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Abstract—In this paper we consider observer design for
discrete-time switching systems represented by Takagi-Sugeno
fuzzy models. For the design we use a switching Lyapunov
function defined on the switches. In order to develop stability
conditions for the estimation error dynamics, we consider the
variation of this function along possible switches. The conser-
vativeness of the approach is reduced by considering the α-
sample variation of the Lyapunov function. This approach can
bring solutions to observer design for some switching systems
with unobservable and unstable local models. The developed
conditions are illustrated on a numerical example.

Index Terms—switching systems, Takagi-Sugeno fuzzy mod-
els, observer design, periodic systems, nonquadratic Lyapunov
function

I. INTRODUCTION

Switching systems are usually described by continuous and

discrete dynamics, and their interactions. For such systems,

one can analyze the stability [1] of the whole system assuming

that the switching sequence is known or not known and design

switching observers and controllers. In this paper we consider

observer design for switching nonlinear systems represented

by Takagi-Sugeno (TS) fuzzy models.

Takagi-Sugeno (TS) fuzzy systems [2] are convex combi-

nations of local linear models. For the analysis and synthesis

of TS systems the direct Lyapunov approach has been used.

The design conditions are derived in the form of linear matrix

inequalities (LMIs), which can be solved using available

algorithms. To derive the conditions, next to classical quadratic

Lyapunov functions [3]–[5], recently nonquadratic Lyapunov

functions [6]–[8] have been used, which have shown a real

improvement in the design conditions [6], [9]–[11].

Switching TS systems have been investigated in the last

decades mainly in the continuous case where the stability is

based on the use of a quadratic Lyapunov function [12]–[15]

or a piecewise one [16], [17]. For discrete-time TS models,

the number of results is limited [18], [19].

Most of the existing results on switching systems concern

linear subsystems, such as the one in [20], where stabilization

in the presence of input saturation and uncertainties is consid-

ered, or [21] which considers the computation of the mode-

dependent dwell-time. Observability for switching discrete-

time linear systems has been investigated in [22].

In this paper, we derive relaxed conditions for the observer

design of switching TS systems. For this, we use a switching

nonquadratic Lyapunov function and make use of its variation

over possible switches. We assume that although the exact

switching sequence is not known, the set of all the admissible

switches is known. Furthermore, once a subsystem is activated,

it will remain active for a number of samples, for which

minimum and maximum bounds are known.

The structure of the paper is as follows. Section II presents

the notations used in this paper. The development of observer

design conditions is presented in Section III. Section IV

discusses the developed conditions and illustrates their use on

a numerical example. Section V concludes the paper.

II. PRELIMINARIES

In this paper we consider observer design for discrete-time

switching TS systems. We consider subsystems of the form

xk+1 =
r∑

i=1

hi(zk)(Aj,ixk + Bj,iuk)

yk =
r∑

i=1

hi(zk)Cj,ixk

or, in a shorthand notation

xk+1 = Aj,zxk + Bj,zuk

yk = Cj,zxk

(1)

where j is the number of the subsystem, j = 1, 2, . . . , ns, ns

being the number of the subsystems, x denotes the state vector,

r is the number of rules, z denotes the scheduling vector, hi,

i = 1, 2, . . . , r are normalized membership functions, and

Aj,i, Bj,i, Cj,i, i = 1, 2, . . . , r, j = 1, 2, . . . , ns, are the

local models. The scheduling vector is assumed to be available

online, but not in advance.

For the easier notation, we use a directed graph repre-

sentation of the switching system (1). The graph associated

to (1) is G = {V, E}, where V denotes the set of vertices or

subsystems and E denotes the set of admissible switches. As

such, (vi, vj) ∈ E if a switch from subsystem i to subsystem j

is possible. Note that we assume that self-transitions are also

possible: these correspond to the subsystem being active for

more than one sample.



A path P(vi, vj) between two vertices vi and vj in the graph

G is a sequence of vertices P(vi, vj) = [vp1
, vp2

, . . . , vpnp
]

so that vi = vp1
, vj = vpnp

, and (vpk
, vpk+1

) ∈ E , pk =
1, 2, . . . , np − 1. A path in a graph associated to a switching

system corresponds to a switching law. The length of a path

is given by the number of edges it contains.

