Observer-based controller design for Takagi-Sugeno fuzzy systems with local nonlinearities

Z. Nagy, Zs. Lendek

Technical University of Cluj-Napoca, Romania

25 June 2019, Fuzz-IEEE, New Orleans, Louisiana, USA

Motivation

Takagi-Sugeno fuzzy models

- Can exactly represent a nonlinear model in a compact set
- Convex combination of local linear models
- Computational complexity exponentially increases with the number of nonlinearities

Approach to handle certain type of nonlinearities for observer

Motivation

Takagi-Sugeno fuzzy models

- Can exactly represent a nonlinear model in a compact set
- Convex combination of local linear models
- Computational complexity exponentially increases with the number of nonlinearities

Slope-restricted nonlinearities

 Approach to handle certain type of nonlinearities for observer design

Motivation

Takagi-Sugeno fuzzy models

- Can exactly represent a nonlinear model in a compact set
- Convex combination of local linear models
- Computational complexity exponentially increases with the number of nonlinearities

Slope-restricted nonlinearities

 Approach to handle certain type of nonlinearities for observer design

This paper:

Combining the advantages of both TS fuzzy and slope-restricted nonlinearities for observer-based controller design

- Reducing the number of fuzzy rules
- Separately handling measured- and unmeasured-state nonlinearities

Outline

- Background
- 2 TS fuzzy systems with local nonlinearities
- 3 Example
- 4 Conclusions

Outline

- Background
- 2 TS fuzzy systems with local nonlinearities
- 3 Example
- 4 Conclusions

Takagi-Sugeno fuzzy model

Model:

$$\dot{x} = \sum_{i=1}^{s} h_i(z) (A_i x + B_i u)$$

$$y = \sum_{i=1}^{s} h_i(z) C_i x,$$

- $x \in \mathbb{R}^{n_x}$ state vector, $u \in \mathbb{R}^{n_u}$ input vector
- $y \in \mathbb{R}^{n_u}$ output vector
- $h_i(z)$ membership function
- z premise variable (subset of the independent states x)
- convex sum: $h_i(z) \in [0, 1], \sum_{i=1}^s h_i(z) = 1$
- A_i , B_i and C_i are local linear models
- Problem formulation Linear Matrix Inequalities (LMI)

Example

Nonlinear model:

$$\dot{x}_1 = x_1 \sin(x_1)
\dot{x}_2 = 3x_1 + 10x_2 + u
\dot{x} = \begin{pmatrix} \sin(x_1) & 0 \\ 3 & 10 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u,$$

Exact TS model:

$$\dot{x} = \begin{pmatrix} h_1(x_1)A_1 + h_2(x_1)A_2 \end{pmatrix} x + Bu$$

$$A_1 = \begin{pmatrix} -1 & 0 \\ 3 & 10 \end{pmatrix} \quad A_2 = \begin{pmatrix} 1 & 0 \\ 3 & 10 \end{pmatrix} \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$h_1(x_1) = \frac{1 - \sin(x_1)}{2} \quad h_2(x_1) = 1 - h_1(x_1)$$

Slope-restricted nonlinearities

Model:

$$\dot{x} = Ax + G\psi(Hx) + f(y, u)$$

$$y = Cx,$$

- Where $\psi(Hx)$ is a vector function, each entry a scalar
- f(y, u) contains the "known" terms
- H scalar combination of the states

(Arcak and Kokotovic TAC 2001 Chong et al. Automatica 2014)

Observer design

Assumption similar to Mean-value theorem

$$\psi_i(v) - \psi_i(w) = \delta_i(t)(v - w),$$

$$\forall v, w \in \mathbb{R}, v \neq w, \quad \delta_i(t) \in [0, b_i]$$

- \hat{x} estimate of x
- Form of the observer:

$$\dot{\hat{x}} = A\hat{x} + G\psi(H\hat{x}) + f(y, u) + L(y - \hat{y})$$

• $e := x - \hat{x}$, and the error dynamics: $\dot{e} = (A - LC)e + G(\psi(Hx) - \psi(H\hat{x}))$

Outline

- Background
- 2 TS fuzzy systems with local nonlinearities
- 3 Example
- 4 Conclusions

