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Abstract—Nonlinear stochastic dynamical systems are com- (dynamical) relations with probabilistic approximatiombich,
monly used to model physical processes. For linear and Gaus-if appropriately chosen, further simplify the system. Hoefe

sian systems, the Kalman Filter is optimal in minimum mean ;5 comes with the price of increased uncertainty of the@hod
squared error sense. However, for nonlinear or non-Gaussian (see [7] and references therein)

systems the estimation of states or parameters is a challenging . A i . . .
problem. Furthermore, it is often required to process data online. ~ The main objective of this paper is to review and discuss
Therefore, apart from being accurate, the feasible estimation the filtering methods that are commonly applied to nonlin-
algorithm also needs to be fast. In this paper we review Bayesian egr stochastic dynamical systems. Among many techniques
filters which possess the aforementioned properties. Each filter dealing with this subject we can distinguish: grid-basedhme
is presented in an easy to implement algorithmic form. We focus . . . ..
on parametric methods, among which we distinguish three types ods [8]-{10] des'lgned for dynamical systems defined on finite
of filters: filters based on analytical approximations (Extended State space, point-mass methods [11]-[13] that are based on
Kalman Filter, Iterated Extended Kalman Filter), filters based grid approximation of the continuous state space, Bene
on statistical approximations (Unscented Kalman Filter, Central  Daum filters [14]-[16] derived for a specific class of nonéine
Difference Filter, Gauss-Hermite Filter), and filters based on the gy gtemg with linear observations, parametric methods—[17]
Gaussian Sum Approximation (Gaussian Sum Filter). We discuss . . . .
each of these filters, and compare them on illustrative examples. [20], _"e"_ meth_o‘?'s folr Wh"%h the estimation problem has a
solution in a finite dimensional parameter space, nonpara-
metric methods based on numerical integrations via Monte
Carlo approach such as Particle Filters [9], [21]-[23] oF En
I. INTRODUCTION semble Kalman Filters [24]-[27] popular in data assimilati
The concept offiltering has been studied for decades iproblems, and more [28]-[30]. Throughout the years, each
various engineering problems that require extractingrmi of these approaches lead to a development of a multitude
tion of interest from an uncertain or changing environmént. of algorithms. Detailed analysis of such a vast number of
filter is arecursive algorithmdesigned for a case where thestimation techniques is a monumental task. Therefordisn t
complete knowledge of the relevant signal characteristicsarticle, we focus only on the parametric filters. We present
not available [1]. The main purpose of a filter is to utilize thfiltering algorithms and investigate their properties ahdirt
available information about the process of interest in otde feasibility for online applications.
obtain an estimate of certain variables that cannot be medsu To help the reader better understand the properties of
directly. the filters discussed we analyze their performance in four
In this paper we analyze filters designed for nonlineajumerical experiments. For these experiments we use popula
discrete-time continuous-state dynamical systems. These systems that have been extensively studied in the litexatur
used to model, among others, physical [2], chemical [3], This paper is organized as follows. First, in Section I,
biological [4], or economic [5] processes. Usually, in eath we state the generdayesian Filtering(BF) problem. Next,
these cases, one is interested in continuous-time pher@meie proceed to the solutions of this problem. We start from
often governed by (partial) differential equations. Hoaev the simplest estimation methods that are applicable tolsimp
due to the complexity of these models and the limited cordynamical systems, and step by step continue to advanced
putational power available, a number of simplifications af@ters suitable for more complex estimation problems. In
required in order to obtain an efficient solution. Discrétee Section Ill we present a class of analytical approximators.
systems provide such a simplification since in this framéwogection IV deals with a class of statistical approximatdms.
time is represented by the monotonic set of discrete tin®ction V we discuss filters that are based on Gaussian Sum
steps that allows recursive filtering of the process of &ger approximation. Section VI concludes the paper.
Since the discretized system is only an approximation of
the original one, there is always a certain degree of uncer- Il. GENERAL PROBLEM EORMULATION:
tainty incorporated into the model, which depends on the ' BAYESIAN EILTERING '
discretization technique that was applied [6]. Other gussi
approximation is done by replacing the detailed deterrinis  In this section we formulate th8ayesian filtering(BF)
framework for nonlinear and non-Gaussian dynamical sys-
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variables (xy,yx, vk, W), Or functions of random time using a growing number of measurements, fixed-interval

variables(fy, hy,), smoothers, which estimate states within a fixed time interva
« bold capital letters to denote matri-using all the measurements from the same time interval, and
ces (Rk,Qk,Pk‘k,Fk,Hk) fixed-lag smoothers, which estimate states with a fixed time
« italic font to denote scalaréwi, n, K, q, h) delay. The overview of these methods is out of scope of this

« bold italic lower case font to denote deterministic vegpaper, instead readers interested in smoothing methods are
tors (U, Xz, X}, ) or the realizationsy,, x;,) of the random referred to [28], [36]-[41].

variables(yy, xx), The prediction problem is closely related to the filtering
« calligraphic upper case letters to denote determinist&; seproblem. In fact, finding then-step predictor can always be
e.g. V. ={y,,i=1,...,k}. done by iterating the prediction step of a given filter. Thas,
specialized algorithms are needed for this.
A. Bayesian Filtering In this paper we restrict our analysis to BFs, which recur-

ﬁ;vely solve the filtering problem for the system (1)—(3)wot
éps. First, during thprediction stepthe state model (1) and
e densityp(xi_1|Vx—1) are used to derive theredicted
state densityia the Chapman-Kolmogorov equation:

First, let us define the probabilistic state-space syste
which serves as a framework for the BF problem. Th%I
probabilistic state-space framework relates the procesgem
describing the evolution of the states in time, the obsamat
model relating the noisy measurements of the system to the :/ d 4
actual state, and the initial state of the system. In disetigte, POk V1) POti—1)p (a1 Vi-1)dxe—1, - (4)
at each time instant = 1,2, ..., the probabilistic state-spaceynere thetransition densityp(x,|x;_1) is determined by the
description is given by known statistics ofv;,_; and the transformatiofy, ;.

the state model The prediction step is followed by thgpdate stepvhere the
most recent measurememnt is combined with the predicted

) Xit1 = £ (Xe, Vi), (1) state density(xx|V;—1) using the observation model (2). The
the observation model desiredposterior PDF p(xx|))) is computed via Bayes’ rule:
" . .Yk = b, wie), 2) _ (Y5 |%k)P (%K | Vi—1) 5
and the initial condition p(xk| Vi) = T 20y <) (e Vo1 ) dcr (5)
*o ™~ Po, ©) Note that most real-life applications do not require a PDF

wherex; € R" andy, € RP are random variables corre-but rather a concrete point estimate of a state. The poste-
sponding to the state model and the measurement modeli@t PDF contains all the information required for compgtin
time stepk, respectivelyv, € R? andw;, € R! are uncorre- an optimal point estimaté;, of the state with respect to a
lated random variables, which represent the system noge ﬂﬁEdemed criterion. In general, the choice of the criteigoan
the measurement noise at time stepand are independent ofimportant (and non trivial) problem. An incorrectly chosen
the distribution of the initial state,. Throughout the paper Might lead to a significant decrease in the filter's perforcean
we assume thaf, : R® x RY — R™ is a known nonlinear as, €.9., in multi-target tracking applications [42], [43vo
function that models the evolution of the statg affected by Of the most popular estimators [8], [44], [45] are théimum
the random variable, and thath;, : R” x R! — R? is known Mmean-square erro(MMSE) estimator and thenaximum a
nonlinear function that relates the observation varighleto  Posteriori(MAP) estimator. The MMSE estimate is computed
the state variablex;, at time stepk under the disturbancesas the conditional mean of; given Yy

caused by the noisev,. Furthermore, we assume that the MMSE

distributions of state and observation noigg and w;, are Xk = E(xx| V) = /ka(xk|yk)dxk'

> 1. . o -
known for all i > 1 The MAP estimate is given by the vector that maximizes

_Note that in some appllcatlons the functiofig or hy .Ehe posterior density, i.e., it is a solution of the optintiza
might depend on uncertain parameters [31]. In such casgs i | blem

possible to learn the dynamics of the system online with tl?é map (k| Ve)
Expectation-Maximization algorithm [31]-[33]. ko T B IAXDIXKVE)-
Given the sequence of measurements up to time BlePnote that the MAP estimate is not unique if the posterior PDF

e, Y = {y;,i = 1,...k}, and the initial knowledge jchieves the maximal value in multiple points (e.g., the PDF
of the state distributior,, the objective of the estimation uf the uniform distribution).