The notations above are illustrated on the following exam-

ple.

Example 1. Consider a switching system composed of 4

subsystem:

xk+1 = Ai,zxk

for i = 1, 2, 3, 4, and with admissible switches (2, 1), (2, 3),
(3, 1), (4, 2), (1, 4). Each subsystem can be active for more

than one sample. The corresponding graph representation is

illustrated in Figure 1.
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Fig. 1. Graph representation of the switching system in Example 1.

The graph is G = {V, E}, with V = {1, 2, 3, 4} and

E = {(1, 1), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1),

(3, 3), (4, 2), (4, 4)}

A path P(1, 3) is given by P(1, 3) = [1, 4, 2, 3]. The length

of the path P(1, 3) = [1, 4, 2, 3] is 3.

Once activated, a subsystem may be active continuously for

at least pm
i ∈ N

+ and at most pM
i ∈ N

+ samples, that are

assumed known. Our goal is to design a switching observer

such that the estimation error dynamics converge to zero, with

any admissible switching law.

0 and I denote the zero and identity matrices of appropriate

dimensions, and a (∗) denotes the term induced by symmetry.

The subscript z +m (as in A1,z+m) stands for the scheduling

vector being evaluated at the current sample plus mth instant,

i.e., z(k + m).

In what follows, we will make use of the following results:

Lemma 1. [23] Consider a vector x ∈ R
nx and two matrices

Q = QT ∈ R
nx×nx and R ∈ R

m×nx such that rank(R) < nx.

The two following expressions are equivalent:

1) x
T Qx < 0, x ∈ {x ∈ R

nx ,x 6= 0, Rx = 0}
2) ∃M ∈ R

nx×m such that Q + MR + RT MT < 0

Analysis and design for TS models often lead to double-sum

negativity problems of the form

x
T

r∑

i=1

r∑

j=1

hi(zk)hj(zk)Γijx < 0 (2)

where Γij , i, j = 1, 2, . . . , r are matrices of appropriate

dimensions.

Lemma 2. [24] The double-sum (2) is negative, if

Γii < 0

Γij + Γji < 0, i, j = 1, 2, . . . , r, i < j

Lemma 3. [25] The double-sum (2) is negative, if

Γii < 0

2

r − 1
Γii + Γij + Γji < 0, i, j = 1, 2, . . . , r, i 6= j

III. OBSERVER DESIGN

Lets us now consider observer design for the switching

system (1), repeated here for convenience:

xk+1 = Aj,zxk + Bj,zuk

yk = Cj,zxk

We propose to use a switching observer of the form

x̂k+1 = Aj,zx̂k + Bj,zuk + H−1

j,z Lj,z(yk − ŷk)

ŷk = Cj,zx̂k

(3)

for the j-th subsystem, the observer switching together with

the observed subsystem. The matrices Hj,i and Lj,i, j =
1, 2 . . . , ns, i = 1, 2, . . . , r are to be determined.

The error dynamics ek = xk−x̂k using this observer, under

the assumption that the scheduling variables are available

online at sample k, can be written as

ek+1 = Aj,zek − H−1

j,z Lj,z(yk − ŷk)

= (Aj,z − H−1

j,z Lj,zCj,z)ek

(4)

which in itself is a switching system.

To derive the observer design conditions, meaning that the

error dynamics (4) should be asymptotically stable, consider

the switching Lyapunov function

V (ek) = e
T
k Pm,j,zek (5)

defined during the switches, i.e., on the edges of the associated

graph G = {V, E}, with (vm, vj) ∈ E .

Remark: If a subsystem j may be active for several number

of samples, the edge (vj , vj) is also considered.

With this, the following result can be formulated:

Theorem 1. The error dynamics (4) is asymptotically stable, if

there exist Pm,j,k = PT
m,j,k > 0, Hj,k, (vm, vj) ∈ E , (vj , vl) ∈

E , k = 1, 2, . . . , r, such that
(

−Pm,j,z (∗)
Hj,zAj,z − Lj,zCj,z −Hj,z − HT

j,z + Pj,l,z+1

)
< 0 (6)

for all admissible paths P(vm, vl) = [vm, vj , vl], vm ∈ V .



