisely N+1 samples to 
reach zero. [14] shows that it is possible to construct filter 
matrices that preserve the impulse response of arbitrary linear 
time-invariant (LTI) systems. [2] focuses on the Kronecker 
product decomposition of impulse responses, together with 
low-rank approximations. It proposes two (iterative/recursive) 
algorithms: an iterative Wiener filter, with improved 
performance compared to the conventional Wiener filter, and 
a recursive adaptive least-squares algorithm.  

Although deriving a mathematical model based on 
impulse response has been well-documented in the literature 
[1], its real-time application has not been sufficiently 
explored. In this work, we will provide a concrete example 
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using a DC motor with unknown parameters, subjected to real-
time testing. 

Adaptive subband [12] filtering is of considerable interest 
because it reduces computational complexity and improves 
the convergence speed in adaptive signal processing 
applications. An adaptive filter has an associated adaptive 
algorithm for updating the filter coefficients to allow the filter 
to operate in unknown and changing environments. Adaptive 
system identification has been widely applied in active noise 
control [15], digital control  [16], communications [17] etc. 
Online system identification, or real-time identification, is 
also an important application of adaptive algorithms, allowing 
models to dynamically adjust to changing conditions. In this 
work we will utilize algorithms based on FIR filters, which 
offer advantages in stability and computational simplicity for 
real-time implementation. Using these adaptive filters, both 
identification and control can be achieved in real time for 
multiple-input multiple-output (MIMO) systems, as shown in 
[18]; however, this requires high-processing-power 
computers. 

In this paper we use FIR filters for the identification of a 
DC motor. The choice of a DC motor is motivated by the 
simplicity of its mathematical model, the ease of access to its 
internal states, and its availability for testing in laboratory 
environment. However, the identification algorithm can be 
applied to any system or process where the input can be 
controlled and the output can be measured. It is important to 
note that the process should not be too fast, ensuring that it can 
be processed in real-time by the low-cost development board 
with limited specifications. This broadens the algorithm’s 
applicability while maintaining feasibility within constrained 
hardware environments. For estimating the Markov 
coefficients, which are essential for constructing the Hankel 
matrix, we selected least mean-square (LMS) based on 
processing cost and error performance as shown in our 
previous work in [11]. Once these Markov coefficients - also 
known as FIR coefficients - are obtained, we construct the 
Hankel matrix and subsequently derive the motor’s 
mathematical model, specifically its transfer function. 

The identification is performed online and validated 
experimentally. A comparative analysis with existing methods 
is conducted. The novelty of this work lies in the real-time 
implementation of the identification process. By using only a 
low-cost development board, we demonstrate the feasibility of 
deriving a mathematical model for a system with unknown 
parameters.  

The main contribution of this paper is bridging the gap 
between theoretical system identification and practical real-
time implementation, using only low-cost, accessible 
hardware. We show that accurate model identification for a 
DC motor can be achieved in real time and under significant 
resource constraints, directly enabling cost-effective scenarios 
where immediate system characterization is needed. While 
our study is demonstrated on a SISO system, the approach is 
readily applicable to other contexts requiring real-time system 
monitoring. 

This paper is structured as follows. Section II presents 
aspects related to the motor, the development board and the 
acquisition of input-output data. The identification of the 
coefficients of the FIR filter and the steps to obtain the 
mathematical model are presented in Section III. A 
comparison between the performed identification and a classic 

method is described in Section IV. Section V presents some 
conclusions and starting points for further developments. 

II. SETUP 

The case study we consider is the identification of the 

direct current motor in Fig.1. For data acquisition the Nucleo-

64P development board, see Fig. 2, is used. 

A. The motor 

The motor whose dynamics is identified is the direct 
current motor in Fig. 1. The parameters are not known. 