is to find a certainprobability density function(PDF). For  pqr systems with linear dynamics and additive Gaussian
dynamical systems we distinguish three classical estimatijgises [46]-[49] the posterior PDF is also Gaussian [50]

problems [34]-[37]: and is computed in a closed from by th€lman Filter

1) m-step smoothingestimation ofp(xx—m|Y), (KF) [51]. The KF is an unbiased estimator [52] that is optima
2) m-step predictionestimation ofp(xym|Vk), in the MMSE and the MAP sense (for the KF the MMSE
3) filtering: estimation ofp(xy|Vy). estimate and the MAP estimate are identical). Despite re-

One can distinguish three types of smoothing algorithmstrictive assumptions the KF continues to be very popular
fixed-point smoothers, which estimate a state at a fixed pdintamong practitioners. In particular the problem of tuning th



parameters of the KF in case of model uncertainty has agtiactt is possible to compute the PCRB recursively for each singl
much attention. In [53] methods for unbiased, consistestep estimatoky
and asymptotically normal estimators of covariances(eqy T 1
i o | (Re —xg) (X — > (Jk) ©)

and covwy) have been developed. These algorithms have — Eyiioas (R = X&) (5 — xi) k)
been further improved in [54]-[57]. The effect of prefiltagi
upon the estimates of covariances has been studied in [
It has beed noted that precise knowledge of 6gy is more
critical [48], [55],_ [59] than knowledge (_)1_‘ co_(\;wk), which Jii1 = DiQ — (DiQ)T (Jk 4 D}cl)_l D,1€27 (10)
often can be derived from sensors specifications.

Unfortunately, for general nonlinear systems there exisiere
no closed form solution to the filtering .proplem. Thus, in DLl = Ey,, (A% logp (xpi1/%1)) (11a)
most cases we need to rely on approximations of the true D2 ._} (_Axk+11 ( | )) (11b)
posterior PDF which lead to suboptimal solutions [60], [61] b > OB P (Kh411Xk
In the following sections we present suboptimal parametric D%’ := Ex,, (—A%11 logp (xk41]x1))

ereJ; is n x n matrix that can be computed recursively
"solving Riccati-like equations:

filters. + Eyypoxre (—AXT 108 D (Vi1 [Xk41)) - (11c)
The iteration (10) is initialized with matrixJ,, which is
B. Performance Evaluation calculated from the initial condition (3)
It is possible to asses the achievable performance of a given Jo :=Eyx, (—AX log po (x0)) -

nonlinear filter by computing the (sampled) variance of the ) ) . . .

estimator and comparing it with thBosterior Cranér-Rao ' NUS, dealing with large matrices is avoided. _
Bound (PCRB). The PCRB gives a lower bound on thean Note that the PCRB implementation requires the deriva-
squared error(MSE) for any estimator of a random variable{iVeS in (11) to be evaluated in the true state and x;.+1

see Chaptee.4 of [62]. Thus, it is a generalization of the[65] [68]. Alternatively, the PCRB can be approximated by
classicalCramér-Rao Bound(CRB), see Chapter 32 of [63] €valuatingD;’, D;* andD;? in the estimate of the state [68].

or [64], which bounds the MSE of estimators of deterministilt has been argued that such an approximated PCRB can also
variables. The PCRB is derived for the system (1)~(3) arsl it?€ used as a performance measure of nonlinear filters [68].
independent of the filter applied to the system. Thus, theBCR! Some online applications the use of @enditional PCRB
serves as a benchmark for comparing the performance of tHaich depends on the actual realizatigh of the random
nonlinear filters [65]. Applications of the CRB to contingeu Variable 1., is preferable over the standard PCRB [69].

time nonlinear filtering are discussed in [66] whereas [gAAnOther interesting class of PCRB used in target tracking
focuses on discrete-time nonlinear filtering. applications and designed for systems with uncertaintyuibo

In what follows x,., and y,., denote random vari- measurements origin has been studied in [70]-[72]. Reursi
ables(xi, ..., x;) and(yl e ¥E) réspectively. The PCRB is algorithms for computing the PCRB for prediction, filtering

a lower bound on the mean squared estimation error defir@?:d smoothing esf[imation problems are discussed in [40].
by The PCRB provides a very useful performance measure for

R . . nonlinear filters. Another important property of the dismcs
By exin ((Xl:k = x1:k) (Rt — X1) ) ) (6) algorithms is stability. In case of nonlinear filtering thatsility
, ) analysis requires an advanced measure theoretic appruach t
wherely, , x,, denotes the expectation taken with respect {g ot scope of this paper. A comprehensive overview of
the random variableg ., andxi., and)flik Is an estimator o stability properties and asymptotic analysis of nadin
of x1.;, which depends on the observatign.;. filtering methods is given in [73], [74].
The lower bound on (6) is given by the inver(iél;k)’l,
€ 1. ANALYTICAL APPROXIMATIONS: EKF, IEKF
Ey,oxin <(>?1,k — X1.) (Ryk _XM)T) > (J1x)"", (7)  In this section we describe thExtended Kalman Filter
(EKF) and its modification, thdterated Extended Kalman
with the nk x nk information matrixJ,., defined by [67] Filter (IEKF). Both filters are analytical methods because the
i approximations of (4)-(5) are derived using the Taylor eri
T = By (—A%00 logp (X1, Y1ik)) (®) expansion, a method that exploits the analytical structdire

. _ functionsf;, andhy,.
where AY = V, (Vy)T is a second-order derivative op- ¥ ¥

erator andp (x1.;,¥1:x) IS @ joint density of the random ]
variable (x1., y1:x)- A. Extended Kalman Filter

Equations (7)—(8) give the lowest bound on the MSE of The EKF is one of the most popular modifications of the KF
an estimator of the whole trajectof.,. However, by (8), and is designed to estimate the states of a nonlinear system.
computation of the right-hand side of (7) requires invertinThe main idea of the EKF algorithm is that at each time
the largenk x nk matrix J,., which is undesirable from the step the nonlinear state (1) and observation (2) models ean b
numerical perspective. Fortunately, it has been showntf@t] analytically approximated in order to obtain a linear syste



For sufficiently smooth function§, andh;, given the previ- Algorithm 1 Extended Kalman Filter
ous state estimate,_,_; and covarianc®;,_,;,_, the EKF - Require: Pj_yj;_1, Xg—1j5—1, Qr—1, andRy,
approximates the right-hand sides of (1)-(2) with the first- Prediction step:
order Taylor series expansion around the poiis .1, 0) Compute matrice¥,_,, andV,_; according to (13)—(14)
and (fy—1(Xx—1x—1,0), 0), respectively [48], [75]: Compute the predicted mean ),
Kijk—1 = fr—1(Xp—1x—1,0)
v A 1 Compute the predicted covariankg,;, _;:
+ Vi ( ‘A”“*l) (122) Prji—1=Fe1Prqpp 1 FI_  + Vi1 Qe VI
Vi ~ hi(fr—1(Xk—1k—1,0),0) Update step:
+Hy (Axy — -1 (R—1j5-1,0)) + Wi (Awy)  (12b) Compute matrice¥;, and W, according to (15)—(16)
‘ A Ass A A h Compute the Kalman gaiKj: )
1) Fy—1 is the Jacobian matrix of the partial derivatives of compute the estimated mesg;:
fr_1 vv_|th Arespect to Fhe state variable evaluated at Kk = Xejpo1 + Ki (Vi — b (Xejp_1,0))
the point (X 11, 0): Compute the estimated covarianBe;:

of_1 . Prp = (I - KiHy) Prjrs
Fp1= kxl (Xk—1/k-1,0), (13)

2) V_1 is the Jacobian matrix of the partial derivatives of . ' ' ' '
fk—l with respect to the noise Variab*& evaluated at aCCUI’ate, mear"ng unb|ased, and prECISe, meanlng witH Smal

xXp 2 fe1(Re—1)p—1,0) + Fro1(Axp—1 — Kp—1)p—1)

the point(%;,_1x_1,0):is covariance mat_rix. N
58 Postulate 11l is more critical. To understand why, recadltth
A\ — %()A(kfﬂkfh 0), (14) the approximatiop (12a) models Fhe pre_dicted sFate as a-Gaus
v sian random variable, whereas in reality a variable after th

3) Hj, is the Jacobian matrix of the partial derivatives ohonlinear transformatioi, is no longer normally distributed.
h;, with respect to the state variable evaluated at the |n case of mild nonlinearities (different measures of resir-

point (fx—1(Xx—1jx—1,0),0): ity are reported in [77], [78]), the transformed variable ¢z
ohy, R accurately approximated by a Gaussian distribution. Hewev
Hy = 5= (fr-1(Xe-1j-1,0), 0), (15) for a system that exhibits a strong nonlinear behavior the