Proof. Consider the switching Lyapunov function (5), defined

on the edges of the associated graph, with e
T
k Pm,j,zek be-

ing active during the transition from vertex m to vertex j.

The difference in the Lyapunov function for two consecutive

samples is

∆V = e
T
k+1Pj,l,z+1ek+1 − e

T
k Pm,j,zek

=

(
ek

ek+1

)T (
−Pm,j,z 0

0 Pj,l,z+1

)(
ek

ek+1

)

where [vm, vj , vl] is an admissible path.

During the transition for j to l, the dynamics of the error

system are described by

(
Aj,z − H−1

j,z Lj,zCj,z −I
) (

ek

ek+1

)
= 0

Using Lemma 1, the difference in the Lyapunov function is

negative, if there exists M such that
(
−Pm,j,z 0

0 Pj,l,z+1

)

+ M
(
Aj,z − H−1

j,z Lj,zCj,z −I
)

+ (∗) < 0

By choosing

M =

(
0

Hj,z

)

we have directly (6).

Using Lemma 3 LMI conditions can be formulated, as

follows:

Corollary 1. The error dynamics (4) is asymptotically stable,

if there exist Pm,j,k = PT
m,j,k > 0, Hj,k, (vm, vj) ∈ E , k, l =

1, 2, . . . , r, such that

Γm,j,l,γ
kk < 0

2

r − 1
Γm,j,l,γ

kk + Γi,j,l,γ
kβ + Γi,j,l,γ

βk < 0

k, β, γ = 1, 2, . . . , r

with

Γm,j,l,γ
kβ =

(
−Pm,j,k (∗)

Hj,kAj,β − Lj,kCj,β −Hj,k + (∗) + Pj,l,γ

)

for all admissible paths P(vm, vl) = [vm, vj , vl], vj ∈ V .

Remark: In order to reduce the conservativeness by ex-

ploiting the knowledge available of the switching sequence,

one can also use the observer

x̂k+1 = Aj,zx̂k + Bj,zuk + H−1

m,j,zLm,j,z(yk − ŷk)

ŷk = Cj,zx̂k

(7)

for the j-th subsystem, if the last switch has been from vertex

m to vertex j.

The error dynamics ek = xk − x̂k using this observer, can

be written as

ek+1 = Aj,zek − H−1

m,j,zLm,j,z(yk − ŷk)

= (Aj,z − H−1

m,j,zLm,j,zCj,z)ek

(8)

Following the same steps as above, and in Finsler’s lemma

choosing

M =

(
0

Hm,j,z

)

we have

Corollary 2. The error dynamics (8) is asymptotically stable,

if there exist Pm,j,k = PT
m,j,k > 0, Hm,j,k, (vm, vj) ∈ E ,

(vj , vl) ∈ E , k = 1, 2, . . . , r, such that

(
−Pm,j,z (∗)

Hm,j,zAj,z − Lm,j,zCj,z −Hm,j,z + (∗) + Pj,l,z+1

)
< 0

(9)

for all admissible paths P(vm, vl) = [vm, vj , vl], vm ∈ V .

The result above can be further extended to take into account

more previous switches. However, this comes with the added

computational cost and will eventually lead to considering all

possible switching trajectories. To avoid this, but still reduce

the conservativeness of the approach, let us now consider

the α-sample variation of the Lyapunov function. As proven

by [26], a system is asymptotically stable, if the associated

Lyapunov function decreases every α samples, α ≥ 1, instead

of every sample. Thus, for observer design, let us consider the

error dynamics (4) and the Lyapunov function (5). Then, the

following result can be formulated:

Theorem 2. The error dynamics (4) is asymptotically stable,

if there exist α ∈ N
+, Pi,j,k = PT

i,j,k > 0, Hj,k, (vi, vj) ∈ E ,

k = 1, 2, . . . , r, such that





−Pv0,v1,z (∗) . . . (∗)
Ω1 −Hv1,z + (∗) . . . (∗)
0 Ω2 . . . (∗)
...

... . . .

