
  

 
 

Abstract— This paper presents a static output feedback 
controller design for discrete-time nonlinear descriptor models. 
The conditions are given in terms of linear matrix inequalities 
(LMIs). The approach is based on the Takagi-Sugeno (T-S) 
representation of the nonlinear system and Finsler’s Lemma. 
The proposed method exploits the discrete-time nature of the 
T-S model by the use of delayed Lyapunov functions, which 
provide more degrees of freedom without increasing the 
number of LMIs. It is also extended for robust control. The 
benefits of the proposed approaches are illustrated via 
numerical examples. 

I. INTRODUCTION 

Designing controllers for nonlinear systems is often 
difficult to perform; in order to overcome the difficulties; 
many approaches exist in the literature. For instance, the 
sector nonlinearity approach allows rewriting a certain class 
of nonlinear models [1] as a collection of local linear models 
blended together by nonlinear membership functions (MFs) 
[2]. This representation is the so-called Takagi-Sugeno (T-S) 
model [3]. One of the advantages of expressing the nonlinear 
model as a T-S one is that the latter allows employing the 
direct Lyapunov method and obtaining stability/design 
conditions in terms of linear matrix inequalities (LMIs), 
which can be solved via convex optimization techniques [4]. 
Classically, the so-called Parallel Distributed Compensator 
(PDC) [2] has been used for the controller design. The PDC 
is a nonlinear controller since it is a convex combination of 
local linear gains using the nonlinear MFs of the T-S model. 
Once the PDC controller is designed, it can be directly 
applied to the nonlinear plant [5], [6]. 

However, the TS-LMI framework has some 
disadvantages. One of the sources of conservativeness is the 
use of quadratic Lyapunov functions, i.e., a common 
Lyapunov matrix must be found for all the linear local 
models [2]. For discrete-time T-S models, the use of non-
quadratic Lyapunov functions has reduced conservativeness 
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[7]–[9]; recently, delayed non-PDC controllers together with 
delayed non-quadratic Lyapunov functions have been 
developed [10], [11]. 

Using the sector nonlinearity approach, another 
disadvantage appears when the original nonlinear model has 
several p  nonlinear terms, since the number of linear models 
is 2 pr = . Based on a nonlinear descriptor model [12], in 
[13], the T-S descriptor model was introduced. There are 
several works with applications concerning this T-S 
representation [14]–[16]. The T-S descriptor system is 
helpful because it reduces the number of LMI constraints and 
keeps the natural descriptor form of the nonlinear system. 

Unfortunately, when using state feedback techniques, it is 
necessary to have available all the states of the plant; in 
general this is not possible [6], [17]–[19]. Hence, an output 
feedback controller (OFC) has to be implemented [19], [20]. 
Generally, two different OFCs can be designed: 1) static OFC 
(SOFC) [21]–[25]; 2) dynamic OFC (DOFC) [20], [26], [27]. 
The design of a DOFC increases the dimension of the closed-
loop system. In the case of SOFC, several results exist: the 
first results provided BMI conditions [23], [24]; later on, 
results based on LMI and equality conditions have been 
developed [21], [25]; the main disadvantage of these 
approaches is that they consider a common Lyapunov matrix 
and common output matrices (without uncertainties or 
without nonlinearities in the output matrix). Recently, strict 
LMI conditions have been proposed in [28]; this result also 
provides solution for problems with multiple output matrices 
and gives conditions for the robust control problem.  

The main objective of the present paper is to develop 
SOFC for T-S descriptor models via LMI conditions, where 
multiple output matrices can be taken into account. To that 
end, we use: 1) T-S descriptor models which are more 
general than standard T-S models; 2) the well-known 
Finsler’s Lemma [29] to remove the link between the 
controller gains and the Lyapunov matrices [10], [28]; 3) 
delayed non-PDC controllers and delayed non-quadratic 
Lyapunov functions in order to reduce the conservativeness 
[10].  