4) W, is the Jacobian matrix of the partial derivatives O?pprox]manon 'S No Ionger_ feasible and mlght 'res.ult in an
: . : inconsistent estimator. The influence of the linearizaéoors
h; with respect to the noise variabte, evaluated at the ! . .
oint (£,_1 (X 0),0): on the final EKF performance has been extensively studied in
P ~1%k-1k-1,8), 0): the literature [8], [79]-[81].
_ Ohy o Note that the EKF requires the covariance matri€@s
Wy = W(fk—l(xkfl\kflvo)70)' (16) and R;. They can be derived from stochastic properties of
It can be easily seen that the right-hand sides of both (128§ noisesvy, andwy or, if these are unknown, tuned from
and (12b) are Gaussian random variables. Therefore, @hta [82], [83].

predicted state and the posterior state densities are given
B. Iterated Extended Kalman Filter

POxrlVi-1) = N (xs i(k‘k_hpk‘k_l)’ (172) In order to improve the EKF thierated Extended Kalman
POkl Vi) = N (e X, P, (170)  Filter (IEKF) has been developed [84], [85]. This algorithm

with the means and the covariances as in Algorithm 1. has a strong resemblance to the conventional EKF. In fact, fo

The approximations (12) are accurate only if the followingoth filters the linearization of the prediction functid, is
three assumptions hold: derived in the same manner, and they differ only in the way in

. the noisesvy, andw;, are lightly tailed, i.e., the norms which the updated estimate i; computed. The IEKE assumes

of the covariance matrice¥,, and W, are small, and that th_e mea:_;urement model is _sgch that for every tlmel‘sf[ep
Il. the estimatex;_,_; is approximately equal to the the noise variablev, can be explicitly expressed as a function

actual state of the system at time step- 1 of y, and xy, i.e., for eachk there exists functiong, such
lll. the functionsf, andhy, do not exhibit severe nonlinearthat:

behavior. Wi = k(Y Xk)-
The first two postulates, together with the fact tBdv,] = If the observation model has additive linear noises, i.e.,

0 and E [w;] = 0 justify the Taylor expansions around the
aforementioned points, whereas the third one allows one to
truncate the infinite series after the first derivative term.  with an invertible matrixt,, then

Note that as far as real systems are concerned Postulate | 1
seems reasonable. Indeed, in most applications the process & (i Xi) = (Hi) " (yk = hi(xi)).
and the measurement noises are bounded within narrow intghich is the scaled difference between the measured and
vals [8], [76]. Postulate Il simply states that the estimaso the predicted variables. The IEKF linearizgs around the

hy (xk, wi) = hy(x) + Hywy,



updated state estimatg,;, rather than around the predictece.g. in case of jumps in parameter values, those filters aehie
state estimate,;,_; as the EKF does. This is achieved by théetter performance than the conventional EKF.

following iteration (hence the name): the algorithm starith

a linearized model around the predicted estimate_,, and
uses it to compute the updated state estinﬁé}g Then, the
function g;, is linearized around this newly obtained vecto
and the new updated state estiméﬁ%k is derived. This
procedure is repeated until the iteration stgpis reached
suchbthaﬂﬁg"k_— X}c‘];lﬂ <h_e,hvyheree_is Ia predéfined staII Xp41(1) = 0.1 (x(1))% = 2x5(1) + 20 + v (1),  (18a)
number. This iteration, which is equivalent to Gauss-Newto _ _

method [86], is presented in Algorithm 2. For the detailed Xit1(2) = % (1) +0.3%1(2) = 3+ vi(2), (18b)
derivation of the update algorithm see Section 3.4 of [84]. and

D. Example

r To illustrate the difference in the performance between
the EKF and the IEKF let us investigate a simple two-
dimensional nonlinear system defined by

Algorithm 2 IEKF: Update Iteration yr(l) = (Xk(l))z ;— (Xk(2))2 +wi (1), (192)
Require: ¢, Pr_1, %1, Rir Vi yi(2) =3 (xx(2))” /xx(1) + Wk(2) (19b)
Set the initial estimate?iw = Xp|k—1 Equations (18)—(19) constitute a system that is a modifi-
Set the initial counteri = 0 cation of the case studied in [87]. The system is nonlinear
repeat in both the state model (the second order term in (18a)) and
Augment the counteri =i + 1 the observation model. Furthermore, both the state and the
Linearize the error model Hi, = % (yk,;(;;‘—k}) observation models are influenced by mutually independent
Compute the Kalman gain: additive Gau;si(z)in noises, and vlvk with covariance matri-
Ki = Py (HL)T (H};Pk‘k71 (Hé)TJrRk) ! cesQy = [ 0 2 } andR;, = [ 0 10 | respectively.
Update the estimate: For the purpose of comparison, starting from the initial
Kipk = Kpe—1 — Kj, (gk (ykj(};,j) + H, (f(k‘k_l - x;‘c‘*kl)) state xo = [10 10]7, we hav_e generated a ra_ndom state
until Hf(iuc _ 5‘2?}3” <e traj_ectoryxlzgo = Q(l, ...y X20) With the correspo_ndlng Qbser—
Setiig = i vations Ysq accordllng to (18) :?md (19) respectively. Figure 1
Set the updated estimate;, — Xffk compares the estimates obt.alned by the EKF and the IEKF
Set the covariance of the updated estimate: aiming to reproduce the_ trajectom;_g_o f_rom the generated
Py = (I _ K?Hzo) Pijk1 measurementy’yg. Bqth filters are |n|t|aI|zTed from thg actual
state of the system, i.e., froxy = [10 10]" each having the
- . 10
Note that in the case of a linear observation model wifff " © initial uncertainty about the true stitg = 0 1]
additive noises the IEKF is reduced to the standard EKF. Theirthermore, the parameter which is used in Algorithm 2,

disadvantage of the IEKF is that, due to the internal loop, i Set toe = 0.0001.

is numerically more involved than the EKF. Also, it has been From Figure 1 it can be observed that most of the time the

argued that both the IEKF and the EKF perform similarly if thévo nonlinear filters behave similarly. However, in someesas

state is only partially observable [87]. Informative exdesp the IEKF tracks the actual state of the system more closely

of applications and comparison of the performance of the tdan the EKF does.

filters are discussed in [87], [88]. Let us now compute the PCRB for the system (18)—(19). It
can be shown [67], [92] that in the case of additive Gaussian

i ) noises the matrices (11) are given by:
C. Other EKF-like Algorithms

The accuracy of the EKF can be further improved by thgu _ ( Voo £ (x)) Qi) (Ve £7 (x5) T) (20a)
addition of higher-order terms in approximation (12). Bett lik ( Lk P ) * ( Lk )
accuracy comes with the price of increased computatiorfa}® = —Ex,,, (kafk.T (xk)> (Qr)~ ", (20b)

burden. Furthermore, although the higher-order filteraiced D2 = (Q,) "'+
the bias of the estimators [89], in general they cannot predu - . r T
unbiased estimates [79] Exl:k+l <(vXk+1hk+1 (Xk+1)) (Rk+1) (vxk+1hk+l (Xk-‘rl))
Other variations of the EKF have recently been developed (20c)
algorithms that avoid gradient computations [90], [91].-Re The derivatives in (20) are evaluated in the true states
garding these filters, two approaches can be distinguishe:the system and the expectations are obtained by Monte
implicit methods, and explicit methods. In the implicit apCarlo [93] averaging oveil0,000 realizations of the inde-
proach the problem of calculating a Jacobian is replacg@ndent trajectories of the system, with the initial distri

by the one of finding a solution of an analytical equatiofion p, = N (x0,Pyp). The initial information matrix is given
(see [90] and references therein). In the explicit apprdaeh py

nonlinear operator is linearized by means of Euler or Nevkmar Jo — (P! — 10
expansion [91]. As presented in [90], [91], in certain diitas, o=MPo) "=\ 1|
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Fig. 1: The EKF estimate (thin solid line) and the IEKRig. 2: RMSE of the estimators given by the EKF (dashed line)

estimate (dashed line) vs the sample trajeckqry, generated and the IEKF (thin solid line) compared with the squaredsoot

from the system (18)—(19) (thick solid line). of the theoretical PCRB (thick solid line) for the statedl)
(above) andx(2) (below).

