Fuzzy modeling and design for a 3D Crane

Paul Petrehuș, Zsófia Lendek, Paula Raica

Technical University of Cluj-Napoca
Department of Automation

ICONS - September 2013
Summary

Objective: Fuzzy control of a 3D crane.

- TS fuzzy model of the crane
- TS observer
- The observer is tested in simulation and on a lab setup
- The controller is tested in simulation
1. Introduction

2. 3D Crane system
 - The experimental setup
 - Mathematical model
 - The discrete time fuzzy model

3. Observer design
 - TS observer
 - Results

4. Controller design
 - TS controller
 - Results

5. Conclusion
Introduction

Approaches for the control of a 3D Crane

- time-optimal control
- robust control for the crane swing and an LQ controller for tracking reference
- combined feedforward, feedback control and disturbance estimation
- fuzzy-logic projection controller designed based on cart position and swing angle
- fuzzy-logic controller to reduce the load swing during positioning of the crane
Introduction

3D Crane system
- The experimental setup
- Mathematical model
- The discrete time fuzzy model

Observer design
- TS observer
- Results

Controller design
- TS controller
- Results

Conclusion
Experimental setup

- **States:**
 - x_1, x_3, x_9: positions on y, x and z axes
 - x_2, x_4, x_{10}: velocities
 - x_5, x_7: angles
 - x_6, x_8: angular velocities
- **Inputs:** acceleration
- **Model alterations:**
 - $x_9 \rightarrow x_9 + 0.1$
- **Physical constraints**
Mathematical model

Model equations

\[\dot{x}_1 = x_2 \]
\[\dot{x}_2 = u_1^* + \mu_1 x_5 u_3^* - \mu_1 g x_5 \]
\[\dot{x}_3 = x_4 \]
\[\dot{x}_4 = u_2^* - \mu_2 x_7 u_3^* + \mu_2 g x_7 \]
\[\dot{x}_5 = x_6 \]
\[\dot{x}_6 = (u_1^* + \mu_1 x_5 u_3^* - \mu_1 g x_5 - g x_5 - 2 x_6 x_{10}) \frac{1}{x_9 + 0.1} \]
\[\dot{x}_7 = x_8 \]
\[\dot{x}_8 = -(u_2^* - \mu_2 x_7 u_3^* + \mu_2 g x_7 + g x_7 + 2 x_8 x_{10}) \frac{1}{x_9 + 0.1} \]
\[\dot{x}_9 = x_{10} \]
\[\dot{x}_{10} = u_3^* \]
Euler discretization

Sampling time $T_e = 0.01 \text{ s}$ (system data acquisition rate)

Discrete time model:

$$\begin{align*}
x(k + 1) &= A_d(x(k))x(k) + B_d(x(k))u(k) \\
y(k) &= Cx(k)
\end{align*}$$

Four nonlinear terms \rightarrow fuzzy model with 16 rules:

$$x(k + 1) = \sum_{j=1}^{16} h_j(z(k))(A_{dj}x(k) + B_{dj}u(k))$$
1. Introduction

2. 3D Crane system
 - The experimental setup
 - Mathematical model
 - The discrete time fuzzy model

3. Observer design
 - TS observer
 - Results

4. Controller design
 - TS controller
 - Results

5. Conclusion
TS observer

- The purpose is to apply advanced control techniques
- Five measurable states out of 10 → observer design
- TS system:

\[
x(k + 1) = \sum_{i=1}^{r} h_i(z)(A_i x(k) + B_i u(k))
\]

\[
y(k) = C x(k)
\]

- Fuzzy estimator:

\[
\hat{x}(k + 1) = \sum_{i=1}^{r} h_i(z(k))(A_i \hat{x}(k) + B_i u(k) + L_i(y(k) - \hat{y}(k)))
\]

\[
\hat{y}(k) = C \hat{x}(k)
\]

where \(L_i, \ i = 1, \ldots, r\), are the observer gains.
TS observer

- Design: calculate matrices P, H and M_i, $i = 1\ldots16$, solving the LMIs:

$$
\begin{pmatrix}
-P & (H A_i - M_i C)^T \\
H A_i - M_i C & -H - H^T + P
\end{pmatrix} < 0
$$

- Observer gains:

$$L_i = H^{-1} M_i, \ i = 1, \ldots, r$$
Simulation results

- Inputs: randomly generated staircase signals
- Outputs: simulated states
Experimental results

- Inputs: PID controller command signals
- Outputs: measured data from the plant
Experimental results

- Speed computed by differentiation and filtering
- Two filters: a zero-phase filter (used as a benchmark) and a low-pass filter
1 Introduction

2 3D Crane system
 - The experimental setup
 - Mathematical model
 - The discrete time fuzzy model

3 Observer design
 - TS observer
 - Results

4 Controller design
 - TS controller
 - Results

5 Conclusion
Controller design

- PDC controller

\[u(k) = - \sum_{i=1}^{r} h_i(z) F_i x(k) \]

- \(F_i \) - the local feedback gains - are obtained by solving:

\[
G_{ii} < 0 \\
\left(\frac{G_{ij} + G_{ji}}{2} \right)^T + \left(\frac{G_{ij} + G_{ji}}{2} \right) < 0
\]

where:

\[
G_{ij} = \begin{pmatrix}
-H - H^T + P & (A_i H - B_i S_j)^T \\
A_i H - B_i S_j & -P
\end{pmatrix}
\]
State feedback control

- The controller has been tested in simulation.
- If all states are known, the closed-loop system is stabilized.
Observer-based control

- The controller was combined with the observer and tested in simulation
- Note on the separation principle
1 Introduction

2 3D Crane system
 - The experimental setup
 - Mathematical model
 - The discrete time fuzzy model

3 Observer design
 - TS observer
 - Results

4 Controller design
 - TS controller
 - Results

5 Conclusion
Conclusion

- The observer has been tested in a real-time experiment
- Controller: tested in simulation
- Future work: implementation of the controller

Acknowledgement:

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-RU-TE-2011-3-0043, contract number 74/05.10.2011