
Switching fuzzy observers for periodic TS systems

Zs. Lendek†∗, J. Lauber∗, T. M. Guerra∗

∗University of Valenciennes and Hainaut-Cambresis,

LAMIH UMR CNRS 8201, Le Mont Houy,

59313 Valenciennes Cedex 9, France.
†Department of Automation, Technical University of Cluj-Napoca,

Memorandumului 28, 400114 Cluj-Napoca, Romania.

Abstract—This paper considers the design of observers for
periodic Takagi-Sugeno fuzzy models. The observer employed
is also a periodic one. To develop the design conditions, a
switching Lyapunov function defined at the time instants when
the subsystems switch is used. Using the developed conditions
we are able to design observers for TS models where the local
models or even the subsystems are unstable. The application of
the conditions is illustrated on numerical examples.

I. INTRODUCTION

Takagi-Sugeno (TS) fuzzy systems [1] are convex combina-

tions of local linear models, and are able to exactly represent

a large class of nonlinear systems [2].

For the analysis and design of TS models the direct Lya-

punov approach has been used. Stability conditions have been

derived using quadratic Lyapunov functions [3]–[5], piecewise

continuous Lyapunov functions [6], [7], and nonquadratic Lya-

punov functions [8]–[10] and have been in general formulated

as linear matrix inequalities (LMIs).

For discrete-time TS models, non-quadratic Lyapunov func-

tions have shown a real improvement of the design condi-

tions [8], [11]–[13]. It has been proven that the solutions

obtained by non-quadratic Lyapunov functions include and

extend the set of solutions obtained using the quadratic frame-

work.

Non-quadratic Lyapunov functions have been extended to

double-sum Lyapunov functions in [11] and later on to poly-

nomial Lyapunov functions in [14]–[16]. A different type

of improvement in the discrete case has been developed

in [9], conditions being obtained by replacing the classical

one sample variation of the Lyapunov function by its variation

over several samples (α-sample variation).

For a TS fuzzy model, well-established methods and algo-

rithms can be used to design observers that estimate unmea-

surable states. Several types of such observers have been de-

veloped for TS fuzzy systems. In general, the design methods

for observers also lead to an LMI feasibility problem.

This paper deals with a particular class of nonlinear mod-

els with periodic parameters. This kind of models can be

found in numerous domains such as automotive, aeronautic,

and aerospace or also computer control of industrial process

[17]–[20]. These systems can be represented by periodically

switching models. In the last decade, such systems have been

investigated mainly in the continuous case where the stability

is based on the use of a quadratic Lyapunov function [21]–[24]

or a piecewise one [25], [26]. Although results are available for

discrete-time linear switching systems [27], for discrete-time

TS models, few results exist [28], [29].

In this paper, we propose a switching TS observer for

periodic TS models. To develop the design conditions, we use

a non-quadratic Lyapunov function. This Lyapunov function is

useful for designing observers for a periodic TS system having

non-observable local models.

The structure of the paper is as follows. Section II presents

the notations used in this paper and a motivating example. The

proposed conditions are developed and extended for α-sample

variation in Section III. Finally, the observer design is dis-

cussed and illustrated on a numerical example in Section IV.

II. PRELIMINARIES

A. Background

In this paper we consider observer design for discrete-time

periodic TS systems. For this, we consider subsystems of the

form

x(k + 1) =

rj∑

i=1

hji(zj(k))(Aj,ix(k) + Bj,iu(k))

y(k) =

rj∑

i=1

hji(zj(k))Cj,ix(k)

denoted in what follows as

x(k + 1) = Aj,zx(k) + Bj,zu(k)

y(k) = Cj,zx(k)

where j is the number of the current subsystem, j =
1, 2, . . . , ns, ns being the number of the subsystems, x

denotes the state vector, rj is the number of rules in the jth

subsystem, zj is the scheduling vector, hji, i = 1, 2, . . . , rj

are normalized membership functions, and Aj,i, Bj,i, and Cj,i,

i = 1, 2, . . . , rj , j = 1, 2, . . . , ns, are the local models.

We consider periodic systems, i.e., the subsystems defined

above are activated in a sequence 1, 1, . . . , 1︸ ︷︷ ︸
p1

, 2, 2, . . . , 2︸ ︷︷ ︸
p2

, . . . ,

ns, ns, . . . , ns︸ ︷︷ ︸
pns

, 1, 1, . . . , 1︸ ︷︷ ︸
p1

, etc., where pi denotes the number

of samples for which the ith subsystem is active. In what

follows, we will refer to pi as the period of the ith subsystem.