(
−Hvα,z+α−1 + (∗)

+Pvα,vα+1,z+α

)





< 0
(10)

for all admissible paths P(v0, vα+1) = [v0, v1, . . . , vα+1],
where Ωi = Hvi,z+i−1Avi,z+i−1 − Lvi,z+i−1Cvi,z+i−1.

Proof. Consider the switching Lyapunov function (5), defined

on the edges of the associated graph, with Pvi,vj ,z being active

during the transition from vertex i to vertex j. The difference

in the Lyapunov function for α consecutive samples is

∆V = e
T
k+αPvα,vα+1,z+αek+α − e

T
k Pv0,v1,zek

=

(
ek

ek+α

)T (
−Pv0,v1,z 0

0 Pvα,vα+1,z+α

)

·

(
ek

ek+α

)

where [v0, v1, . . . , vα+1] is an admissible path.

Along the switching sequence [v0, v1, . . . , vα+1], the error



dynamics are described by





G1 −I 0 . . . 0
0 G2 −I . . . 0
...

...
...

...

0 0 0 . . . −I









ek

ek+1

...

ek+α




= 0

with Gi = Avi,z+i−1 − H−1

vi,z+i−1
Lvi,z+i−1Cvi,z+i−1.

Following the same steps as in the proof of Theorem 1, using

Lemma 1, the difference is the Lyapunov function is negative,

if there exists M such that





−Pv0,v1,z 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . Pvα,vα+1,z+α





+ M





G1 −I 0 . . . 0
0 G2 −I . . . 0
...

...
...

...

0 0 0 . . . −I




+ (∗) < 0

with Gi defined as above.

By choosing

M =





0 0 . . . 0
Hv1,z 0 . . . 0

0 Hv2,z+1 . . . 0
...

... . . .
...

0 0 . . . Hvα,z+α−1





we have directly (10).

IV. EXAMPLE AND DISCUSSION

Let us first illustrate the conditions of Theorem 1 on an

example.

Example 2. Consider the switching system – actually a

periodic switching system – illustrated in Figure 2. Assuming
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Fig. 2. Periodic switching system for Example 2.

that none of the subsystems may be active for more than one

sample, i.e., pm = pM = 1, the graph is G = {V, E}, with

V = {1, 2, 3} and

E = {(1, 2), (2, 3), (3, 1)}

. Consider the following local models of the TS system above:

A1,1 =

(
0.61 0.10
1.82 0.50

)
A1,2 =

(
0.21 1.59
0.34 0.77

)

C1,1 =
(
1 0

)
C1,2 =

(
1 0

)

A2,1 = A2,2 =

(
1.1 0
0.2 0.8

)

C2,1 =
(
0 0

)
C2,2 =

(
0 0

)

A3,1 =

(
0.11 0.09
0.09 0.07

)
A3,2 =

(
0.32 0.30
0.09 0.38

)

C3,1 =
(
0 1

)
C3,2 =

(
0 0

)

The second subsystem is linear, but it is unstable and unobserv-

able. The second local model of the third subsystem is again

unstable and unobservable. Due to this, methods available in

the literature yield unfeasible LMIs. However, using Lemma 2

to formulate LMI conditions for Theorem 1, we obtain1

P1,2,1 =

(
4.69 −3.97
−3.97 7.79

)
P1,2,2 =

(
4.69 −3.97
−3.97 7.79

)

P2,3,1 =

(
3.45 −3.35
−3.35 5.05

)
P2,3,2 =

(
4.09 −3.91
−3.91 6.41

)

P3,1,1 =

(
3.48 −3.97
−3.97 5.18

)
P3,1,2 =

(
4.74 −5.67
−5.67 7.39

)

H1,1 =

(
4.83 −2.45
−2.50 6.26

)
H1,2 =

(
3.77 −3.21
−1.84 6.46

)

H2,1 =

(
3.57 −3.21
−2.54 5.35

)
H2,2 =

(
3.57 −3.21
−2.54 5.35

)

H3,1 =

(
4.55 −5.05
0.45 5.84

)
H3,2 =

(
4.14 −4.61
−4.85 6.27

)

L1,1 =

(
−2.14
12.08

)
L1,2 =

(
2.40
3.45

)

L3,1 =

(
2.42
4.27

)
L3,2 =

(
3.89
7.93

)

Note that there are no observer gains L2,1 and L2,2. This is

because the second subsystem on its own is not observable.