The paper is divided as follows: Section II introduces the 
T-S descriptor model, notation, properties and lemmas; 
Section III presents the main results on the SOFC for 
discrete-time T-S descriptor models and extends the new 
results for T-S descriptor models with uncertainties; Section 
IV illustrates the advantages of the approaches via numerical 
examples; Section V concludes the paper. 
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II. NOTATIONS AND PROBLEM STATEMENT 

Consider the following nonlinear descriptor model:  

 
( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
1

,

E x x A x x B x u

y C x x

κ κ κ κ κ κ

κ κ κ

+ = +

=
  (1) 

where nx ∈\  is the state vector, mu ∈\  is the control input 
vector, oy ∈\  is the output vector,  κ  is the current sample. 

Matrices ( )( )A x κ , ( )( )B x κ , ( )( )C x κ , and ( )( )E x κ  are 
assumed to be smooth in a compact set xΩ  of the state space 
including the origin. In addition, in this work the matrix 

( )( )E x κ  is assumed to be regular. 

Via the sector nonlinearity approach [1] the p  nonlinear 

terms in matrices ( ) ( ) ( )( ), ,A x B x C x  and the ep  

nonlinearities in matrix ( )E x  can be grouped via MFs [2]. 
These MFs hold the convex-sum property in the compact set 

xΩ , i.e., ( )( ) 0ih z κ ≥ , { }1, , 2 pi ∈ … , ( )( )
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depend on the premise variables grouped in the vector ( )z κ  
which, in this work, depends on measured variables. 
Moreover, xκ +  and xκ  stand for ( )1x κ +  and 

( )x κ respectively. 

The following discrete-time T-S descriptor model is an 
exact representation of (1) in the compact set xΩ : 
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where matrices iA , iB , and iC ,  { }1, ,i r∈ …  represent the i-
th linear model in the right-hand side of the T-S descriptor 
model and matrices kE , { }1, , ek r∈ …  represent the k-th 
linear model in the left-hand side of (2). It is important to 
stress that the T-S model (2) is strictly equivalent to (1) in the 
pre-specified compact set xΩ . 

The following shorthand notation is used throughout the 

paper: ( )( )
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An asterisk ( )∗  will be used in matrix expressions to denote 
the transpose of the symmetric element; for in-line 
expressions it will denote the transpose of the terms on its left 
side. Arguments will be omitted when their meaning is clear. 

In order to obtain LMI conditions, the following 
relaxation scheme will be employed due to its good 
compromise between effectiveness and computational 
complexity: 

Lemma 1 [30] (Relaxation Lemma): Let k
ijϒ  be matrices 

of appropriate dimensions. Consider the following inequality 
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The approaches are based on the following lemma, since 
it allows separating the control law and the Lyapunov matrix. 

Finsler’s Lemma [29]: Let ,nx ∈\  T n nQ Q ×= ∈\ , and 
m nR ×∈\  such that ( )rank R n< ; the following expressions 

are equivalent 

a) 0Tx Qx < , { }: 0, 0nx x x Rx∀ ∈ ∈ ≠ =\ . 

b) : 0n m T TM Q MR R M×∃ ∈ + + <\ . 

Property 1.  Let 0TQ Q= > , R , and M  be matrices of 
appropriate sizes. The following expression holds: 

 1T T T TR M M R R QR M Q M−+ ≤ + .  

The following example illustrates the advantage of 
keeping the descriptor form instead of computing the 
standard representation, i.e.,  

 ( ) ( )x A x x B x uκ κ κ+ = + .  (3) 

Example 1. Consider a nonlinear discrete-time descriptor 
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{ }1 2: , 2x x x xΩ ∈ ∈ ≤\ ; inside this compact set the matrix  

( )E x  is nonsingular. A T-S descriptor model (2) has 2er =  
due to 2x  (left-hand side) and 2r =  due to 2

2x  (right-hand 
side). In order to apply the SOFC conditions in [28], it is 
necessary to write (1) in form (3), and to compute ( )( ) 1
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−
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Using the sector nonlinearity approach in xΩ , four different 
nonlinearities must be take into account, i.e.,  
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which leads to 42 16r = =  linear models. This example 
illustrates that T-S descriptor model produces less rules 
(linear models); this example is continued in Section 4. ◊  

 The next section presents a new SOFC for the stabilization 
of T-S descriptor systems. 