Figure 2 shows the square roots of the theoretical PCRB

for statesx(1) and x(2). Furthermore, the theoretical lowerweights that completely capture the mean and the covariance
bounds are compared with tHeoot Mean Squared Errors of the Gaussian distribution and then use those points in the

(RMSE) obtained from10,000 Monte Carlo runs of the prediction and the update steps of the filter. This resemibles
system (18)—(19) with the same initial distribution and th®onte Carlo approach. However, unlike Monte Carlo methods,
same noise levels. From the figure it can be observed tlia¢ LRKFs are, in general, numerically less expensive since
the IEKF has a lower RMSE than the EKF. the samples are not drawn at random and the number of the
required points is relatively small when compared with the
IV. STATISTICAL APPROXIMATIONS: UKF, GHF, number of samples that are generated by the Monte Carlo
CDF algorithms. LRKFs achieve better accuracy than the EKFesinc

In this section we discuss an alternative approach to tHi representative points propagated through the nomlinea
nonlinear approximation problem, namely the statistiqad atransformanon capture the mean and covariance of the lactua

proach. Contrary to the methods presented in Section [fiStribution up to the second order of nonlinearity [94].
the filters described in the current section do not use the!Nere are many methods for the choice of the representative

Taylor series expansion. Instead, we are interested iistatat  POINtS and their weights, and the three most popular ones are

information that can be extracted from the system (1)—(8) affiscussed in Sections [IV-A-IV-C]. However, for a moment,

used afterwards to estimate (4)(5). All the filters disedss '€t US focus on the general framework of the LRKF.

within this section can be considered as a part of a generall '€ estimation proceeds as follows. At time step- 1

class oflinear regression Kalman Filteré_RKFs). the appr(_JX|mat|c_)n of t[le posterior distribution is given by
LRKFs have been proposed by several authors [17], [8f), G@ussian variableV'(X;_ijx—1,Px1x-1) and the noise

[87], [94], [95]. Similarly to the EKF, these filters apprexate V%1 iS assumed to be distributed accordingtd(0, Q.—1).

the prediction and the posterior density as Gaussian desitB0th X1 and v, are assumed to be uncorrelated and

hence the formulas (17a) and (17b) still hold. However, tH{gaussian. TheTre_fore, the aug_ment_ed state variable defined

approximations o (xx|Vs_1) andp(xx|Js) are obtained by S [Xk—1 Vi—1]" is also Gaussian with the mearf;_, and

means of statistical regression rather than through doalyt € covariance;_, given by:

approximations of the nonlinear functiofs and h; as in " Ry 1|51 " Pioijp—1 0

the EKF setting. The motivation for this approach can betk—1 = { ], Pi = [ 0 Qi1

intuitively expressed as followsWith a fixed number of T ) .

parameters it is easier to approximate a Gaussian distidsut 1he probability distribution\/ (ki_y.Pi_y) is encoded in

than it is to approximate an arbitrary nonlinear functi¢®4]. the sequencé(x}_,,wi_;) }fil that pairs each representative

The general idea is to represent the a priori distributiops Ipoint X, with its weightw! ;. The predicted state den-

a set of deterministically chosen representative points asity p (xx|)Vx_1) is approximated by\ (xk;xk‘k_th‘k._l),



where the mean and covariance are computed as follows:

N
N _ Prpo1 = wig (Frm1(h1) = K1) (Bom1 (K1) — )A(k\k-fl)T
Kpjp—1 = » wWi—1fe—1(Xk_1), (21) =t
; +Fp1 Q1 Fi_y. (29)
N
i i . i p "The next step is to approximate the distribution
P11 = wr—1 (Fem1(Xk—1) — K1 ) (Fom1 (Xp—1) — Xg|p— ; >
Kk ; g 1( PR T 1)( PR e 1) N (Xkje—1, Prjr—1) by the set of representative points and

(22)  weights. The procedure of obtaining the final estimates, gf

nd Py, is similar to the one described by equations (23)—
7). The only difference is that the transformed covamanc
the observation noiser, i.e., H,R,H? has to be added

Jo the right-hand side of (27). Therefo®,,, is given by [8]:

The distribution of the predicted measurement is obtaimed
a similar manner as the distribution of the predicted sta
Namely, the noisew; is assumed to be zero-mean Gaussi
with the covariance matriRy, and independent of the stat

xi. Therefore, the variabléx;, w;]” is also Gaussian with N

the meanu¢ and the covarianc®¢ given by: Py = wi_, (hk(xiqkfl) 7yk‘k71) (hk(x};lkil) 7yk‘k71>T
i=1
" Kol a Py 0
o = [ k|(l; 1 } 7 Py = { kl(;s 1 R, ] . +H,R,H] (30)

Note that the dimensions of the Gaussian variables
, , N (Re—1jk—1, Pr_1jp—1) and N (Xpjp—1, Prje—1) are lower
{(Xk\kqv%mq)}._l that approximate the distributionthan the dimensions of the variable$ (p¢_,,P¢_;) and
N (g, P2) is derived. The estimate of the measurement & (17, P}) approximated within the general algorithm.
then given by: Therefore, a smaller number of representative points is re-
quired, and consequently fewer nonlinear transformatiave
N .
N _ i b (xi ) (23) to be performed. Instead, they are replaced by linear opera-
Yejk—1 = Z;wk\kfl k(Xeje—1)- tions: Fy_1Qx_1FF | andH R, HY.
= It has been observed [17] that the performance of a filter
Finally the mean and covariance for the normal density thgiven by (21)—(28) strongly depends on the choice of the
approximates the posteripi(xx|)y) are computed as follows: representative points. In what follows we review method th
. . R have been proposed in the recent years. In order to keep the
Xilk = Xjk—1 + Kg <Yk - yk\k—l) ; (24)  algorithms simple, we focus on filters designed for dynatnica
Pujp = Prjps ~ P, KT, (25 systems with additive noises. We motlvate_thls ch0|c§_by
the fact that LRKF equations for systems with non-additive
where the Kalman gaiK,, and the covarianceB,,, andP,, noises are conceptually identical. We start by describimggy t

Next, the set of representative points and weigh}g

are computed as: most popular LRKF, i.e., th&Jnscented Kalman Filte(UKF)
and its variations. Next, other types of LRKF are discussed,
N ‘ . T namely the Gauss-Hermite Filter(GHF), and theCentral
Poy = Wik (X;c\k—l *f(kuc—l) (hk(x’;c\k—l) 7yk|k—1) ; Difference Filter(CDF). Finally, all the aforementioned filters

1=1

(26) are illustrated with an example.
N

i i g i g T
Pyy = 3 whiemr (BeCm) =) (Bu0ist) =%e-1) + A Unscented Kalman Filter

=1
(27)  Before we proceed to detailed description of the UKF
Ki = Pay (Pyy) " (28)  framework, we start with explaining thenscented Transfor-

The LRKE algorithm can be simplified for systems Withmatlon(UT) [81]. This is a method of selecting representative

additive noises, i.e., for systems where the functiinandhy, points and Welghts that approximate a variable a_fter a nenli
have the form: ear transformation. The UKF uses UT in a dynamic framework

to obtain the approximations of the predicted state demsity

£, (xi, Vi) = fo(xz) + Frve, the predicte_d update density. o _
by (x4, W) = hi(xz) + Hywy The UT is a general method for approximating the dis-

TR T ’ o tribution of a Gaussian random variable after a nonlinear
where both F, and H, are linear matrices. For suchtransformation. Letx be such a variable, with the mean
system one starts from computing the representatid@d covariancePx, and letg : R" — RP be an arbitrary
points and weights that approximate the distributioRonlinear function. The objective is to compute the staBst
N()A(kfl\kflvpkfl\k71>- Next, the predicted staté; of a random variablg defined as:
is computed according to (21). In order to compute the v = g(x). 31)
covariance of the predicted stal,;,_; the right-hand side
of (22) is modified by adding the ter,_1 Q)1 F7_, which In order to do that, first one has to generate aX%et {o;}
corresponds to the influence of the noisg ; [8]: of the sigma pointsi.e., a set that is of zero sample mean



and the points of this set have sample covariance equmlestigated random variable [19], [20], [103]. The minima
to P. For then-dimensional variable, 2n sigma points are number of sigma points that is required to capture the mean
computed as rows (or columns) of the mattix/(n + \)Px, and covariance is + 1. The computational complexity of
where A\ = o? (n + k) — n with a spread parameter and a UT grows linearly with the number of dimensions. However,
scaling factorx. The common choice for the spread parametavith increasing dimensions of the state the accuracy of the U
is « = 1 [96] in which case\ = k [81], [94]. approximation decreases [104].

