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Abstract—In this paper we consider controller design for
periodic Takagi-Sugeno fuzzy models. For this, we use a periodic
nonquadratic Lyapunov function defined at the time instants
when the subsystems switch. Using the proposed conditions we
are able to handle periodic Takagi-Sugeno systems where the
local models or even the subsystems are unstable or cannot
be stabilized. The application of the conditions is illustrated on
numerical examples.

Index Terms—Takagi-Sugeno fuzzy models, controller design,
periodic systems, nonquadratic Lyapunov function

I. INTRODUCTION

This paper deals with a particular class of nonlinear mod-

els with periodic parameters. Such models can be found in

numerous domains such as computer control of industrial

processes, or automotive, aeronautic, and aerospace industries.

For instance examples related to computer control and com-

munication systems are provided in [1], to estimate the air/fuel

ratio in each cylinder on an internal combustion engine a

periodic dynamic model is used in [2], [3] considers a periodic

model for the rotor blades of helicopter, etc.

The stability of linear periodic systems is characterized by

the monodromy transition matrix and by its eigenvalues [4].

For the stabilization of linear periodic models, results have

been presented in [5]. For models including time varying

delays, [6] proposed methods based on Floquet’s transforma-

tion, which led to conditions for exponential stability. Results

available for linear periodic systems have been extended to

polytopic LPV periodic models, where the stability analysis

is based on the use of quadratic [5], [7] or non-quadratic [8]

Lyapunov functions.

In this paper, to represent nonlinear periodic systems, we use

Takagi-Sugeno (TS) fuzzy models [9]. TS models are nonlin-

ear, convex combinations of local linear models, and are able

to exactly represent a large class of nonlinear systems [10].

For the stability analysis and controller design of TS sys-

tems the direct Lyapunov approach has been used, involving

quadratic Lyapunov functions [11]–[13], piecewise continuous

Lyapunov functions [14], [15], and nonquadratic Lyapunov

functions [16]–[18]. In particular for discrete-time systems,

non-quadratic Lyapunov functions have shown a real improve-

ment of the design conditions [16], [19]–[21]. The stability or

design conditions are generally derived in the form of linear

matrix inequalities (LMIs).

Periodic TS systems [22], [23], often described by contin-

uous dynamics and discrete dynamics as well as their inter-

actions, have been investigated mainly in the continuous case

where the stability is based on the use of a quadratic Lyapunov

function [24]–[27] or a piecewise one [28], [29]. Although

results are available for discrete-time linear switching systems

[8], for discrete-time TS models, few results exist [30], [31].

In this paper, we consider stability analysis and controller

design for discrete-time periodic TS models. To develop the

conditions we use a periodic non-quadratic Lyapunov function

defined in the moments when the switching takes place. The

developed conditions are bilinear matrix inequalities (BMIs),

which can be solved using either BMI solvers or an iterative

procedure. Using the developed conditions, we are able to

prove the stability of a periodic TS system having non-

stable local models and stabilize a periodic system having

noncontrollable local models.

The structure of the paper is as follows. Section II presents

the notations and the general form of the TS models used

in this paper. In Section III the proposed conditions for

stability analysis are developed, discussed, and illustrated on

a numerical example. Section IV extends the conditions for

controller design, discusses them, and illustrates their use on

a numerical example.

II. PRELIMINARIES

In this paper we consider stability analysis and controller

design of discrete-time periodic TS systems. For stability

analysis, we consider subsystems of the form

x(k + 1) =

rj∑

i=1

hj,i(zj(k))Aj,ix(k)

= Aj,zx(k)

(1)



and for controller design

x(k + 1) =

rj∑

i=1

hj,i(zj(k))(Aj,ix(k) + Bj,iu(k))

= Aj,zx(k) + Bj,zu(k)

(2)

where j is the index of the subsystem, j = 1, 2, . . . , ns,

ns being the number of the subsystems, x denotes the state

vector, rj is the number of rules in the jth subsystem, zj is

the scheduling vector, hj,i, i = 1, 2, . . . , rj are normalized

membership functions, and Aj,i and Bj,i, i = 1, 2, . . . , rj ,

j = 1, 2, . . . , ns, are the local models. We assume that none

of the subsystems has a finite escape time.