However, this observer is able to estimate the states of the

switching system above. A trajectory of the error dynamics for

the case when x(0) = [−1, 1]T and x̂(0) = 0 is illustrated in

Figure 3. For the simulation, the membership functions used

were h1 = 1

2
(1− sin x1), h2 = 1− h1, and for L2,1 and L2,2

zero matrices were used. The initial subsystem was the first

one, from which the system switched according to the periodic

law.

Let us now discuss the conditions developed for the α-

sample variation of the Lyapunov function. In the example

above, the conditions required that the Lyapunov function de-

creases with every switch/every sample, i.e., for all (vi, vj) ∈

1The values have been truncated to two decimal places.
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Fig. 3. Estimation error for Example 2.

E . That is, we had the conditions:
(

−P1,2,z (∗)
H2,zA2,z − L2,zC2,z −H2,z + (∗) + P2,3,z+1

)
< 0

(
−P2,3,z (∗)

H3,zA3,z − L3,zC3,z −H3,z + (∗) + P3,1,z+1

)
< 0

(
−P3,1,z (∗)

H1,zA1,z − L1,zC1,z −H1,z + (∗) + P1,2,z+1

)
< 0

On the other hand, a 2-sample variation means that the
Lyapunov function has to decrease along paths of length 2,
i.e., we have the conditions:
0

B

B

B

@

−P1,2,z (∗) (∗)
„

H2,zA2,z

−L2,zC2,z

«

−H2,z + (∗) (∗)

0

„

H3,z+1A3,z+1

−L3,z+1C3,z+1

« „

−H3,z+1 + (∗)
+P3,1,z+2

«

1

C

C

C

A

< 0

0

B

B

B

@

−P2,3,z (∗) (∗)
„

H3,zA3,z

−L3,zC3,z

«

−H3,z + (∗) (∗)

0

„

H1,z+1A1,z+1

−L1,z+1C1,z+1

« „

−H1,z+1 + (∗)
+P1,2,z+2

«

1

C

C

C

A

< 0

0

B

B

B

@

−P3,1,z (∗) (∗)
„

H1,zA1,z

−L1,zC1,z

«

−H1,z + (∗) (∗)

0

„

H2,z+1A2,z+1

−L2,z+1C2,z+1

« „

−H2,z+1 + (∗)
+P2,3,z+2

«

1

C

C

C

A

< 0

Furthermore, a 3-sample variation means that the Lyapunov

function has to decrease along paths of length 3, which, in

this case, is equivalent to the whole period of switching.

In the example above, one of the reasons for which the

LMIs are feasible is that the subsystems may be active for

a finite number of samples. In the case considered above,

the switching occurs at every sample, i.e., each subsystem is

active for one sample. Feasible LMIs are also obtained if the

subsystems may be active for at most 2 samples. However,

assuming that each subsystem, once activated may remain

active for an infinite number of samples, the corresponding

LMIs become unfeasible.

We assumed that the switching sequence is not known in

advance and it cannot be directly influenced. Due to this

assumption the conditions require that the estimation error

dynamics is stable if the Lyapunov function decreases along

every path of length α. This is the worst-case assumption, i.e.,

all possible combinations on switches between the estimation

error subsystems have to be taken into account. If the switch-

ing sequence can be chosen, or it is known in advance, the

conditions can be relaxed.

A shortcoming of the proposed conditions is the compu-

tational complexity of generating all the switching paths of

length α, in particular for large α and large-scale switching

systems and in consequence, a large number of LMIs that has

to be solved. However, reducing the conservativeness of the

conditions by introducing additional sums in the Lyapunov

function increases the number of LMIs.

V. CONCLUSIONS

In this paper we developed observer design conditions for

discrete-time switching systems represented by Takagi-Sugeno

fuzzy models, by using a switching Lyapunov function defined

on the switches. We assumed that the switching sequence is

not known in advance and it cannot be directly influenced.

The developed conditions have been formulated as LMIs.
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