 

Fig. 1.    The motor used for identification 

The motor’s dynamics are [6]:  
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(1) 

where 𝑖𝑎(𝑡)  represents the rotor’s current, 𝜔𝑚(𝑡) is the 

angular velocity, 𝜃𝑚(𝑡) is the angular position, 𝑅𝑎 represents 

the rotor’s resistance,  𝐿𝑎  is the rotor's inductance, 𝐾𝑒  is a 

proportionality constant, 𝐾𝑡  is torque constant, 𝐷𝑚  is the 

viscous damping, 𝐽𝑚  represents the equivalent moment of 

inertia and 𝑢𝑎(𝑡) is the voltage applied to the armature. 

Model (1) is in state-space form, where each variable has 

a clear physical meaning. In our case, the measured output is 

the angular velocity 𝜔𝑚  of the motor, thus 𝑦 = 𝜔𝑚. 
Although our goal is to identify the motor described by (1), 

the identified model will not retain this exact form, as it will 

be obtained in discrete time and represents an approximation 

of the original system. 

B. Data acquisition 

The STM32 Nucleo 64-P development board (see Fig.2.) 
was used to generate the pseudo-random binary sequence 
(PRBS) input and to acquire data from the motor. 



 

Fig. 2.    The development board used in the data acquisition process 

The setup is presented in Fig. 3. The input is applied, and 
the output is acquired using the STM32 Nucleo-64P 
microcontroller. The sampling period is 𝑇𝑠 = 5 ∙ 10

−3 [𝑠𝑒𝑐]. 
The sampling period was chosen to be as small as possible to 
avoid altering the captured signal, yet large enough to allow 
for the data to be transmitted and processed efficiently, i.e.  to 
balance identification accuracy with the practical constraints 
of real-time implementation. A smaller sampling period 
would introduce a higher computational load, which could 
hinder performance, especially if additional processing (e.g., 
filtering, control) is required in parallel. In fact, 5 𝑚𝑠 
approaches the practical lower limit for our low-cost 
development board when considering concurrent processing 
tasks. 

 

Fig. 3.    Hardware setup for data acquisition 

A PRBS  signal is used as input for the motor in order to 
capture its response characteristics. This type of signal is 
commanly used in system identification [1], 
telecommunications [4], and signal processing to test and 
analyze system responses to complex inputs. It serves as a 
duty cycle for the motor and is easily generated by a 
microcontroller. The period of the PRBS is also 5 𝑚𝑠 and it 
ensures that even for the shortest segment of the input signal, 
several data points could be obtained for both input and output 
signals. The measured output is the angular velocity of the 
motor, more precisely its frequency, measured by the encoder 
(1000 pulses/revolution). Both the PRBS input and the motor 
output are acquired in real time and can be seen in Fig. 4.  

 

Fig. 4.    Acquired signals 

III. SYSTEM IDENTIFICATION 

In this section we discuss the steps taken to identify the 
motor. Adaptive algorithms will be used to obtain FIR 
coefficients, after which the Hankel matrix is formed, and then 
reduced.  

A. Data preprocessing and Markov coefficients 

Most signals of practical interest are analog. To process 

them using numerical processors, they must be sampled. Our 

goal is to accurately identify the process despite these aspects. 

Markov coefficients, known also as FIR coefficients, 

represent the impulse response of an LTI system and 

characterize the system’s output at each discrete time step 

following an impulse input. To identify them we use subband 

adaptive filters that return an imposed number of coefficients. 
An adaptive system identification (or modeling) structure 

is shown in Fig. 5, where the adaptive filter is placed in 
parallel with an unknown system (or plant) to be identified. 
The adaptive filter provides a linear model. The excitation 
signal 𝑢(𝑛) serves as input to both the unknown system and 
the adaptive filter, while 𝜂(𝑛) represents the disturbance (or 
plant noise) occurring in the unknown system. The objective 
is to model the unknown system so that the adaptive filter 
output 𝑦(𝑛)  closely matches the unknown system output 
𝑑(𝑛). This is achieved by minimizing the error signal 𝑒(𝑛), 
which is the difference between the physical response 𝑑(𝑛) 
and the model response 𝑦(𝑛). 