We consider periodic systems, i.e., the subsystems defined

above are activated in a sequence 1, 1, . . . , 1
︸ ︷︷ ︸

p1

, 2, 2, . . . , 2
︸ ︷︷ ︸

p2

, . . . ,

ns, ns, . . . , ns
︸ ︷︷ ︸

pns

, 1, 1, . . . , 1
︸ ︷︷ ︸

p1

, etc., where pi denotes the number

of samples for which the ith subsystem is active. In what

follows, we will refer to pi as the period of the ith subsystem.

0 and I denote the zero and identity matrices of appropriate

dimensions, and a (∗) denotes the term induced by symmetry.

The subscript z +m (as in A1,z+m) stands for the scheduling

vector being evaluated at the current sample plus mth instant,

i.e., z(k + m). An underlined variable j denotes the modulo

of the variable, i.e., j = (j mod ns) + 1.

In what follows, we will make use of the following results:

Lemma 1. [32] Consider a vector x ∈ R
nx and two matrices

Q = QT ∈ R
nx×nx and R ∈ R

m×nx such that rank(R) < nx.

The two following expressions are equivalent:

1) x
T Qx < 0, x ∈ {x ∈ R

nx ,x 6= 0, Rx = 0}
2) ∃M ∈ R

nx×m such that Q + MR + RT MT < 0

Controller design for TS models often lead to double-sum

negativity problems of the form

x
T

r∑

i=1

r∑

j=1

hi(z(k))hj(z(k))Γijx < 0 (3)

where Γij , i, j = 1, 2, . . . , r are matrices of appropriate

dimensions.

Lemma 2. [33] The double-sum (3) is negative, if

Γii < 0

Γij + Γji < 0, i, j = 1, 2, . . . , r, i < j

Lemma 3. [34] The double-sum (3) is negative, if

Γii < 0

2

r − 1
Γii + Γij + Γji < 0, i, j = 1, 2, . . . , r, i 6= j

Property 1. (Congruence) Given a matrix P = PT and a full

column rank matrix Q it holds that

P > 0 ⇒ QPQT > 0

Property 2. Let A and B be matrices of appropriate dimen-

sions and ranks, with B = BT > 0. Then

(A − B)T B−1(A − B) ≥ 0 ⇐⇒ AT B−1A ≥ A + AT − B

III. STABILITY ANALYSIS OF PERIODIC SYSTEMS

A. Stability conditions

In this section, we consider the stability analysis of periodic

TS systems of the form (1). In our previous paper [35],

we have considered a switching Lyapunov function defined

only in the instants when a switching takes place in the

system, and the stability conditions have been derived based

on the requirement that in each switching part, this Lyapunov

function decreases. Generalizing the result in [35], this can be

formulated as follows:

Theorem 1. The periodic TS system (1) with periods
p1, p2, . . . , pns

is asymptotically stable, if there exist Pj,i =
PT

j,i > 0, Mj,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj , such that
the following conditions are satisfied:
0

B

B

B

@

−Pj,z (∗) . . . (∗) (∗)
MA1,0 −M1,0 + (∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . MA1,pj+1−1 Ωj+1,j+1

1

C

C

C

A

< 0

(4)

where1 MA1,b = Mj+1,z+bAj+1,z , M1,b = Mj+1,z+b, and

Ωj+1,j+1 denotes Ωj+1,j+1 = −Mj+1,z+pj+1−1 + (∗) +
Pj+1,z+pj+1

.

As already noted, the result above is based on the require-

ment that the Lyapunov function should decrease in each part.