TS fuzzy systems with local nonlinearities

Model:

$$\dot{x} = A_z x + B_z u + B_z G_z \psi(Hx)$$

$$y = C_z x$$

- Notation: $A_z \Leftrightarrow \sum_{i=1}^s h_i(z)A_i$
- Matching nonlinearities, motivation: mechanical systems

$$M(\theta)\ddot{\theta} = -F(\theta,\dot{\theta}) - G(\theta) + \tau$$

 Similar idea by Moodi and Farrokhi IJAMCS 2013

2 DOF robot arm

TS fuzzy systems with local nonlinearities

Model:

$$\dot{x} = A_z x + B_z u + B_z G_z \psi(Hx)$$

$$y = C_z x$$

- Notation: $A_z \Leftrightarrow \sum_{i=1}^s h_i(z)A_i$
- Matching nonlinearities, motivation: mechanical systems

$$M(\theta)\ddot{\theta} = -F(\theta,\dot{\theta}) - G(\theta) + \tau$$

 Similar idea by Moodi and Farrokhi LIAMCS 2013

2 DOF robot arm

Observer Design

Observer structure:

$$\dot{\hat{x}} = A_z \hat{x} + B_z u + B_z G_z \psi (H \hat{x} + L_\psi (y - \hat{y})) + L_z (y - \hat{y})
\hat{y} = C_z \hat{x}$$

- L_z observer gain
- L_{ψ} injection term, less conservative design (Arcak and Kokotovic TAC 2001)
- Assumption on $\psi(\cdot)$ leads to an LMI formulation

Controller design

Control law:

$$u = -K_z \hat{x} - G_z \psi (H \hat{x} + L_{\psi} (y - \hat{y}))$$

TS fuzzy systems with local nonlinearities

Closed loop system dynamics:

$$\dot{e} = (A_z - L_z C_z) e + B_z G_z \left(\psi(Hx) - \psi(H\hat{x} + L_\psi(y - \hat{y})) \right)
\dot{\hat{x}} = (A_z - B_z K_z) \hat{x} + L_z C_z e$$

Assumption

$$\psi_i(v) - \psi_i(w) = \delta_i(t)(v - w),$$

$$\forall v, w \in \mathbb{R}, v \neq w, \quad \delta_i(t) \in [0, b_i]$$

Controller design

Control law:

$$u = -K_z \hat{x} - G_z \psi (H \hat{x} + L_{\psi} (y - \hat{y}))$$

TS fuzzy systems with local nonlinearities

Closed loop system dynamics:

$$\dot{e} = (A_z - L_z C_z)e + B_z G_z \left(\psi(Hx) - \psi(H\hat{x} + L_\psi(y - \hat{y})) \right)$$

$$\dot{\hat{x}} = (A_z - B_z K_z)\hat{x} + L_z C_z e$$

Assumption

$$\psi_i(v) - \psi_i(w) = \delta_i(t)(v - w),$$

 $\forall v, w \in \mathbb{R}, v \neq w, \quad \delta_i(t) \in [0, b]$

Controller design

Control law:

$$u = -K_z \hat{x} - G_z \psi (H \hat{x} + L_{\psi} (y - \hat{y}))$$

TS fuzzy systems with local nonlinearities

Closed loop system dynamics:

$$\dot{e} = (A_z - L_z C_z)e + B_z G_z \left(\psi(Hx) - \psi(H\hat{x} + L_\psi(y - \hat{y})) \right)
\dot{\hat{x}} = (A_z - B_z K_z)\hat{x} + L_z C_z e$$

Assumption

$$\psi_i(v) - \psi_i(w) = \delta_i(t)(v - w),$$

 $\forall v, w \in \mathbb{R}, v \neq w, \delta_i(t) \in [0, b_i]$

Controller design cont'd

Augmented system dynamics:

$$\begin{bmatrix} \dot{\hat{x}} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A_z - B_z K_z & L_z C_z \\ 0 & A_z - L_z C_z \end{bmatrix} \begin{bmatrix} \hat{x} \\ e \end{bmatrix} + \begin{bmatrix} 0 \\ B_z G_z \end{bmatrix} (\psi(Hx) - \psi(H\hat{x} + L_{\psi}(y - \hat{y}))$$

- Stability of cascaded systems (Lendek et al. TFS 2009)
- L_z and L_ψ can be found so that the error dynamics is globally asymptotically stable (GAS)
- If K_7 can be found so that

$$\dot{\hat{x}} = (A_z - B_z K_z) \hat{x}$$

is GAS, then also the augmented system is GAS.

Controller design cont'd

Augmented system dynamics:

$$\begin{bmatrix} \dot{\hat{x}} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A_z - B_z K_z & L_z C_z \\ 0 & A_z - L_z C_z \end{bmatrix} \begin{bmatrix} \hat{x} \\ e \end{bmatrix} + \begin{bmatrix} 0 \\ B_z G_z \end{bmatrix} (\psi(Hx) - \psi(H\hat{x} + L_{\psi}(y - \hat{y}))$$

- Stability of cascaded systems (Lendek et al. TFS 2009)
- L_z and L_ψ can be found so that the error dynamics is globally asymptotically stable (GAS)
- If K_z can be found so that

$$\dot{\hat{x}} = (A_z - B_z K_z) \hat{x},$$

is GAS, then also the augmented system is GAS.