0 and I denote the zero and identity matrices of appropriate

dimensions, and a (∗) denotes the term induced by symmetry.



The subscript z +m (as in A1,z+m) stands for the scheduling

vector being evaluated at the current sample plus mth instant,

i.e., z1(k + m). An underlined variable j denotes the modulo

of the variable, i.e., j = (j mod ns) + 1.

In what follows, we will make use of the following results:

Lemma 1. [30] Consider a vector x ∈ R
nx and two matrices

Q = QT ∈ R
nx×nx and R ∈ R

m×nx such that rank(R) < nx.

The two following expressions are equivalent:

1) x
T Qx < 0, x ∈ {x ∈ R

nx ,x 6= 0, Rx = 0}
2) ∃M ∈ R

m×nx such that Q + MR + RT MT < 0

Observer and controller design for TS models often lead to

double-sum negativity problems of the form

x
T

r∑

i=1

r∑

j=1

hi(z(k))hj(z(k))Γijx < 0 (1)

where Γij , i, j = 1, 2, . . . , r are matrices of appropriate

dimensions.

Lemma 2. [31] The double-sum (1) is negative, if

Γii < 0

Γij + Γji < 0, i, j = 1, 2, . . . , r, i < j

Lemma 3. [32] The double-sum (1) is negative, if

Γii < 0

2

r − 1
Γii + Γij + Γji < 0, i, j = 1, 2, . . . , r, i 6= j

Property 1. (Congruence) Given a matrix P = PT and a full

column rank matrix Q it holds that

P > 0 ⇒ QPQT > 0

Property 2. [33](Schur complement) Consider a matrix

M = MT =

(
M11 M12

MT
12 M22

)
, with M11 and M22 being square

matrices. Then

M < 0 ⇔

{
M11 < 0
M22 − MT

12M
−1

11 M12 < 0

⇔

{
M22 < 0
M11 − M12M

−1

22 MT
12 < 0

B. A motivating example

In the literature, one of the main assumptions on switching

systems is that the switching can occur at any time, between

any two subsystem. However, for periodic systems, the ex-

tra knowledge of when and between which subsystems the

switching will occur can lead to more relaxed conditions.

Consider for instance the switching TS system, composed of

two subsystems, as follows. The first subsystem is a TS one,

with local matrices

A11 =

(
0.9 0.1
0.2 0.8

)
A12 =

(
−0.5 0.2
0.4 0.9

)

while the second one is a linear one, with the state matrix

given by

A2 =

(
0.8 0.1
0.2 a

)

where a is a real-valued parameter, a ∈ [−2, 2]. Using a

common quadratic Lyapunov function, one is not able to prove

stability of the switching system for any a. Even using a

nonquadratic, switching Lyapunov function, stability cannot

be proven for any a ∈ [−2, 2]. However, if we know that the

system switches from one subsystem to the other at every time

instant, the stability of the switching system can be proven [34]

for a ∈ [−1.2, 1.1]. Consequently, by using the knowledge of

when and how a periodic system switches, can significantly

relax the stability conditions.

Observer design condition are in general obtained from

stability conditions of the estimation error dynamics. There-

fore, more relaxed stability conditions in general lead to more

relaxed observer design conditions. In what follows, we extend

the results presented in [34] to observer design.

III. OBSERVER DESIGN

In this section, consider the observer design problem for the

periodic TS model

x(k + 1) = Aj,zx(k) + Bj,zu(k)

y(k) = Cj,zx(k)
(2)

with ns subsystems, each subsystem j, j = 1, 2, . . . , ns,

being active for pj time samples. The observer we use is of

the form

x(k + 1) = Aj,zx̂(k) + Bj,zu(k) + M−1

j,z Lj,z(y − ŷ)

ŷ(k) = Cj,zx̂(k)
(3)

that is also periodic, with the same periods as (2). For this

paper, we assume that the scheduling variables do not depend

on the states that have to be estimated, and consequently they

can be used in the observer.

The estimation error is given by

e(k + 1) = (Aj,z − M−1

j,z Lj,zCj,z)e(k) (4)

and the design conditions are equivalent to finding Mj,i and

Lj,i, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj so that (4) is

asymptotically stable. Note that the estimation error (4) is also

a periodic TS system.