However, this is not necessary, as long as from the beginning

and until the end of one complete cycle the Lyapunov function

decreases, i.e., the Lyapunov function steadily decreases in

each cycle. Consequently, the Lyapunov function may increase

at one switch. To quantify this increase, let us impose the

condition that V (k + pi) < δiV (k), where δi > 0, but not

necessarily subunitary. The decrease of the Lyapunov function

during the full cycle can be formulated as V (k +
∑ns

i=1
pi) <

δπV (k), where δπ =
∏ns

i=1
δi, with δπ < 1. Then, combining

it with Theorem 1, we have the following result.

Theorem 2. The periodic TS system (1) with periods
p1, p2, . . . , pns

is asymptotically stable, if there exist Pj,i =
PT

j,i > 0, Mj,i, δi > 0, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj ,
such that the following conditions are satisfied:
0

B

B

B

@

−δjPj,z (∗) . . . (∗) (∗)
MA1,0 −M1,0 + (∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . MA1,pj+1−1 Ωj+1,j+1

1

C

C

C

A

< 0

Πns

i=1δi ≤ 1
(5)

where MA1,b = Mj+1,z+bAj+1,z+b, M1,b = Mj+1,z+b,

and Ωj+1,j+1 denotes Ωj+1,j+1 = −Mj+1,z+pj+1−1 + (∗) +
Pj+1,z+pj+1

.

Proof. Consider the switching Lyapunov function, defined

only in the instants when a switching takes place in the system:

V (x(k)) = x(k)T Pj,zx(k) if the active subsystem was j

1The modulo is used for the ease of notation, as, after the last subsystem,
due to the periodicity, follows the first one.



Then, the condition V (x(k+pj+1)) < δjV (x(k)), for some

δj > 0, can be written as

V (x(k + pj+1)) − δjV (x(k)) =
(

x(k)
x(k + pj+1)

)T (
−δjPj,z 0

0 Pj+1,z+pj+1

)(
x(k)

x(k + pj+1)

)

The system dynamics during the pj+1 samples are

Υj+1








x(k)
x(k + 1)

...

x(k + pj+1)








= 0

with

Υj+1 =








Aj+1,z −I . . . 0 0

0 Aj+1,z+1 . . . 0 0
...

...
...

...
...

0 0 . . . Aj+1,z+pj+1−1 −I








Using Lemma 1, V (x(k + pj+1)) < δjV (x(k)), if there

exists M such that







−δjPj,z 0 . . . 0
0 0 . . . 0
...

...
...

...

0 0 . . . Pj+1,z+pj+1








+ MΥj+1 + (∗) < 0

A particular choice of M is

M =










0 0 . . . 0
Mj+1,z 0 . . . 0

0 Mj+1,z+1 . . . 0
...

...
...

...

0 0 . . . Mj+1,z+pj+1−1










which leads to the sufficient conditions
0

B

B

B

@

−δjPj,z (∗) . . . (∗) (∗)
MA1,0 −M1,0 + (∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . MA1,pj+1−1 Ωj+1,j+1

1

C

C

C

A

< 0

Πns

i=1δi ≤ 1

where MA1,b = Mj+1,z+bAj+1,z+b, M1,b = Mj+1,z+b,

and Ωj+1,j+1 denotes Ωj+1,j+1 = −Mj+1,z+pj+1−1 + (∗) +
Pj+1,z+pj+1

. During one complete cycle, the above conditions

amount to

V (x(k +

ns∑

i=1

pi)) < δns
V (x(k +

ns−1∑

i=1

pi)) <

< δns
δns−1V (x(k +

ns−2∑

i=1

pi)) < . . .

< ... < Πns

i=1
δiV (x(k))

Consequently, if
∏ns

i=1
δi ≤ 1, V is decreasing during a

complete cycle, and the periodic system is asymptotically

stable. �

B. Discussion and example

In this section we discuss the conditions developed above.

First of all, it has to be noted that the conditions of Theorem 2

are not related to the stability of the individual subsystems.