The setx has the same mean and covariance as a zero meamhe UKF employs the UT at each filtering step following
Gaussian variable with a covariance maff. Furthermore, the procedure described in Algorithm 3.
since it is symmetric, all the odd central moments are equal t
zero as is the case with every zero mean Gaussian dlsmbu“ﬂlgorithm 3 Unscented Kaiman Filter
Therefore, the first three sample moments3fare equal
to the theoretical moments of the variable Hence, the Requirer A, Py_q;_1, Xp—1j5—1
approximation errors can occur only in fourth and higher Compute the sigma points; as the columns of the matrix:
moments. The representative points of a distribution of the \/(n+ AN Pr 1k
variablex are generated by a translation of each sigma pointPrediction step:
by X and an assignment of appropriate weights [81], [96]:  Set the central poin&) _; = Xj_1jx—1

\ Set the central weighto)_, = 25
Xo = X Wwo = ——, fori=1,...,2n do
71”’ A Compute the representative points:
X; =X+ 05 wW; = 9 WO. X’]Lg—l :)A(k—l\k:—l to; .
n . . ; —w
o ) Assign weightswj,_; = : St
The distribution of the transformed random variaple- g(x) end for
. 2n
is then represented by the sig(x;),w:)};”,- Compute the predicted mean);_, using (21)

The errors in the calculation of the mean and covariancecompute the predicted covariankg, ,_; using (29)
of y are of fourth order in case of Gaussian inputs [81] ypdate step:

and of third order in case of non-Gaussian inputs [96]. Thefor j —0,... 2n do
approximation accuracy can be further improved by an appro-  compute the representative points:
priate choice of a scaling factor [81]. The popular choice X§c|k—1 = fr(xi_,)

is k =3 —n [94], [96]. Settingx = 0 leads to the Cubature Assign weightsi — i
Kalman Filter introduced in [29], [97]. Further improventen o1 for klk—1 et
on quality of estimation can be achieved with the adaptive Compute the estimated measuremgnt_; using (23)

selection ofx which is done by the Adaptive UKF [98]. If Compute the covariance of the predicted observalgy
available, the information on the higher order moments of using (30)

the estimated variable can be used to modify the weight — compute the cross-covariance of the predicted observation
which reduces the higher-order errors of the UT [19], [20], 5n4 the predicted sta,, using (26)
[96]. It is also possible to capture higher moments of the Compute the Kalman g'é?Kk using (28)

true distribution by augmenting the number of sigma points Compute the estimated meagy, using (24)

used in the approximation [19], [20], [99], [100]. For inste, Compute the estimated covariariBg, using (25)
2n? + 1 sigma points are required to match the first four

moments of a Gaussian distribution [19], [20]. The accuracy
of the approximation might further increase if the sigmanpmi

are scaled, so that all the sigma points lay in an appropriate
ellipsoid centered at the mean [19], [20], [99], or on tlag 20
and3o contours [101]. Thé:o contour is the boundary of the

ellipsoid defined bysv/Px. The latter method requirdis: + 1 An alternative method of determining the representative

El]gmg pomts.. 1;he. ptjhrpose of :‘ht(:] Sc;“”.“'ﬂg Its to gogﬁntrahte ;%ints with their weights is employed in the Gauss-Hermite
€ sigma points in the area ot the highest probabiiily. Filter (GHF). The GHF is a Gaussian filter that utilizes the

the tﬁhat there are infinitely many square roots of th&aussian-Hermite guadrature rule. This is an approximatio
matrix /Py that can be chosen to comptite contour [81]. technique used for evaluating an integfabf the form:
Therefore, the improvement of the computational propertie

of UT is possible by the choice of an efficient numerical 1 Mk

method for matrix square root computation. The most popular I= fx) — exp <— > dx, (32)
algorithm is the Cholesky decomposition, but other techesy R™ (2m)"/ 2

such as the more robust, but more computationally involved,

singular value decomposition can also be used [102]. Thderef is a given nonlinear function. In other wordsijs the
computational efficiency of the UT can be further increasgd lexpectation of a standard normal variable propagated dgftrou
reducing the number of sigma points that need to be generatieel nonlinear functiory. The integral above is approximated
in order to capture the desired properties of a distributitthe by the m-th order quadrature rulé,,:

B. Gauss-Hermite Filter




Algorithm 4 Gauss-Hermite Filter

I,

NgE

m
Z Wiy v .winf(xil, . 7$in)

in=1

i1=1

(7%

wi f(Xs), (33)

1

<.
Il

where for eachl < i < m™ the following holds:x;
(xil,...,xin)T and w; = H?:1 w;,. For eachl < j < n
the one dimensionah-th order quadrature rulg(z;,w;)} ™,
is derived by the following method [105]:

Suppose thal is a symmetric tridiagonal matrix with zeros
on the diagonal and the other entries defined by:

sz = { Z/27

0,
The quadrature point; is defined as thd-th eigenvalueg;,
of the matrixJ, multiplied by /2. The corresponding weight

j=1+1
otherwise

wy is set to be equal to the square of the first element of the

normalizedl-th eigenvectow; of J. To summarize:

x = \/§6l7
wi = ((V)1)?

“The approximation holds for all polynomials of the form
sit...sin, with 1 < 4 < 2m — 1. It is well known that

S

(34)
(39)

the precision of the estimate increases with the order of the

guadrature [106]. However, at the same time the computa
tional burden grows with the rate.”. Indeed, by (33), the
computation ofI,, requiresm™ function evaluations, i.e.,

m" representative points need to be computed. Therefore

even for moderate state dimensions higher-order GHF

Require: P_1jp—1, Xp—1j—1, M

Compute the one dimensional quadrature {dle;, w;)}"
using (34)—(35).
for 1 <iq,...,7, <m do

Compute the representative poixs= (z;,,...,z;,

Compute the corresponding weights = H;.L:l W,
end for
Prediction step:
Factorize the posterior covariand@;,_;,_; = STS
fori=1,...,m do

Compute the representative points:

Xt =STx + Xi—1|k—1

Assign weightsw},_; = w;
end for
Compute the predicted mean,;,—, according to (21)
Compute the predicted covarianPg,;,_; according to (22)
Update step: o
Factorize the predicted covariandej,,_; = STS
for i=1,...,m do

Compute the representative points:

Xie_1 = STxi + Klk—1

Assign weightsw ;| = w;s
end for
Compute the estimated measuremgnt_, using (23)
Compute the covariance of the predicted observaigp
using (30)

)T

Compute the cross-covariance of the predicted observation

and the predicted stat,, using (26)

Compute the Kalman gaiK; using (28)
Compute the estimated meay;, using (24)
Compute the estimated covariarBg;, using (25)

(m > b) requires significant computational load, which makes
it impractical for online applications. Furthermore, far> 1
and largen the Gauss-Hermite quadrature rule is numerically
more involved than the UT. In the special case\of 2 and

n = 1 the UT matches thds.

Note that this algorithm can easily be generalized for
Gaussian variables with arbitrary meanand covariances,
simply by replacingf with f (x) = f (\/ETX + H)-

The GHF utilizing them-th order quadrature rule is pre-
sented in Algorithm 4.

f(he;) — f(—he;)

f(he;) —2£(0) + f(—he; )
oo L) 2@ iR
f(he; + he;) — f(—he;) — f(—he;) + f(0O)

1,J

1<i<j<n.

Hereh > 0 is a chosen step size afié;) is a canonical basis
for R™. Note that the exact value éfis not specified a priori,
_ ) ) hence an additional degree of freedom is added to the filter.
To choose the representative points the Central Differengg, o getails concerning the filtering applications of cehtr

F?Iter (CDF) or Divided Differ_ence F!Iter [18], [87] uses a4ifference approximations can be found in [17], [18], [107]
different method than the previously discussed UKF and GHF.The central difference approximation of a Gaussian vagiabl

The CDF algorithm is based on the central difference approy;, meanx and covariancé® = S”S is given by 2n + 1

imation of the integral (32). The basic feature of this mdthorepresentative points with the corresponding weights:
is to approximate the nonlinear functigh with a quadratic

C. Central Difference Filter

function P, defined by: Xo =X wo= thi;n’
1 1
Py(x) = £(0) + ax + -xTHx, =X+ 8" he; = on2
5 X; X+S hel Wi 2h2

where the vectola = (a;) and the symmetric matriH =
(H, ;) are given by [17]:

Note that by such a definition the weight of the central
pointw?_, can be negative.