III. MAIN RESULTS 

A.  Stabilization via SOFC 
In [21], [25], [28] the following PDC control law is used: 

 hu K yκ κ= .  (4) 

In this work, the SOFC design is done by the use of a 
delayed non-PDC control law [10], [11]: 
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where 
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×∈\   are the gain matrices to 
be calculated. They have a convex structure, for instance: 
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The control law (5) includes, via the MFs, all the 
nonlinear terms in both sides of the T-S descriptor system, 
i.e., it is a nonlinear control law. 

A useful rewriting of the T-S descriptor model (2) and the 
delayed non-PDC control law (5) gives 
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Using a delayed Lyapunov function candidate [10]: 
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its variation is 
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Via Finsler’s lemma the inequality (9) under constraint 
(6) gives 
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where ( ), n n m× +∈\F G , ( )m n m× +∈\H . The following result 
can be stated: 

Theorem 1: The T-S descriptor system (2) together with 
the control law (5) is asymptotically stable if there exist 
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where n n
hh
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×∈\  and m m

hhh v
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×∈\  are decision variables. 

Moreover, n mη ×∈\  is an arbitrary matrix to be chosen a 
priori, i.e., it is not a decision variable. Thus, the proof is 
concluded. ,  

In what follows, we extend Theorem 1 to the robust 
control problem. 

B. Robust control via SOFC 
Consider the following uncertain T-S descriptor model: 
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The T-S descriptor system (13) and the control law (5) 
can be written as 
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where h h hAA A= + Δ , h h hBB B= + Δ , h h hC C C= + Δ , and 

v v vEE E= + Δ . 

Consider the delayed Lyapunov function (7). Through 
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Then, expression (15) yields 
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Therefore, the following result can be stated:  
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where D , F , and T are as defined above. 

Proof: Recall (17) and by the use of the Schur 
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Employing again the Schur complement in the block (1,1) 
of (19) gives (18). 

Moreover, (18) can be cast as LMI since 
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with this the proof is concluded. ,   

Remark 1: In order to obtain LMI formulation for 
Theorems 1 and 2, a relaxation lemma over the convex-sums 
must be applied. 

Remark 2: Conditions in Theorems 1 and 2 are given in 
LMI form once the arbitrary matrix η  is selected. Several 
choices can be made, e.g., hBη = , 0n mη ×= , or 
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. Different choices could lead on different 

solution sets [28]. 



  

Remark 3: If v nE I= , with 0vEΔ = , the classical T-S 
model is recovered, i.e.,  
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Corollary 1: The uncertain classical T-S system (20) 
together with the control law (5) is asymptotically stable if 
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 ( )

( ) ( )

0 0

T
hhh

hhh

D F−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ϒ Τ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥

Ψ = ∗ −Τ <⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

∗ ∗ −Τ⎢ ⎥
⎢ ⎥
⎣ ⎦

F
G
H

,  (21) 

where 
0 0

0 0
0 0

a
h

b
h

c
hF

F
F

F
⎡ ⎤
⎢
⎢
⎢⎣

= ⎥
⎥
⎥⎦

, ( ), ,a b c
hh hh hh

diag I I Iτ τ τ− − −Τ = , and  

( ) 1

0

0 0
hhh hh

a b
h h

c
h

D
H

D D

K D− −

−

⎡ ⎤
⎢ ⎥
⎢

=
⎥⎣ ⎦

. 

The proof is similar to Theorem 2, therefore it is not 
repeated.,   

IV. EXAMPLES 

Example 1 (continued). Recall the nonlinear descriptor 
in Example 1; its T-S descriptor representation in the 
compact set { }1 2: , 2x x x xΩ ∈ ∈ ≤\  gives: 

1

0.5 1.2
1.2 0.5

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

0.5 0.8
1.2 0.5

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

0
0.7

T

C
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
,  

2

0
1.3

T

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1
1iB

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 1, 2i = , 1

0.9 0.3
0.7 1.1

E
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, and  

2

0.9 0.1
0.1 1.1

E
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. In the right-hand side, MFs are 

2
1 2 4h x=   and 2 11h h= − . In the left-hand side the MFs are 

( )1 2 2 4v x= +  and 12 1v v= − . These sets of MFs hold the 
convex sum property in xΩ . 