Indeed, switching between unstable subsystems can lead to

a periodic system that is asymptotically stable. The introduc-

tion of the constants δi actually allows for the increase of

the Lyapunov function while one or several subsystems are

active. However, due to the condition
∏ns

i=1
δi < 1, during

a whole cycle (be that from the first to the first or from

the second to second, etc. subsystem), the Lyapunov function

decreases. Even if this condition is not satisfied,
∏ns

i=1
δi gives

an upper bound on the increase of the Lyapunov function

during a cycle and therefore a measure of distance from

proving stability. The proposed conditions, as they are stated

in Theorem 2, are unfortunately BMIs. However, the search

for δi, i = 1, 2, . . . , ns, can be done iteratively. Alternatively,

one can use e.g., available BMI solvers to solve directly the

BMI problem.

It is important to note that the conditions above can easily be

changed to verify the instability of the TS model, as follows.

Theorem 3. The equilibrium point x = 0 of the periodic TS
system (1) with periods p1, p2, . . . , pns

is locally unstable, if
there exist Pj,i = PT

j,i > 0, Mj,i, σi > 0, j = 1, 2, . . . , ns,
i = 1, 2, . . . , rj , such that the following conditions are
satisfied:
0

B

B

B

@

Ω (∗) . . . (∗) (∗)
−M1,0 MA1,1 + (∗) . . . (∗) (∗)

...
...

...
...

...
0 0 . . . −M1,pj+1−1 σjPj+1,z+pj+1

1

C

C

C

A

> 0

Πns

i=1σi ≤ 1
(6)

where MA1,b = Mj+1,z+bAj+1,z+b, M1,b = Mj+1,z+b +
(∗), and Ω denotes Ω = −Pj,z + MA1,0 + (∗).

The proof follows the same lines as of Theorem 2, by

imposing the condition that σjV (x(k + pj+1)) > V (x(k)),
and is therefore not repeated here.

Let us now illustrate the application of Theorem 2 on an

example.

Example 1. Consider a periodic TS model composed of 3

subsystems, each being active for pi = 2 samples, i = 1, 2, 3,

with the local matrices given by

A1,1 =

(
0.23 0.13
0.90 0.75

)

A1,2 =

(
0.15 0.30
0.40 0.88

)

A2,1 =

(
−0.47 0.18
−0.45 0.45

)

A2,2 =

(
0.07 0.74
−0.10 −0.31

)

A3,1 =

(
0.40 0.20
0.96 −0.43

)

A3,2 =

(
1.21 0.14
−0.42 0.41

)

Not all the local matrices are stable: A1,2 and A3,2 are

unstable. However, the periodic system is stable, as indicated

by the trajectories in Figure 1. For these particular trajecto-

ries, the membership functions used were h1,1(z) = e−x2
1 ,



h1,2(z) = 1 − h1,1(z), h2,1(z) = cos(x1)
2, h2,2(z) =

1− h2,1(z), h3,1 has been generated from a uniform random

distribution, and h3,2(z) = 1 − h3,1(z). The initial states

were x(0) = (−1, 1)T . Solving2 the conditions of Theorem 2

0 5 10 15
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−0.5

0

0.5

1

Samples

S
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te
s

Fig. 1. Trajectories of the periodic system in Example 1.

using the relaxation 2, we obtain positive definite P s and the

following δs:

δ1 = 0.79216 δ2 = 0.79088 δ3 = 0.79061

Although in the example above we used a BMI solver to

solve the conditions of Theorem 2, and therefore prove the

stability of the periodic TS system, an iterative procedure can

also be used as follows. It has to be noted that for large enough,

fixed δs the conditions of Theorem 2 are feasible. Once such

δs have been found, the conditions become LMIs and can be

solved for P and M . Afterward, one can iterate by solving

for δ and M and P and M , respectively.