The CDF employs the central difference approximatioemployed by the EKF yields:

in both the prediction and the update steps of the filtering

\gorithm. Th lete CDF i din Algorithm 5. % — | 100 pee ) 14,400 - 720
algorithm. The complete is presented in Algorithm 5. Xzl = | g5 | Pheie = 720 32,436 |
Algorithm 5 Central Difference Filter The UKF with parameteiA = 1 approximates the distribution

Require: h, Pj_1j5_1, Kp_1j5_1 of xj.1, With five points:

Prediction step: 100 416 0 100 100
Factorize the posterior covariand;, _;,_; = STs 55 || 65 || 45 || 367 || —257
Set the central pointx) |, = Xk,21|k,1
Set the central weighto)_, = 257
fori=1,...,2n do

weighted1/3,1/6,1/6,1/6,1/6 respectively. Thus, the mean
and covariance of the UKF estimate of the stajg |, are

. . given by

Compute the representative points: i i

Xt = %11 = SThe; ke _ [ 136 ] Luke _ [ 16,992 720

Ass}gn Weig‘htsz,u,i_1 = 5tz Fht1k = |55 Prie | 720 32,436 |°
end for . X . For the CDF there are also five representative points, e.g.,
Compute the predicted mean;_, according to (21) for h = 2 we have
Compute the predicted covarianPg;,_; according to (22) 100 1 T 484 4 " 100 100
Update step: o 55 || 67 |'| 43 |’| 415 |*| —305
Factorize the predicted covariande;,,_; = STS . i i .
Set the central pointxg‘,c,l = Rpjps weighted1/2, 1_/4, 1/4,1/4,1/4 respectively. From these the

W2 mean and variance are computed

Set the central weighw,glkf1 =250
for i=1,...,2n do qoor _ [ 136] peor _ [ 18,288 720
Compute the representative points: kt1lk 55 |77 kHllk 720 32,436 |-

i _ T
Xelk—1 = Xk|k—1 iﬁS he; . The number of representative points utilized by the GHF
Assign weightsw ;| = 52 depends on the quadrature order The smallest feasible
end for order ism = 2 which yields the quadrature rulgz;, w;)} =

Compute the estimated measuremgnt_, using (23) {(1,1/2), (=1,1/2)} from which the representative points are
Compute the covariance of the predicted observaltyp computed:

using (30)

Compute the cross-covariance of the predicted observation { 16 ] , { 16 ] 7 { 256 ] , { 256 ]

and the predicted stat,, using (26) —131 229 —H9 241
Compute the Kalman gaiK;, using (28) weighted1/4,1/4,1/4,1/4 respectively.

Compute the est?mated meaiplk using (2_4) 136 14.400 720
Compute the estimated covarianBg; using (25) &Sﬂflk = [ o } ,P‘,jﬂ'flk = { 7’20 32,436 } )

When the parametel is chosen to be small the central- Instead of analyzing algebraic properties of all the cevari

difference approximation is based on points that are closef}nlce Lna:rlﬁeﬂ)’;rlr'k Ic|>ibta|net?1 tiyt:achifllagr Itis convenient
the center (mean). Wheénis large the approximation accounts© 00 at the error efipses that they yleld.

for the points located at the tails of the Gaussian distidput (x— fik+1|k)T (Pk+1|k)_1 (x = Rppyp) = L.

The estimated means and error ellipses obtained by the EKF,
. . the UKF with A = 1, the CDF withh = 1/2 and the GHF
To illustrate the advantages that the LRKF filters have ovgfiih 1 — 2 are all compared in Figure 3. As a reference,

the EKF we will use an example of the nonlinear noise-freghich is labelled as “true” error set, we use the error edlips

D. Example: Prediction step

process given by [87]: defined by the sample mean and sample covariance obtained
xpp1(1) = (zx(1)?, (36a) from 10° Monte Carlo experiments. These are given by
Xp41(2) = 23(1) + 324(2). (36b) e _[136] pue [ 17039 757
Xrt1lk = | 55 |0 RHLUET | 757 32436 |-

To better see the differences between the EKF, the UKF,
the CDF and the GHF we focus only on a one step aheadAs can be observed, only the EKF yields an estimated mean
prediction problem. The analysis of the update step folloWBat does not coincide with the “true mean”. The UKF, the

the same steps [87]. CDF and the GHF all provide accurate estimates of the “true”
Assume that at time step: the state x;, is nor- Mmean but the error ellipses that they produce are different.
mally distributed with meanx;;, = [10 15" and covari- With such a choice of the parameters £ 1 for the UKF,
36 0 , .. h=1/2 for the CDF,m = 2 for the GHF) the error ellipse
ancePyx = | 3,600 L We want to predict the distri- opiained by the UKF is the closest to the true one. However,
bution of the statex; ;. The linearization method that iswith different parameter setting we can tune the error sdifp
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Fig. 3: Error ellipses of the EKF (dot-dashed line), the UKF 300 - = G (1 — )
(solid line), the CDF (crosses) and the GHF (dashed line) S
compared with the “true” error ellipse (filled circles) ointed 000~ \\\\\
by 106 Monte Carlo experiments. The shaded area denotes - /, W\ i
the initial covariance. The means of the UKF (asterisk), the% < o= /)
CDF (cross) and the GHF (circle) coincide with the true mean or N+ A
(large x). ~100 [ ~ 7
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to more desirable shapes. In general, by decreasing the valu —300 - ™ 550 350 0 500

of the parameteh we will shrink the eIIipsesP%EElk, and by x(1)

increasing the quadrature order we are able to expand theFig. 4: Representative points of the UKF (x), the CDF

error ellipsesP*'" . Representative points produced by th¢crosses) and the GHF (circles) and the error ellipses that

UKF, the CDF and the GHF together with the correspondingbrrespond to covariance matrices obtained by the UKFdsoli

error ellipses for two parameter settings are presented [ie), the CDF (dashed-dotted line) and the GHF (dashedl line

Figure 4. for A\=1,h =2,m =2 (above) and\ = 1,h =1/2,m =3
(below). Regardless of the parameters’ setting all filtéesdy

V. GAUSSIAN SUM APPROXIMATIONS: GSF the same mean (pentagram).

So far the discussion has been restricted to systems with
Gaussian process and measurement noises. Although tlis typ
of stochasticity is most commonly used in modeling real-
life processes, in a number of situations one has to dgght sum up to one. The densitf) (x) uniformly converges to
with non-Gaussian random variables that influence the BECghe original density(x) as the number of termd increases
or the measurement model [108]. The filters discussed dpg each covariance matriX; approaches the zero matrix
Sections Ill-IV assume Gaussian noises, hence, when thige [102], [110], and the references therein). Before the
assumption is violated they no longer perform as expecteayssian Sun{GS) approximation can be used, one has to
Furthermore, even if the noises are Gaussian, the noniiesar gpecify the parameters’, pi, £°. These are usually given as
of the state modef;. and the observation modéi, might solutions of a certain optimization algorithm. The choide o
produce densitiep(xy|Vx—1) or p(xx|Vy) that cannot be the optimization method is not trivial, and in general defsen
accurately approximated by a single normal variable [109n the particular estimation problem. Different methods fo
A possible solution to these problems is tBaussian SUM parameter selection are discussed in [111]. Another approa
Filter (GSF) that is described in this section. to the problem, which is based on expectation-maximization

algorithms is derived in [112].

A. GSF Algorithm As always, there is a tradeoff between computational com-
The GSF is based on the theoretical result that an arbitreméxiw and the accuracy of the approxima‘[ion_ If one uses to
probability distributionp(x) can be approximated by a denmany terms in the summations, the computational time will

sity p’¥ (x) of a form: increase and the filter will no longer be feasible for online
N applications. On the other hand, if there are too few terms in
PN (x) = Zai/\/(x”‘i’ %), the GS, the a}lgorlthm will produce a poor approximation of

= the true densities.

where for eachl < i < N, N(x;u’,X%) is a probability =~ The main feature of the GSF is the use of the GS ap-
density of a normal distribution, with the meari and the proximation of both the predicted state densiify |V 1)
covarianceX’, evaluated ak, anda’ are nonnegative weightsand the posterior density(x;|):). At each time step: the



aforementioned densities are assumed to be given by: one’s choice (EKF, UKF, GHF, etc.). Finally, the separagpst
are combined, resulting in the posterior density:

Ny
PxR|Veo1) = afe N (Xk;u};\k,l,ﬁfg\kfl), (37) K L Mo o
i=1 p(xk|Vi) = Zzzak’fél/\/’ (xk;X,;f,;l,P,;,J,;l) , (39)
Na . i=1j=1I=1
xp| Vi) = a N(x;j’ ,EZ). 38 ] .
POxk| ) ; Kl 3 Boklier Skl 38) where the welghtm,:‘ﬁ;l are given by:

As it was sta}ted before, ther_e is much flexibility ir: choosing .y O‘Z’f}cqaiukpiyj,l (Ve V1)

the weightse’ and the Gaussian parametgrsand 3°. Note Qpir = ZK ZL ZM o o el >7

that in general the number of term in (37) does not have i=1 24j=1 221=1 k-1 Yw,kPijt Vil V-1