 

Fig. 5.    Block diagram of adaptive system identification 

Several algorithms for obtaining the coefficients have 
been tested using collected data from input and output, among 
which Least Means Square (LMS), Normalized LMS 
(NLMS), Affine Projection (AP) and Recursive Least Squares 
(RLS). A comparison of these methods was carried out in [19], 
where we evaluated their performance in estimating the 
Markov coefficients. Among them, the LMS algorithm 
provided the best trade-off between simplicity and accuracy, 
yielding the lowest estimation error. In this paper, we build 
upon those results and use the LMS-estimated coefficients for 
constructing the Hankel matrix, benefiting from the 
algorithm’s computational efficiency and reliable 
performance in real-time scenarios. 

B. Hankel matrix decomposition 

A Hankel matrix [20] is a square matrix that is constant 

on any diagonal that is orthogonal to the main one. The 

Hankel matrix has been found useful [6], [21] for 

decomposing non-stationary signals and representing time-

frequency. 

Hankel matrices are formed when, given a sequence of 

input-output data, a realization of an underlying state space 

model is desired. Singular value decomposition of the Hankel 



matrix provides a means to compute the 𝐴, 𝐵, and 𝐶 matrices 

of the linear state space realization.  

After obtaining the Markov coefficients 𝑔𝑖 , , 𝑖 = 0, . . . , 𝑀, 

as described in Section III A, the Hankel matrix is constructed 

as: 

𝐻𝑝 = (

𝑔1 𝑔2
𝑔2 𝑔3

⋯
𝑔𝑝
𝑔𝑝+1

⋮ ⋱ ⋮
𝑔𝑝 𝑔𝑝+2 ⋯ 𝑔2𝑝

) 

 

(2) 

where 𝑝 represents the number of rows and columns of the 

composite matrix. For our experiments, we use 𝑀 = 33, 
determined experimentally.  

Next, we compute the singular values. To determine the 

order of the system that best reproduces its response, it is 

necessary to consider the order as the number of the highest 

singular values of the Hankel matrix. In this sense, according 

to Fig. 6 which presents these values, we may consider order 

5 (the first 5 highest values can be observed), but, as model 

(1) is of order 3, we choose order 3. 

 
Fig. 6.    The singular values obtained 

 

Thus, we consider a reduction to the 3rd order. For this, 

𝐻 is decomposed as: 

𝐻 = (𝑈𝑠 𝑈𝑜) (
Σ𝑠 0
0 Σ𝑜

) (
𝑉𝑠
𝑇

𝑉𝑜
𝑇) 

(3) 

where Σ𝑠 has the largest singular values on the main diagonal. 

The state, input and output matrices are computed as [21]: 

𝐴 = (𝐽1𝑈𝑠)
†𝐽2𝑈𝑠 (4) 

𝐶 = 𝐽3𝑈𝑠 (5) 

𝐵 = (𝐼 − 𝐴2𝑁)Σ𝑠𝑉𝑠
𝑇𝐽4 (6) 

𝐷 = 𝑔0 − 𝐶𝐴
2𝑁−1(𝐼 − 𝐴2𝑁)−1𝐵 (7) 

where 

𝐽1 = (𝐼(𝑝−1)𝑛𝑦 0(𝑝−1)𝑛𝑦×𝑛𝑦) (8) 

𝐽2 = (0(𝑝−1)𝑛𝑦×𝑛𝑦 𝐼(𝑝−1)𝑛𝑦) (9) 

𝐽3 = (𝐼𝑛𝑦 0𝑛𝑦×(𝑝−1)𝑛𝑦) (10) 

𝐽3 = (
𝐼𝑛𝑢

0(𝑝−1)𝑛𝑢𝑦×𝑛𝑢
) 

(11) 

𝐼 and 0 represent the identity and 0 matrics of corresponding 

dimension; 𝑍†  is the pseudo-inverse of matrix 𝑍; 𝑛𝑦  is the 

number of outputs and 𝑛𝑢 represents the number of inputs. In 

our case, they are both 1; 𝑔0  represents the 0th Markov 

coefficient, which has not been used in constructing the 

Hankel matrix.  