Another possibility is to consider the α-sample variation

[37] of the Lyapunov function. In this way, the necessity

of solving BMIs is circumvented, as all the δs are gathered

in a single one, ultimately leading to a decrease of the

Lyapunov function through a cycle. However, in this way the

number of the LMIs increases very much, eventually leading

to unfeasibility due to the limitation of the available solvers.

IV. CONTROLLER DESIGN

A. Design conditions

In this section we extend the conditions developed in

Section III-A for stability analysis for controller design. For

this, we consider the periodic TS model described by (2) and

a controller of the form

u(k) = −Fj,zH
−1

j,z x(k) (7)

if the jth subsystem is active at sample k. The closed-loop

system is then given by

x(k + 1) = (Aj,z − Bj,zFj,zH
−1

j,z )x(k) (8)

2To solve the BMIs, the solver PenBMI [36] has been used.

if the jth subsystem is active, this again being a periodic TS

system.

For (8) the following result can be formulated.

Theorem 4. The controller (7) asymptotically stabilizes the
periodic TS model (7) if there exist Pj,i = PT

j,i > 0, Hj,i,
δj > 0, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj , so that

0

B

B

B

@

−δjΩ1,1 (∗) . . . (∗) (∗)
G1,0 −Hj,z+1 + (∗) . . . (∗) (∗)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . G1,pj+1−1 −Pj+1,z+pj+1

1

C

C

C

A

< 0

Πns

i=1
δi ≤ 1

where Ω1,1 = Hj,z + HT
j,z − Pj,z and G1,b =

Aj+1,z+bHj+1,z+b − Bj+1,z+bFj+1,z+b, j = 1, 2, . . . , ns.

Proof. Similarly to stability analysis, consider a switching

Lyapunov function, defined only in the instants when a switch-

ing takes place in the system of the form

V (x(k)) = x(k)T P−1

j,z x(k) if the active subsystem was j

Then, the condition V (x(k+pj+1)) < δjV (x(k)), for some

δj > 0, can be written as

V (x(k + pj+1)) − δjV (x(k)) =
(

x(k)
x(k + pj+1)

)T
(

−δjP
−1

j,z 0

0 P−1

j+1,z+pj+1

)(
x(k)

x(k + pj+1)

)

The system dynamics during the pj+1 samples are

Υj+1








x(k)
x(k + 1)

...

x(k + pj+1)








= 0

with

Υj+1 =








Υ1,0 −I . . . 0 0
0 Υ1,1 . . . 0 0
...

...
...

...
...

0 0 . . . Υ1,pj+1−1 −I








where Υ1,b denotes Υ1,b = Aj+1,z+b −

Bj+1,z+bFj+1,z+bH
−1

j+1,z+b.

Using Lemma 1, V (x(k + pj+1)) < δjV (x(k)), if there

exists M such that







−δjPj,z 0 . . . 0
0 0 . . . 0
...

...
...

...

0 0 . . . Pj+1,z+pj+1








+ MΥj+1 + (∗) < 0

Choosing

M =











0 0 . . . 0
H−1

j+1,z+1
0 . . . 0

0 H−1

j+1,z+2
. . . 0

...
...

...
...

0 0 . . . P−1

j+1,z+pj+1













and congruence with









HT
j+1,z 0 · · · 0

0 HT
j+1,z+1 · · · 0

...
...

. . .
...

0 0 · · · Pj+1,z+pj+1









leads to

0

B

B

B

@

Γ1,1 (∗) . . . (∗) (∗)
G1,0 −Hj,z+1 + (∗) . . . (∗) (∗)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . G1,pj+1−1 −Pj+1,z+pj+1

1

C

C

C

A

< 0

Πns

i=1
δi ≤ 1

where Γ1,1 = −δjH
T
j,zP

−1

j,z Hj,z and G1,b =
Aj+1,z+bHj+1,z+b − Bj+1,z+bFj+1,z+b, j = 1, 2, . . . , ns.

Applying Property 2 we obtain the conditions of Theorem 4.