I he number of term, in . i . i .
to be equal to the number of te (38). . __and the meark.;’’ and the covarianc@®!’' are obtained
One might consider the GSF as a collection of nonllne?rrOm the chos | |

Kalman Filters, such as the ones described in the preVic%LrﬁSIe (i, ,1) Inephengggciafroﬁnlzulgptf]“ee?ersépar?te‘g/} to)each
s_ections, working in parallel. Indeed, in the original farlax d pnotes’]th@ j,1)-th component of a PDF 33’6%’%@&
tion of Alspach and Sorensen [111], the GSF that they deriv @e stepk gi\}én the past observatior¥,_;, which can be
is composed of the parallel EKFs. A GSF that exploits UKFs -

is presented in [113], whereas a GHF-based GSF can be fo&r?(?roxmated by the Gaussian:

in [102]. . =N< sl Pi,j,l)
The filtering proceeds as follows. Let us assume that at time Pt (el V1) YirYilh—10Fo” ) -
stepk — 1 the posterior density(x;_1|Vi—1) is represented  Aiqrithm 6 summarizes the GSF that applies the UKF
as a sum of Gaussian densities, i.e., : ;
(X, andw, are computed according to Algorithm 3) to each
Ko y ; component of the GS approximation in both the prediction and
P(Xk-1|Vi—1) = Zakfllkle (xk_l;xk,l‘k,l,Pk,”k,l), in the update stage. Note that if one replaces the UKF with
=1 another nonlinear filter, e.g., the EKF, the general stmecti
Whereai_nk_l are weights that sum up to one, aﬁdfnkq Algorithm 6 remains intact. Indeed, the two algorithms afe d

and Pj_,, , are thei-th estimate of the mean and thderent only in the formulas for the mean .1, Xk, Yrix—1

covariance, respectively. Furthermore, let us also apiprate and the covariance® -1, Prji, Pyy.
the state noise;, by a GS:

B. Reduction methods

L
p(vi) =Y ol N (vk;\ﬂ;,PZ)’k) , In the general framework presented in Section V-A, at the
j=1 beginning of the algorithm there ar& components in the
, , , summation, whereas the final number of terms to sum up
with weightsa;, ,, meansvy, and covariance®; ;, chosen to is i L. At the next filtering step the algorithm starts with
match the non-Gaussian random variable Then for each k1 7 initial expressions, and hence it finishes with.2 /2.
pair {(i,5),i=1,..,K,j = 1,..., L} the (4, j)-th component After k steps there ar& L*M* terms to sum up. This means
of the predicted state density is computed by the nonlindar hat as the filtering proceeds, the number of the expressions
of one’s choice. The predicted state density is thus given by the summation grows exponentially. Therefore, in itsibas
X L form, the GSF has a very limited practical use.
_ i, L ed i, To overcome this potential drawback of the GSF, several
POslio) =23 eV (Xk’ Xelk—1 Pk"“_l) ’ techniques have been developed to reduce the number of terms
in the GS approximations [17], [102], [114]-[117]. Amongth

i=1 j=1

where the Weightmf;fk_1 are computed as: popular methods are:
i j 1. Pruning: In this approach the mixture components with
k-1 = Yb—1]k—1% k> negligible weights are discarded from the GS, whereas the
d 7 dpii . f th q hremaining terms have the weights uniformly rescaled so that
and Xj, ., and &y, , are estimates of the mean and thg,q g forms a probability density function. Depending an th

covariance, respectively, that are obtained by the agjlica roblem, one might discard every component which has the

Of. one of thg ﬁlters described in Sections IV to the F"Od eight smaller than a fixed threshaldr terms that have the
with index (¢, j). To perform the update step, we again USE mulative weight smaller than[102]

the GS to approximate the observation noigg . ) ) . )
2. Merging: When using this method one joins the Gaussian

M z o densities that are close to each other with respect to airerta
p(wi) = aly N (wis Wi, Pl 1) distance, namely the Mahalonobis distance [102], [114]5]1
=1 [118]:
Next, for each tuple{(i,j,1),i = 1,...,K,j = 1,...,L,1 = ) atad

vi i\l (o N1 (oi of
1,.., M} the update step is performed by a nonlinear KF of % = i1 (X - Xj) (P +P7) (X - X]) :



Algorlthm 6 Gaussian Sum Filter as a collection of UKFs mixture expressions by m|n|m|z|ng the? distance between
. ; i ; K the original and the reduced densities [17], [102]:
Require: { (ak—l\k—17 X 1|k—1 Pk—1|k—1) }ik’
y M

. L L N 2
{(afj,kv Vi Pi,k) }j:f {(aiu,lw VAV%W ng,k’) }1:1’ argmin/ <p (x| Vi) — Z a'N (xk; uh, Ei)> dx;y,
Prediction step: 2N i=1
fori=1,....K,5=1,...,L do
Compute the predicted mean:

wherep (x;|Vx) is the original Gaussian Sum approximation
oy o - defined by (39),V is the desired number of components in
K1 = 2o Wi i (X57) the Gaussian mixture that is usually much smaller than the
Compute the predicted covariance: number of terms in original GS, and u, 3 are the parameters
_ r  with respect to which the optimization is performed. In some
klk 1 ZW (f’“ xg7) = A;ﬂjk 1) ( (x57) = ;vljk 1) cases instead of the? distance other metrics are used as the

optimization criterion [118].
Compute the associated weight:

akjk L= % e 1% . Using one of the aforementioned techniques one has control
end }or over the number of terms in the GS, and hence the growing

Approximate the predicted state density with the Gaussiamemory requirement ceases to be a problem. However, the
Sum: reduction procedure, which can be very computationally ex-
K L . pensive, has to be preformed at each filtering step. Thexefor

PxEVi-1) =D > eyt (Xk;f(:\]k—17p;c\k 1) depending on the problem, an appropriate choice of the
==t reduction method is crucial to make the GSF an effective

Update step: online filter. Note that if both the process and the obseovati

fori=1,....K,j=1,....L,l=1,...,M do noises can be accurately approximated by single Gaussians,
Compute the mean of the predicted observation: no reduction method is necessary because the number of
y;fkl L= 20, Wiy, (xi) expressions in the GS is constant over the time.

Compute the covariance of the predicted observation:
Pl — Zwl ol (hk ( ) *9?;]’;71) (hk (X;';J'J) — g 1)T C. Example: Kinematic Model

c te th . f th dicted ob Let us consider a second order kinematic model in two-
tigr:ngl}ljdetheep?égiscst-é:g\gatlgér)ce ot the predicted obseNg, ensional space [65], [119], [120]. The model is desctibe

. by four states:
Py = a4 1) () 31

Use (24)-(28) to compute the updated mean:

. . T

i = [ k) po(k) py(k) By(k) )7,

il i iy il where (p,(k),py(k)) is the position of the object at time
Xiin = X1 T K vk = Vi) in XY plane andp, (k) andp,(k) denote the velocity of the
Use (25)-(28) to compute the updated covariance: object at timek in X-direction andY -direction respectively.

¥ o T The evolution of the object in discrete-time is modeled by:
P%] P%J Pt,j,l (K%L )
kKl — T klk—1
Compute the associated weight: L7, 00
bl — a:\k 1%, *N(y’“ AT l) Xk+1 = 0 100 Xk (40a)
k|k i N( P z) 0 0 1 T,
i oyl N (s yk|k 1
end for 0 0 0 1
Approximate the posterior density with the Gaussian Sum: T; 0
K L M s, 0 0
P =350 S ot (usrif P o2 (= [G]) v e
i=1 j=11=1 0 CZ%

where the functiorf (x;) is given by

This algorithm in general merges mixture terms that haver (x,) = —0.5% p (x,(3)) \/(xk(g))2+(xk(4))2 x5(2)
. . . 5 Xk(4) ’
lower weights rather than those that are associated to highe (41)

weights [102]. with parameters being:7, = 1s the sampling timeg =

The GS approximations obtained by pruning or mergm@é@lm/s.2 the gravitational acceleratiod = 100kg/m? the
procedure converge weakly to the exact posterior d'St”bHallistic coefficient,n (xx(3)) = 1.754 exp(—1.491x, (3)) the

tion 117]. air density (typically modeled as an exponentially decgyin
3. Integral Squared Error-Based Gaussian Mixture Re- function of height [65]). Furthermore, the variablg models
duction: In this method one obtains the reduced Gaussi@andom process noise, which is zero-mean Gaussian with the



covariance matrixQ; equal

to

The initial conditionx§*F and initial covarianc&§ " for the
UKF are given by:

