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Motivation

Takagi-Sugeno fuzzy models

Can exactly represent a nonlinear model in a compact set
Convex combination of local linear models
Computational complexity exponentially increases with the
number of nonlinearities

Slope-restricted nonlinearities

Approach to handle certain type of nonlinearities for observer
design

This paper:

Combining the advantages of both TS fuzzy and slope-restricted
nonlinearities for observer-based controller design

Reducing the number of fuzzy rules

Separately handling measured- and unmeasured-state
nonlinearities
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Takagi-Sugeno fuzzy model

Model:

ẋ =
s∑

i=1

hi (z)(Aix + Biu)

y =
s∑

i=1

hi (z)Cix ,

x ∈ Rnx state vector, u ∈ Rnu input vector

y ∈ Rnu output vector

hi (z) - membership function

z - premise variable (subset of the independent states x)

convex sum: hi (z) ∈ [0, 1],
∑s

i=1 hi (z) = 1

Ai , Bi and Ci are local linear models

Problem formulation - Linear Matrix Inequalities (LMI)
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Example

Nonlinear model:

ẋ1 = x1sin(x1)

ẋ2 = 3x1 + 10x2 + u

ẋ =

(
sin(x1) 0

3 10

)
x +

(
0
1

)
u,

Exact TS model:

ẋ =
(
h1(x1)A1 + h2(x1)A2

)
x + Bu

A1 =

(
−1 0
3 10

)
A2 =

(
1 0
3 10

)
B =

(
0
1

)
h1(x1) =

1− sin(x1)

2
h2(x1) = 1− h1(x1)
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Slope-restricted nonlinearities

Model:
ẋ =Ax + Gψ(Hx) + f (y , u)

y =Cx ,

Where ψ(Hx) is a vector function, each entry a scalar

f (y , u) contains the “known” terms

H scalar combination of the states

(Arcak and Kokotovic TAC 2001
Chong et al. Automatica 2014)
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Observer design

Assumption similar to Mean-value theorem

ψi (v)− ψi (w) = δi (t)(v − w),

∀ v ,w ∈ R, v 6= w , δi (t) ∈ [0, bi ]

x̂ estimate of x

Form of the observer:

˙̂x = Ax̂ + Gψ(Hx̂) + f (y , u) + L(y − ŷ)

e := x − x̂ , and the error dynamics:
ė = (A− LC )e + G (ψ(Hx)− ψ(Hx̂))
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TS fuzzy systems with local nonlinearities

Model:

ẋ =Azx + Bzu + BzGzψ(Hx)

y =Czx

Notation: Az ⇔
∑s

i=1 hi (z)Ai

Matching nonlinearities,
motivation: mechanical systems

M(θ)θ̈ = −F (θ, θ̇)− G (θ) + τ

Similar idea by Moodi and Farrokhi
IJAMCS 2013

2 DOF robot arm
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Observer Design

Observer structure:

˙̂x =Az x̂ + Bzu + BzGzψ(Hx̂ + Lψ(y − ŷ)) + Lz(y − ŷ)

ŷ =Cz x̂

Lz observer gain

Lψ injection term, less conservative design (Arcak and
Kokotovic TAC 2001)

Assumption on ψ(·) leads to an LMI formulation
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Controller design

Control law:

u = −Kz x̂ − Gzψ(Hx̂ + Lψ(y − ŷ))

Closed loop system dynamics:

ė =(Az − LzCz)e+BzGz

(
ψ(Hx)− ψ(Hx̂ + Lψ(y − ŷ))

)
˙̂x =(Az − BzKz)x̂ + LzCze

Assumption

ψi (v)− ψi (w) = δi (t)(v − w),

∀ v ,w ∈ R, v 6= w , δi (t) ∈ [0, bi ]
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Controller design cont’d

Augmented system dynamics:[
˙̂x
ė

]
=

[
Az − BzKz LzCz

0 Az − LzCz

][
x̂
e

]
+

[
0

BzGz

](
ψ(Hx)−ψ(Hx̂+Lψ(y − ŷ)

)
Stability of cascaded systems (Lendek et al. TFS 2009)

Lz and Lψ can be found so that the error dynamics is globally
asymptotically stable (GAS)

If Kz can be found so that

˙̂x = (Az − BzKz)x̂ ,

is GAS, then also the augmented system is GAS.
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Numerical example

Nonlinear model of an inverted pendulum

ẋ1 =x2

ẋ2 =
−dx2 − a(mlx2)2 sin(x1) cos(x1) + mgl sin(x1)

α(x1)

+
−aml cos(x1)

α(x1)
ũ

y =x1

x1 is the angle, and x2 is the angular velocity

Due to physical limits, we assume x1 ∈ [−π3 ,
π
3 ], x2 ∈ [−σ, σ]

sin(x1), cos(x1), α(x1) nonlinearities which are handled with
TS fuzzy modeling

x22 handled with slope-restricted
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Estimation error Estimated states
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Conclusions

Approach to handle unmeasured-state nonlinearities and
reduce computational complexity

Future work

Non-scalar inputs for the nonlinearity ψ(Hx)

non-input matching nonlinearity

Thank you for your attention!
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Parameter table

Notation Value Description

g [ms/s] 9.8 gravitational acceleration
m [kg] 0.3 mass of pendulum
M [kg] 15 mass of cart

d [N/rad/s] 0.0007 friction coefficient
l [m] 0.3 length of pendulum

J [kg m2] 0.3 moment of inertia
σ [rad/s] 4 max angular velocity



Observer gains

Lψ =4.32 · 10−5, L1 =

[
27.48

182.13

]
, L2 =

[
28.13

186.41

]
L3 =

[
27.52

182.38

]
, L4 =

[
28.1

186.22

]
, L5 =

[
22.15

146.65

]
L6 =

[
22.79
150.9

]
, L7 =

[
22.19

146.92

]
, L8 =

[
22.76

150.72

]
,



Controller gains

K1 =
[
−3.81 −11

]
, K2 =

[
−3.81 −11

]
K3 =

[
−6.52 −21.48

]
, K4 =

[
−6.52 −21.47

]
K5 =

[
−3.74 −20.16

]
, K6 =

[
−3.74 −20.16

]
K7 =

[
−6.73 −32.71

]
, K8 =

[
−6.73 −32.71

]
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