Moreover, during one complete cycle, the above conditions

amount to

V (x(k +

ns∑

i=1

pi)) < δns
V (x(k +

ns−1∑

i=1

pi)) <

< δns
δns−1V (x(k +

ns−2∑

i=1

pi)) < . . .

< ... < Πns

i=1
δiV (x(k))

Consequently, if
∏ns

i=1
δi ≤ 1, V is decreasing during a

complete cycle, and the periodic system is asymptotically

stabilized. �

B. Discussion and example

Let us now discuss the conditions developed above. Sim-

ilarly to the stability conditions, it has to be noted that the

conditions of Theorem 4 are not related to the controllability

of the individual subsystems. Switching between subsystems

that are not stabilizable on their own can lead to a periodic

system that is asymptotically stabilized. Again, if the condition
∏ns

i=1
δi < 1 is not satisfied,

∏ns

i=1
δi gives an upper bound

on the increase of the Lyapunov function during a cycle and

therefore a measure of distance from stabilization, together

with a hint of which subsystem is “problematic”. The proposed

conditions are BMIs, therefore either a BMI solver is needed

to solve them or an iterative procedure has to be employed.

Although similarly to the stability analysis, the conditions

can easily be changed to prove that a periodic system cannot

be stabilized, this proof would unfortunately be valid only

for the control structure and Lyapunov function considered.

Consequently, one would only be able to prove that there is no

control law of the form (7) that stabilizes the periodic system.

To illustrate the control design using the conditions of

Theorem 4 consider the following example.

Example 2. Consider a periodic TS model composed of 2

subsystems, each being active for pi = 2 samples, i = 1, 2,

with the local matrices given by

A1,1 =

(
0.42 0.73
0.89 0.57

)

A1,2 =

(
0.04 0.56
0.67 −0.25

)

A2,1 =

(
−0.37 −1.47
−0.30 −0.23

)

A2,2 =

(
0.11 1.44
0.31 −0.35

)

B1,1 = B1,2 =

(
0
1

)

B2,1 = B2,2 =

(
0
0

)

Since B2,1 = B2,2 = 0, the local matrices of the sec-

ond subsystem cannot be stabilized. However, the periodic

system can be stabilized, as indicated by the trajectories in

Figure 2. For these particular trajectories, the membership

functions used were h1,1(z) = e−x2
1 , h1,2(z) = 1 − h1,1(z),

h2,1(z) = cos(x1)
2, h2,2(z) = 1 − h2,1(z), and the initial

states were x(0) = (5, −4)T . The control input is presented

in Figure 3. Since the input gains of the second subsystem are

zero, this subsystem is not controlled.
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Fig. 2. Trajectories of the stabilized periodic system in Example 2.
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Fig. 3. Control input used to stabilize the system in Example 2.

Solving the conditions of Theorem 4 we obtain3 the follow-

3All values are truncated to two decimal places.



ing controller gains:

H1,1 = 104

„

5.68 0.67
−0.86 3.51

«

H1,2 = 104

„

5.60 0.02
−0.34 3.65

«

H2,1 = 104

„

5.61 −0.58
−0.87 1.67

«

H2,2 = 104

„

5.54 −0.26
0.01 2.06

«

F1,1 = 104

„

4.93
3.10

«

F1,2 = 104

„

3.92
−0.56

«

with

P1,1 = 104

„

4.00 −1.04
−1.04 0.88

«

P1,2 = 104

„

3.90 −0.06
−0.06 0.93

«

P2,1 = 104

„

6.86 −0.22
−0.22 2.93

«

P2,2 = 104

„

6.94 0.06
0.06 3.32

«

δ1 = δ2 = 0.5

Similarly to stability analysis, although we used a BMI

solver to solve the conditions of Theorem 4, an iterative

procedure can also be used.

While we do not present it in this paper, a similar result can

be obtained for observer design, under the assumption that the

scheduling variables are known. In such a case, it is possible

to design an observer that is able to estimate the states of a

periodic TS model of whose local models are unobservable.
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