A. Design conditions

First, we consider observer design such that (4) is asymp-

totically stable. The results will be extended for α-sample

variation, similar to [9] in the next section.

Consider the observer (3) for the periodic TS system (2),

composed of ns subsystems, with each subsystem i being

active for pi samples, i = 1, 2, . . . , ns. Then, the following

results can be stated.

Theorem 1. The estimation error (4) is asymptotically stable,

if there exist Pj,i = PT
j,i > 0, Mj,i, Lj,i j = 1, 2, . . . , ns, i =



1, 2, . . . , rj , such that the following conditions are satisfied:




−Pj,z (∗) . . . (∗) (∗)
Ω0,a Ω0,b . . . (∗) (∗)

...
...

...
...

...

0 0 . . . Ωpj+1,a

(
Ωpj+1,b

+Pj+1,z+pj+1

)




< 0

(5)

where

Ωl,a = Mj+1,z+lAj+1,z+l − Lj+1,z+lCj+1,z+l

Ωl,b = −Mj+1,z+l + (∗)

for l = 0, . . . , pj+1 − 1, where j denotes the modulo of j.

Remark: Note that j + 1 is used because due to the

periodicity the ns + ith subsystem is in fact the ith one.

Proof: Consider the following switching Lyapunov func-

tion, similar to the one used by [27], but defined only in the

instants when a switching takes place in the error dynamics:

V (e(k)) = e(k)T Pj,ze(k)

for j = 1, 2, . . . , ns, if the active subsystem before the kth

time instant was j.

The difference in the Lyapunov function is

V (e(k + pj+1)) − V (e(k)) =
(

e(k)
e(k + pj+1)

)T (
−Pj,z 0

0 Pj+1,z+pj+1

)(
e(k)

e(k + pj+1)

)

The error dynamics during the pj+1 samples are

Υj+1





e(k)
e(k + 1)

...

e(k + pj+1)




= 0

with

Υj+1 =





Gj+1,0 −I . . . 0 0
0 Gj+1,1 . . . 0 0
...

...
...

...
...

0 0 . . . Gj+1,pj+1−1 −I





with Gj+1,l = Aj+1,z+l − M−1

j+1,z+lLj+1,z+lCj+1,z+l, l =

0, 1, . . . , pj+1 − 1.

Using Lemma 1, the difference in the Lyapunov function is

negative definite, if there exists M such that




−Pj,z 0 . . . 0
0 0 . . . 0
...

...
...

...

0 0 . . . Pj+1,pj+1




+ MΥj+1 + (∗) < 0

Choosing

M =





0 0 . . . 0
Mj+1,z 0 . . . 0

0 Mj+1,z+1 . . . 0
...

...
...

...

0 0 . . . Mj+1,z+pj+1−1





leads directly to





−Pj,z (∗) . . . (∗) (∗)
Ω0,a Ω0,b . . . (∗) (∗)

...
...

...
...

...

0 0 . . . Ωpj+1,a

(
Ωpj+1,b

+Pj+1,z+pj+1

)




< 0

(6)

with

Ωl,a = Mj+1,z+lAj+1,z+l − Lj+1,z+lCj+1,z+l

Ωl,b = −Mj+1,z+l + (∗)

for l = 0, . . . , pj+1 − 1.

B. α-sample variation

In what follows, we extend the result above using an α-

sample variation [9] of the Lyapunov function. Then, the

following conditions can be stated:

Theorem 2. The periodic TS system (4) with periods

p1, p2, . . . , pns
is asymptotically stable, if there exist Pji =

PT
ji > 0, Mji, Lji, j = 1, 2, . . . , ns, i = 1, 2, . . . , rj ,

l = 1, 2, . . . , α, such that the following conditions are

satisfied:





−Pj,z (∗) . . . (∗) (∗)
Ωj+1,0 Ω̄j+1,0 . . . (∗) (∗)

...
...

...
...

...

0 0 . . . Ωj+α,pj+α−1

(
Ω̄j+α,t−1

+Pj+α,z+t

)




< 0

(7)

where t =
∑α

i=1
pj+i, and

Ωj+i,l = Mj+i,z+lAj+i,z+l − Lj+i,z+lCj+i,z+l

Ω̄j+i,l = −Mj+i,z+l + (∗)

for l = 0, . . . , t − 1, i = 1, 2, . . . , α.