C. Identified model 

After reducing the model to order 3, we obtain the discrete 

state space representation (12), the discrete time transfer 

function (13) and by Tustin approximation, with sampling 

period 𝑇𝑠 = 5 ∙ 10
−3 [𝑠𝑒𝑐] the continuous time one in (14):  

 

𝐴 = (
0.94 0.3 −0.01
−0.08 0.53 0.18
0.003 0.09 −0.92

)  𝐵 = (
0.45
0.27
−0.02

) 
 
 

(12) 
 

𝐶 = (0.33 −0.7 0.1)       𝐷 = (0.07) 
 
𝐻𝐹𝐼𝑅(𝑧)

=
0.07448 𝑧3 −  0.07989 𝑧2 + 0.06108 𝑧 +  0.1678

 𝑧3 −  0.545 𝑧2 −  0.8581  𝑧 +  0.5056
 

 

(13) 

𝐻𝐹𝐼𝑅(𝑠)

=
0.2627 𝑠3 +  1645 𝑠2 −  3.714 ∙ 105 𝑠 +  7.887 ∙ 107

 𝑠3 + 1.306 ∙ 104 𝑠2 +  1.585 ∙ 106𝑠 +  3.616 ∙ 107
 

 

(14) 

 

For evaluating the model, we use the root mean square 

error (RMSE). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑑𝑖)

2𝑁
𝑖=1

𝑁
 

 

(15) 

where 𝑁 is the number of samples, 𝑦 is the output given by 

the model and 𝑑 is the measured output. 

The comparison of the output of (13) and the original 

signal can be seen in Fig.7. The RMSE for this model is 

5.2247.   

 
Fig. 7.    Measured and simulated output 

IV. RESULTS AND DISCUSSION 

As baseline, we consider n4sid (numerical subspace state 

space system identification) [22] implemented in Matlab. 

Using a 3rd order model an approximation of over 87% (with 

a RMSE = 2.5641) was obtained. The result can be seen in 

Fig. 8. 

 
Fig. 8.    Simulated output with n4sid 



The obtained transfer function is given in (16) and in 

continuous time in (17).  

𝐻𝑛4𝑠𝑖𝑑(𝑧)

=
0.01622 𝑧2 + 0.01199 𝑧 +  0.196

 𝑧3 −  0.8016 𝑧2 −  0.3286 𝑧 +  0.2322
 

(16) 

  

 

𝐻𝑛4𝑠𝑖𝑑(𝑠) = 

−0.16 𝑠3 + 180.5 𝑠2 −  7.53 ∙ 104 𝑠 + 1.15 ∙ 107

 𝑠3 + 1556 𝑠2  + 2.36 ∙ 105 𝑠 +  5.264 ∙ 106
 

 

 

(17) 

 

Fig. 9 shows the response of the transfer functions (13) 

and (16) compared to the motor output for the PRBS input 

(yellow line). Both return satisfactory results and close to the 

motor output. Fig. 10 emphasizes the differences in response.  

 
Fig. 9.    Comparison between n4sid and FIR identification 

 
Fig. 10.    Detailed comparison 

 

V. REAL-TIME RESULTS  

Before real-time implementation, a series of timing 

experiments were conducted in Matlab. The execution time 

of the proposed method was approximately 0.020 seconds, 

while Matlab's built-in n4sid function required around 0.30 

seconds to identify a model of the same order. Even though 

the built-in function is highly optimized, its execution time 

remains significantly higher. A manual implementation of the 

n4sid algorithm was also developed, similar to our method. 

This version achieved a model fit (77.05% vs. 87.32% for the 

Matlab version) and reduced execution time to approximately 

0.055 seconds. However, this still represents more than 

double the execution time of our method. Given the 

computational limitations of low-cost embedded platforms, 

such latency differences become critical when frequent 

model updates are required. These results confirm that, 

although real-time subspace identification is theoretically 

feasible, the proposed FIR-based approach remains more 

practical for fast and repeated updates. Consequently, the 

identification steps for FIR method were implemented in real 

time on the development board. 