Outline

- Background
- 2 TS fuzzy systems with local nonlinearities
- 3 Example
- 4 Conclusions

Numerical example

Nonlinear model of an inverted pendulum

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= \frac{-dx_2 - a(mlx_2)^2 \sin(x_1) \cos(x_1) + mgl \sin(x_1)}{\alpha(x_1)} \\ &+ \frac{-aml \cos(x_1)}{\alpha(x_1)} \tilde{u} \\ y &= x_1 \end{aligned}$$

- x_1 is the angle, and x_2 is the angular velocity
- Due to physical limits, we assume $x_1 \in \left[\frac{-\pi}{3}, \frac{\pi}{3}\right], x_2 \in \left[-\sigma, \sigma\right]$
- $\sin(x_1)$, $\cos(x_1)$, $\alpha(x_1)$ nonlinearities which are handled with TS fuzzy modeling
- x_2^2 handled with slope-restricted

Numerical example

Nonlinear model of an inverted pendulum

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= \frac{-dx_2 - a(mlx_2)^2 \sin(x_1) \cos(x_1) + mgl \sin(x_1)}{\alpha(x_1)} \\ &+ \frac{-aml \cos(x_1)}{\alpha(x_1)} \tilde{u} \\ y &= x_1 \end{aligned}$$

- x_1 is the angle, and x_2 is the angular velocity
- Due to physical limits, we assume $x_1 \in \left[\frac{-\pi}{3}, \frac{\pi}{3}\right], x_2 \in \left[-\sigma, \sigma\right]$
- $\sin(x_1)$, $\cos(x_1)$, $\alpha(x_1)$ nonlinearities which are handled with TS fuzzy modeling
- x_2^2 handled with slope-restricted

3.5 $-\hat{x}_1$ 2.5 1.5 \ddot{x} 0.5 0 -0.5 -1 -1.5 0 2 8 10 12 14 t[s]

Example 0•

Estimation error

Estimated states

Outline

- Background
- 2 TS fuzzy systems with local nonlinearities
- 3 Example
- 4 Conclusions

Conclusions

 Approach to handle unmeasured-state nonlinearities and reduce computational complexity

Future work

- Non-scalar inputs for the nonlinearity $\psi(Hx)$
- non-input matching nonlinearity

Thank you for your attention!

Conclusions

 Approach to handle unmeasured-state nonlinearities and reduce computational complexity

Future work

- Non-scalar inputs for the nonlinearity $\psi(Hx)$
- non-input matching nonlinearity

Thank you for your attention!

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-III-P1-1.1-TE-2016-1265, contract number 11/2018.

Parameter table

Notation	Value	Description
g [<i>m</i> ^s /s]	9.8	gravitational acceleration
m [kg]	0.3	mass of pendulum
M [kg]	15	mass of cart
d [N/rad/s]	0.0007	friction coefficient
l [m]	0.3	length of pendulum
J [kg m ²]	0.3	moment of inertia
σ [rad/s]	4	max angular velocity

Observer gains

$$L_{\psi} = 4.32 \cdot 10^{-5}, \ L_{1} = \begin{bmatrix} 27.48 \\ 182.13 \end{bmatrix}, \ L_{2} = \begin{bmatrix} 28.13 \\ 186.41 \end{bmatrix}$$

$$L_{3} = \begin{bmatrix} 27.52 \\ 182.38 \end{bmatrix}, \ L_{4} = \begin{bmatrix} 28.1 \\ 186.22 \end{bmatrix}, \ L_{5} = \begin{bmatrix} 22.15 \\ 146.65 \end{bmatrix}$$

$$L_{6} = \begin{bmatrix} 22.79 \\ 150.9 \end{bmatrix}, \ L_{7} = \begin{bmatrix} 22.19 \\ 146.92 \end{bmatrix}, \ L_{8} = \begin{bmatrix} 22.76 \\ 150.72 \end{bmatrix},$$

Controller gains

$$\begin{split} & K_1 = \begin{bmatrix} -3.81 & -11 \end{bmatrix}, \ K_2 = \begin{bmatrix} -3.81 & -11 \end{bmatrix} \\ & K_3 = \begin{bmatrix} -6.52 & -21.48 \end{bmatrix}, \ K_4 = \begin{bmatrix} -6.52 & -21.47 \end{bmatrix} \\ & K_5 = \begin{bmatrix} -3.74 & -20.16 \end{bmatrix}, \ K_6 = \begin{bmatrix} -3.74 & -20.16 \end{bmatrix} \\ & K_7 = \begin{bmatrix} -6.73 & -32.71 \end{bmatrix}, \ K_8 = \begin{bmatrix} -6.73 & -32.71 \end{bmatrix} \end{split}$$