Proof: Similarly to Theorem 1, consider the switching Lya-

punov function defined only in the instants when a switching

takes place in the error dynamics:

V (x(k)) = e(k)T Pj,ze(k)

for j = 1, 2, . . . , ns, if the active subsystem was j.

Since the Lyapunov function is only defined in the switching

instants, the α-difference in the Lyapunov function corre-

sponds to α consecutive switches in the system. Consequently,

the α-difference in the Lyapunov function is

V (e(k + t)) − V (e(k)) =
(

e(k)
e(k + t)

)T (
−Pj,z 0

0 Pj+α,z+t

)(
e(k)

e(k + t)

)

where t =
∑α

i=1
pj+i.



The error dynamics during the t samples corresponding to

the α switches in the system are

Γj+1:j+α





e(k)
e(k + 1)

...

e(k + t)




= 0

with

Γj+1:j+α =





Gj+1,z −I . . . 0 0

0 Gj+1,z+1 . . . 0 0
...

...
...

...
...

0 0 . . . Gj+α,z+t−1 −I





with Gj+i,z+l = Aj+i,z+l − M−1

j+i,z+lLj+i,z+lCj+i,z+l, i =

1, 2, . . . , α, l = 1, 2, . . . , t − 1.

Using Lemma 1, the difference in the Lyapunov function is

negative definite, if there exists M such that





−Pj,z 0 . . . 0
0 0 . . . 0
...

...
...

...

0 0 . . . Pj+1,z+t




+ MΓj+1:j+α + (∗) < 0

Choosing

M =





0 0 . . . 0
Mj+1,z 0 . . . 0

0 Mj+1,z+1 . . . 0
...

...
...

...

0 0 . . . Mj+α,z+t−1





leads directly to (7). �

IV. DISCUSSION

First, let us discuss how exactly the conditions derived in
Section III-A are applied. For simplicity, consider a switching
TS model consisting of two subsystems, i.e., we have:

x(k + 1) =

(

Pr1

i=1
h1i(z1(k))A1ix(k)

Pr2

i=1
h2i(z2(k))A2ix(k)

y(k) =

(

Pr1

i=1
h1i(z1(k))C1x(k)

Pr2

i=1
h2i(z2(k))C2x(k)

(8)

Assume that the period of the first subsystem is 2, and the

period of the second subsystem is 1, i.e., p1 = 2 and p2 = 1.

The switching in the system and in the Lyapunov function are

depicted in Figure 1. As can be seen, the Lyapunov function

(with matrices P1 and P2) is defined only in the moments

when there is a switching in the system: from A1,z to A2,z

or from A2z to A1z , respectively. A 1-sample variation of

the Lyapunov function corresponds to the difference between

two consecutive values of the Lyapunov function. A 2-sample

variation corresponds to the difference after 2 samples of the

Lyapunov function, etc.

A1
A1 A2 A1 A1 A2

A1

P2 P2P1 P1

... ...

k k+1 k+2 k+3 k+4 k+5 k+6 k+7

1-sample
variation

1

2-sample
variation

2-sample
variation

1-sample
variation P2

1

Fig. 1. Switches in the system and in the Lyapunov function.

For system (8), the conditions of Theorem 1 correspond

to there exist Pj,i = PT
j,i > 0, Mj,i, Lj,i, j = 1, 2, i =

1, 2, . . . , rj , so that the following conditions are satisfied:
(
−P1,z (∗)
Ω2,0 −M2,z + (∗) + P2,z+1

)
< 0




−P2,z (∗) (∗)
Ω1,0 −M1,z + (∗) (∗)
0 Ω1,1 −M1,z+1 + (∗) + P1,z+2



 < 0

(9)

with Ωi,l = Mi,z+lAi,z+l − Li,z+lCi,z+l, i = 1, 2, l = 0, 1.

Relaxed LMI conditions can be formulated using Lemmas 2

and 3, e.g.,

Corollary 1. The system (8) is asymptotically stable if there

exist Pj,i = PT
j,i > 0, Mj,i, j, i = 1, 2, so that

Γ1
i1i2i3i4i5

+ Γ1
i2i1i3i4i5

+ Γ1
i1i2i4i3i5

+ Γ1
i2i1i4i3i5

< 0

Γ2
i1i2i3

+ Γ2
i2i1i3

< 0

i1, i2, i3, i4, i5 = 1, 2, i ≤ j, m ≤ n, where

Γ1
i1i2i3i4i5

=





−P2,i1 (∗) (∗)
Ω1,i1,i2 −M1,i1 + (∗) (∗)

0 Ω1,i3,i4

(
−M1,i3 + (∗)

+P1,i5

)





Γ2
i1i2i3

=

(
−P1,i1 (∗)
Ω2,i1,i2 −M2,i1 + (∗) + P2,i3

)

where Ωl+1,i1,i2 = Ml+1,i1Al+1,i2 −Ll+1,i1Cl+1,i2 , l = 1, 2,

i1, i2 = 1, 2, . . . , rl.