The execution time to process a measurement is 1.5 𝑚𝑠. 
Then 24 𝑚𝑠 are needed to calculate the FIR parameters and 

another 14 𝑚𝑠 for matrices 𝐴, 𝐵, 𝐶, 𝐷. The matrices could be 

recalculated each 13 samples, corresponding to 65 𝑚𝑠, but 

the system is slowly varying and to allow for extra 

computation time (or parallel tests), the matrices are 

recalculated only every 100 𝑚𝑠,  corresponding to 20 

samples.   

The transfer function obtained in real-time is: 
𝐻𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒(𝑧)

=
0.075 𝑧3 −  0.080 𝑧2 + 0.061 𝑧 +  0.168

 𝑧3 −  0.545 𝑧2 −  0.858  𝑧 +  0.506
 

 

 

(18) 

which differs minimally from (13). 

Comparing the Markov coefficients obtained in Matlab 

and the real-time development board, respectively, can be 

seen in Table 1. As can be seen, the difference is of the order 

10−5.  

TABLE I.  COMPARISON BETWEEN MATLAB AND STM32 

 

idx 
Markov Coefficients  

idx 

Markov Coefficients 
Matlab 

results 

Real-time 

results 
Matlab 

results 
Real-time 

results 
1 -0.00077 -0.00077 18 0.001017 0.001018 

2 0.000762 0.000762 19 0.001275 0.001275 

3 0.000651 0.00065 20 0.001378 0.001378 

4 0.000363 0.000364 21 0.0000207 0.000021 

5 0.001292 0.001292 22 0.000416 0.000416 

6 0.001661 0.001661 23 0.000357 0.000358 

7 0.001191 0.001191 24 0.000952 0.000952 

8 0.002062 0.002062 25 0.000479 0.000478 

9 0.001603 0.001603 26 0.000336 0.000337 

10 0.002543 0.002542 27 0.000423 0.000422 

11 0.002549 0.002548 28 0.000223 0.000224 

12 0.001653 0.001653 29 0.0000693 0.000069 

13 0.001226 0.001225 30 0.000552 0.000552 

14 0.000903 0.000904 31 0.0004782 0.000478 

15 0.00039 0.00039 32 0.000386 0.000386 

16 0.001386 0.001385 33 0.000645 0.000644 

17 0.000498 0.000497    

 

Simulating the system using these values with the same 

input, the output is indistinguishable from the result in Fig. 7. 

This is because the small differences between the Markov 

parameters obtained in real-time and those computed in 

MATLAB cause only minor variations in the system’s 

response and transfer function.  

 

VI. CONCLUSIONS 

This paper presented a real time practical application to 

online identify a motor based on Markov coefficients, which 

can yield rapid results suitable for dynamic systems in a 

resource-constrained environment. The acquired data was 

processed using numerical filters. Adaptive sub-band filters 

were used to obtain the low-order finite impulse response 



filter coefficients. The state-space model was obtained 

starting from the Hankel matrix. 

Real-time testing has been satisfactory, correctly 

identifying the parameters by obtaining the mathematical 

model using only the development board and acquired data.  

Directions for further development include comparing the 

models obtained by other adaptive algorithms such as NLMS, 

RLS and AP; creating an interface for the user in choosing 

the adaptive algorithm for obtaining the Markov coefficients, 

for their number and for the order of the identified system. 

Another direction of development is to apply this algorithm 

to other: mechanical, electrical, etc systems. Moreover, it is 

desired to obtain a model from a larger number of FIR 

coefficients to improve approximation. This methodology 

can be extended to any system for which the input and output 

are known. Real-time identification directly from the 

development board is particularly valuable in scenarios 

where rapid adaptation to changing system dynamics is 

crucial, such as in control systems, fault detection, and system 

changes.  
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