Employing the conditions in Theorem 1 of [28], no 
solution was found; while using conditions in Theorem 1 of 
this work with hBη = , a SOFC can be designed.  

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

Sample

S
ta

te
s

 

 

x1
x2

 

Figure 1.  States evolution under the non-PDC control law in Example 1. 

Due to the lack of space only some of the obtained values are 
displayed: 

1

0.48 0.08
0.08 0.25

P
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

0.60 0.14
0.14 0.28

P
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 111 0.25K = − , 

222 0.10K = − , 121 0.23K = − , 122 0.27K = − , 1111 0.27H = , 

2222 0.30H = , 1122 0.28H = , and 1221 0.45H = . 

Simulation results are presented in Figure 1 for initial 
conditions ( ) [ ]0 1 1 Tx = −  in Example 1. 

Conditions in Theorem 1 with hBη =  together with  

Lemma 1 are calculated with ( )( )4 42 2 2 34er rr + = + =  
LMI constraints. On the other hand for conditions in 
Theorem 1 in [28], the number of LMI conditions is 

( )4 416 16 65552rr + = + = ; this fact shows the importance 
of keeping the descriptor structure. ◊  

The following numerical example compares the 
performance of Corollary 1 and Theorem 2 in  [28], for the 
case when vE I= . The example is adapted from [28], by 
including a real-valued parameter in the uncertain terms. For 
this example different values for the arbitrary matrix η  are 
tested (see Remark 2). 

Example 2. Consider a T-S model as in (20) with 2r =  
and local matrices as follows [28]: 

1 1

2 2

0.4
0.4

,
1.5
1.2

0.55 0.12 0.27 0.23
0.37 0.51 0.39 0.36

,
0.14 0.25 0.65 0.47
0.53 0.15 0.22 0.46

0.62 0.29 0.31 0.28
0.24 0.59 0.23 0.19

,
0.19 0.37 0.43 0.15
0.16 0.31 0.22 0.55

B

B

A

A

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

[ ] [ ]

21

0.25
0.20

,
0.35

0.20

0.2 0 0.2 0 0.41 0 0 0
,

0 0 1 0 0.50 0 0.7 0

0.1 0.2 0 0 , 0.1 0 0.1

,

0 ,Ta a
i i

C C

D a F

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

= + =

  



  

[ ]0.1 0.1 0 0.12 Tb
iD a= + , 0.3b

iF = , [ ]0.1 0.1 Tc
iD = , 

[ ]0.1 0.1 0 0.01c
iF a= − , 1, 2i = , and  0a >  

parameter. The goal is to design a SOFC for as large values 
of a  as possible. Table 1 summarizes the obtained results. 

In Table 1, it can be seen that the parameter a  is larger 
when Corollary 1 is applied, i.e., the new approach allows 
obtaining a larger size of the uncertainty than the one in 
[28]. ◊  

Notice that in both examples, the matrix 1

2

C
C

⎡ ⎤
⎢ ⎥
⎣ ⎦

 is not full 

rank, thus the conditions in [25] cannot be applied. Moreover, 
in both examples the output is nonlinear. 

TABLE I.  RESULTS FOR EXAMPLE 2. 

Approach Maximum 
parameter value 

Theorem 2 in [28] with hBη =  0.1a =  

Theorem 2 in [28] with 0n mη ×=  0.3a =  

Corollary 1 with hBη =  1.0a =  

Corollary 1 with 0n mη ×=  1.5a =  

V. CONCLUSION 
The paper presents a new approach for SOFC design for 

nonlinear descriptor models via their T-S representation and 
extends the approach to robust control. The conditions are 
given in LMI form; moreover, it is possible to add ‘easily’ 
constraints on the input, decay rate, etc. Our further research 
is focus on the study of singular systems. 
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