Let us now consider a 2-sample variation of the Lyapunov
function. The conditions of Theorem 2 become there exist
Pj,i = PT

j,i > 0, Mj,i, Lj,i, j, l = 1, 2, i = 1, 2, . . . , rj ,
so that the following conditions are satisfied:

0

B

@

−P1,z (∗) (∗) (∗)
Ω2,0 Ω̄2,0 (∗) (∗)
0 Ω2,1 Ω̄2,1 (∗)
0 0 Ω1,2 Ω̄1,2 + P1,z+3

1

C

A
< 0

0

B

@

−P2,z (∗) (∗) (∗)
Ω1,0 Ω̄1,0 (∗) (∗)
0 Ω1,1 Ω̄1,1 (∗)
0 0 Ω2,2 Ω̄2,2 + P2,z+3

1

C

A
< 0

with Ωi,l = Mi,z+lAi,z+l − Li,z+lCi,z+l, Ω̄i,l = −Mi,z+l +
(∗), i = 1, 2, l = 0, 1.

Similarly to the 1-sample variation, relaxed LMI conditions

can be formulated using Lemmas 2 and 3.
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Fig. 2. A trajectory of the states of the switching system.

Note that the conditions do not require that the the local

matrices of the TS system are either stable or observable. We

illustrate this on the following example.

Example 1. Consider the switching fuzzy system with two

subsystems, each having period 2, i.e., p1 = p2 = 2 as follows:

x(k + 1) =

{∑2

i=1
h1i(z1(k))A1ix(k) + Bu

∑2

i=1
h2i(z2(k))A2ix(k) + Bu

y(k) =

{∑2

i=1
h1i(z1(k))C1x(k)

∑2

i=1
h2i(z2(k))C2x(k)

with

A11 =

(
0.80 0.22
−0.09 0.32

)
A12 =

(
−0.82 −0.44
−1.25 0.33

)

A21 =

(
0.44 0.46
0.93 0.41

)
A22 =

(
0.84 0.20
0.52 0.67

)

C11 = C12 =
(
0 0

)
C21 = C22 =

(
1 0

)

B =
(
1 0

)T

The local models A11 and A12 are not observable, since

the measurement matrices C11 and C12 are zero. Moreover,

A12 is unstable, its eigenvalues being
(
−1.1834 0.6934

)
.

The membership functions are as follows. h11 is randomly

generated1 in [0, 1], h12 = 1 − h11 and h21 = cos(x1)
2,

h22 = 1 − h21.

A trajectory of the states of the switching system, for the

initial state
(
1 1

)T
and a randomly generated input is

illustrated in Figure 2.

Due to the unobservable and unstable local models, for this

switching system it is not possible to design an observer using

either quadratic or nonquadratic Lyapunov functions, that are

common for both subsystems. Due to the unobservability and

unstability of local models, the LMIs available in the literature

for observer design are unfeasible.

1We use a random membership function because the first subsystem is not
observable.
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Fig. 3. Estimation error using the designed observer.

However, using the conditions of Theorem 1 we obtain a

solution. The conditions used are those in (7). Solving them2

using the relaxation of [31], we obtain3

P11 =

(
0.55 −0.21
−0.21 0.54

)
P12 =

(
0.55 −0.22
−0.22 0.56

)

M11 =

(
0.74 −0.06
−0.14 0.65

)
M12 =

(
0.69 −0.21
−0.14 0.58

)

L11 =
(
0 0

)T
L12 =

(
0 0

)T

P21 =

(
1.04 −0.08
−0.08 0.71

)
P22 =

(
1.17 −0.08
−0.08 0.76

)

M21 =

(
0.90 −0.16
0.03 0.76

)
M22 =

(
0.90 0.05
−0.17 0.73

)

L21 =
(
0.36 0.84

)
L22 =

(
0.87 0.40

)

A trajectory of the estimation error, with the estimated initial

state being
(
0 0

)T
is presented in Figure 3. As expected, the

error converges to zero.
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