332 50 0 0
Q.= | 20 10 0 0 (42) 243 . 10% 105 0 0 0
0 0 3335 50 KUKF _ 103 PUKF _ 0 100 0 0
0 0 50 100 o T | 8-10% [ "0 T | 0 0 25-10* o |°
0 0 0 0 100
1 The initial condition for the GSF is given by five equally
x 10 . . .
8.91 weighted Gaussians with meaps
s.86 242,250 242,750 243,250
| 1,000 | 1,000 | 1,000
H1=1 g7.750 |'H2= | 88,250 |'HM3= | 88,250 |
8.821 0 0 0
> 243,750 243, 000
8.78] _ 1,000 _ 1,000
Ha= | g7.750 |['#5= | 88,000 |’
8.74f 0 0
respectively, and the covariances
| | | | | | | |
8'72.41 2.415 2.42  2.425 2.43 2.435 2.44  2.445 2.455 r 3.250° 0 2502 0 T
1 4 4
x10° X X1 s _s._| 0 10 0 0
8.91 P— — L==2= 2502 o 32502 ’
} B 4 4
. L o 0 0 100 |
r 3.2502 2502 b
o 0 180 s 8
/ — N\ Yy =3y = 2502 3.2502 )
CY ) -3 0 = 0
N L o0 0 0 100
AN — /
— 2502 0 0 0
—_ 0 100 0 0
57 0 0 5002 0
T 0 0 0 100
I I i I I ] .. . . . . .
8DH 41 2.415 242 2.425 243 2435 244 2.445 2.45 The contour of the initial distribution of the GSF is vi-
X x10

sualized in Figure 5. The initial pdf has been chosen to
Fig. 5: Contour of the initial pdf of the GSF (above) vgesemble the parabolic shape of the trajectory of the kiallis
contour of the initial pdf of the UKF (below) both in the XY object. Such a shape cannot be achieved by a single Gaussian
position plane. The pentagram denotes the true initiab sifit distribution.
the system. Figure 6 presents the simulated XY-trajectory of the bidlis
object together with the estimates obtained by the GSF and
For the observation model we assume that at each tinte UKF. In the figure it can be easily observed that the GSF
stepk the rangey(1) and bearingy;(2) measurements areoutperforms a single UKF. This is confirmed by the analysis of
available [65], [120]. Thus, in the cartesian coordinates tthe RMSE of each filter obtained fro®00 Monte Carlo runs
measurement model is given by: of the system (40)—(43) with the same initial condition ainel t
same noise levels. In Figure 7 the RMSE of the GSF and the
(43a) UKF are compared with the squared root of the theoretical

yi(1) = /(x(1)% + (x(3))° + wa(1),

x5 (3) PCRB that is computed using (20).
v&(2) = arctan (X(l)) + w(2), (43b)
g VI. CONCLUSIONS AND DISCUSSION
where the zero-mean Gaussian variable, models . I . .
the  rando measurement  noise  with  covariance The main objective of this section is to analyze the proper-
_ 47 ) _ Iés of the Parametric Filters presented in the previoutosec
matrix Ry = | )4 |- With such a choice oRy the  For general nonlinear non-Gaussian systems, there exists n

standard deviation of the range errors is equatte= 100m optimal solution to the filtering problem (in the MMSE sense)
and the standard deviation in bearing errors is givethis means that there are no results stating that a panticula
by o¢ = 0.1rad. filter has the lowest possible MMSE error [8].
We have simulated a trajectory of the ballistic object We have presented three types of nonlinear parametric
for T 90s, starting from the initial statex, filtering methods:
[243.5km, 1000m/s, 87.9km,0m/5}T. The simulation was re- |. Filters based on analytical approximations: EKF, IEKF.
peated1000 times. Il. Filters based on statistical approximations: UKF, GHF,
We use the Monte Carlo experiment described above to CDF.
compare the performance of a five-term GSF with a UKFIII. Filters based on Gaussian Sum approximations: GSF.



nonlinear transformations. In contrast to the aforemewetio
methods the GSF approximates the densities (4) and (5) with
the sum of Gaussian densities, which are no longer Gaussian.
The Taylor approximation, which is a basic principle of
the EKF and the IEKF, requires functiofg and h; to be
differentiable. The UKF, the GHF and the CDF are derivative-
free filters, i.e., they can be applied to systems with non-

true state
2.6 --- GSF differentiable dynamics. The same applies to the GSF if it
— UKk uses one of the derivative-free methods.
2419 20 30 40. 50 60 70 80 90 The numerical complexity of the UKF and the CDF grows
x10* time step linearly with the dimension of the state, the numerical
9 true state complexity of the EKF and the IEKF grows quadratically
o -- GSF with n, and the complexity of the GHF grows exponentially
— UKF with n. In the case of the GSF there is no straightforward

relation between the dimension of the state spacnd the
computational complexity of the filter. The latter depends o
the number of termd< in the GS that are required for an
accurate approximation of the densities (4) and (5). In ggne
a largerK is necessary for higher dimensiong81], but the

! ! ! ! ! ‘ ‘ ‘ | exact relation always depends on the particular structitteeo
020 80 e dep approximated densities.

The Taylor series approximation truncates the higher mo-
ents of nonlinear function. Therefore, filters derivedniro
this principle, such as the EKF, are better suited for théesys
where functionsf, and h; are mildly nonlinear. From this
perspective the strong advantage of the UKF, the GHF and

Fig. 6: Tracking of the X-position (above) and Y-position
(below) of the ballistic object (thick solid line) by the GS
(dashed line) and the UKF (thin solid line).

L e the CDF over the EKF is that these filters match higher-
P it prder moments and_thus, can handle stronger nonlinearities
- GSE in the system equations. Among these three filters the UKF
u ! : ' has the simplest form and while being more accurate than
=08 the EKF, it retains its low computational complexity. The ED

0.6 . though similar to the UKF, is able to estimate the state

0.4 covariance more precisely. This, however, comes with the
0.2pf————="" price of increased computational complexity. The GHF, gisin
01 3 36 4 50 60 6 8 90 ;ufficiently Iarg_e qua_drqtur(_e rule, is ab_le to accuratelyrap-
%10° time step imate heavy tailed distributions. The disadvantage of thEG
R —— over the EKF, the CDF and the UKF is its large numerical
5|1~ UKF complexity which often yields the GHF impractical for high-
-~ GSF BN ’

frequency online applications.
The performance of the EKF can be improved by using the
measurement to minimize linearization errors. This is el
by the IEKF the trade-off being rise of numerical complexity
The performance of the EKF, the IEKF, the UKF, the GHF
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ or the CDF can deteriorate if the predicted and the posterior
0710 20 80 4 60 70 80 90 densities cannot be accurately approximated by a singls-Gau

0. 50
time step
N . ian. If the system exhibits severely non-Gaussian cheract
Fig. 7. RMSE of the GSF (dashed line) and the UKF (daShe%tics, the GSF offers a neat alternative to the aforemeato

dotted line) compared with the square root of the theorketi hers

PCRB (solid line) for X-position (above) and Y-position The GHF, and to a lesser degree the EKF and the IEKF,
(below). : . .
suffers from the curse of dimensionality. Therefore, from
the computational perspective and the GHF, the EKF, and
the IEKF are better suited for small-scale systems, whereas
The EKF, the IEKF, the UKF, the GHF, and the CDF apthe UKFs and the CDFs are more suitable for large-scale
proximate the predicted (4) and the posterior (5) densitiapplications. Whenever the nonlinear functidpsor h; have
as Gaussians. The EKF and the IEKF utilize the Taylamomplicated analytical structures, which make it diffictdt
series expansion to exploit the analytical structure ofinear compute the Jacobiari#f;, or ohy, the derivative-free filters
functions f, and h;. The UKF, the GHF and the CDF (UKF, CDF, GHF) are numerically preferable over the EKF.
exploit statistical properties of Gaussian variables timatergo ~ We would like to conclude the article with a brief overview

RMSE




of freely available implementations of the algorithms disged
throughout the paper. Mathworks provides the MatLab codes

for the EKF [121] and the UKF [122]. A very useful overview [22

[21]

of open source MatLab and C++ toolboxes used for nonlinear

filtering, including KF, EKF and UKEF, is provided by Greg

Welch and Gary Bishop [123]. A comprehensive collection?!

of MatLab toolboxes suited for nonlinear filtering, among

others EKF, UKF, CDF, GSF, is provided by the Identification

and Decision Making Research Group at the University o

West Bohemia [124].
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