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Motivation

Takagi-Sugeno fuzzy models

@ Can exactly represent a nonlinear model in a compact set

@ Convex combination of local linear models

e Computational complexity exponentially increases with the
number of nonlinearities

Slope-restricted nonlinearities

@ Approach to handle certain type of nonlinearities for observer
design

This paper:
Combining the advantages of both TS fuzzy and slope-restricted
nonlinearities for observer-based controller design

@ Reducing the number of fuzzy rules

@ Separately handling measured- and unmeasured-state ,I,!?n
'ERSITY

nonlinearities b
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Background
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Takagi-Sugeno fuzzy model

Model: .
x=>hi(z)(Aix + Bju)

i=1
S
y =Y hi(z)Cix,
i=1

x € R™ state vector, u € R™ input vector

y € R™ output vector

hi(z) - membership function

z - premise variable (subset of the independent states x)

convex sum: hj(z) € [0, 1], >°7 ; hi(z) =1

A;, B; and C; are local linear models

Problem formulation - Linear Matrix Inequalities (LMI) mi,.l,!?,,
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Example

@ Nonlinear model:

)'<1 = Xlsin(xl)
xp =3x1 +10x2 + v

= (60 8) s (O

o Exact TS model:

X = (hl(Xl)Al + h2(X1)A2> X + Bu

A= <_31 100) Az = (é 100> B= (2)
hi(x1) = 1_5'2”(’“) ho(x1) = 1 — hi(x1) W
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Slope-restricted nonlinearities

@ Model:
x =Ax + Gy(Hx) + f(y, u)

y =Cx,
@ Where 1)(Hx) is a vector function, each entry a scalar
e f(y,u) contains the “known” terms
@ H scalar combination of the states

(Arcak and Kokotovic TAC 2001
Chong et al. Automatica 2014)
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Observer design

@ Assumption similar to Mean-value theorem

Yi(v) — vi(w) = di(t)(v — w),
Vv,weR, v#w, 0/t)el0, b]

@ X estimate of x

@ Form of the observer:
R = AR+ GY(HR) + f(y,u) + L(y — )

@ e := x — X, and the error dynamics:
é=(A—LC)e+ G(¢(Hx) — y(HX))
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© TS fuzzy systems with local nonlinearities
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TS fuzzy systems with local nonlinearities
[ Ie]

TS fuzzy systems with local nonlinearities

@ Model:
x =Azx + B,u+ B, G,1(Hx)
y =Cx

e Notation: A, & > 7 ; hi(2)A;
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TS fuzzy systems with local nonlinearities

e Model:

x =Azx + B,u+ B, G,1(Hx)
y =Cx

Notation: A, < Y7, hi(z)A;
Matching nonlinearities,
motivation: mechanical systems

M(60)) = —F(6,0) — G(0) + T

@ Similar idea by Moodi and Farrokhi
IJAMCS 2013

2 DOF robot arm
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Observer Design

Observer structure:

);% :Az)? + Bzu + Bszib(H)? + Ly“)(y - )A/)) + Lz(y - }A/)
) =C,%

@ L, observer gain

@ Ly injection term, less conservative design (Arcak and
Kokotovic TAC 2001)

@ Assumption on #(+) leads to an LMI formulation
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Controller design

Control law:

u=—KX— Gp(Hx+ Ly(y — ¥))
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Controller design

Control law:

u=—KX— Gp(Hx+ Ly(y — ¥))

@ Closed loop system dynamics:

é =(A; — L:G)e+B; G, (U(Hx) — Y (HX + Ly(y — 9)))
% =(A; — B,K;)% + L,Ce
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Controller design

Control law:

u=—KX— Gp(Hx+ Ly(y — ¥))

@ Closed loop system dynamics:

é =(A; — L:G)e+B; G, (U(Hx) — Y (HX + Ly(y — 9)))
% =(A; — B,K;)% + L,Ce

@ Assumption

Yi(v) — di(w) = 6i(t)(v — w),
VYv,weR, v£w, §(t)e]0, bl up
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Controller design cont'd

Augmented system dynamics:

(8% 0 e oomr-somo
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Controller design cont'd

Augmented system dynamics:

(8% 0 e oomr-somo

@ Stability of cascaded systems (Lendek et al. TFS 2009)

@ L, and Ly can be found so that the error dynamics is globally
asymptotically stable (GAS)

o If K, can be found so that
% = (A; — B:K;)%,

is GAS, then also the augmented system is GAS. w
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Numerical example

@ Nonlinear model of an inverted pendulum

Xl =X2
B _ —dxp — a(mixz)? sin(x1) cos(x1) + mgl sin(x1)
i ala)

—aml cos(x1) p

a(x1)
Yy =X1

@ X is the angle, and xo is the angular velocity

o Due to physical limits, we assume x; € [3", 3], x2 € [0, 0]
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Numerical example

@ Nonlinear model of an inverted pendulum

Xl =X2
B _ —dxp — a(mixz)? sin(x1) cos(x1) + mgl sin(x1)
i ala)

—aml cos(x1)
ax1)

u
Yy =X1

@ X is the angle, and xo is the angular velocity
o Due to physical limits, we assume x; € [3", 3], x2 € [0, 0]

@ sin(xy), cos(x1), a(x1) nonlinearities which are handled with
TS fuzzy modeling

w

o x2 handled with slope-restricted TECHNICAL
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Estimated states
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Conclusions

@ Approach to handle unmeasured-state nonlinearities and
reduce computational complexity

@ Non-scalar inputs for the nonlinearity ¢ (Hx)

@ non-input matching nonlinearity
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Conclusions
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Conclusions

@ Approach to handle unmeasured-state nonlinearities and
reduce computational complexity

@ Non-scalar inputs for the nonlinearity ¢ (Hx)

@ non-input matching nonlinearity

Thank you for your attention!
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Parameter table

Notation Value Description

g [m®/s] 9.8 | gravitational acceleration
m [kg] 0.3 mass of pendulum
M [ke] 15 mass of cart

d [N/rad/s] | 0.0007 friction coefficient

I [m] 0.3 length of pendulum

J [kg m?] 0.3 moment of inertia

o [rad/s] 4 max angular velocity

up
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Observer gains

Ly —432.10°5, [, = [27.48} L [28.13]

182.13 186.41
o [2782] [ _[281] [ _[2215
37 1182.38]° ™* T |186.22] 7 "> T |146.65
o [2279) [ _[2219] | [2276

6= 1150.9| " =" ~ |146.92|° "® ~ |150.72|"
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Controller gains

Ki=[-381 —11], K = [-3.81 —11]

K3 =[—6.52 —21.48], K4y = [-6.52 —21.47|
[—3.74 —20.16] , Ke = [-3.74 —20.16]

Ky =[-6.73 —32.71], Kg = [-6.73 —32.71]
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